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Abstract. We address the problem of optimally placing sensor networks for convection-diffusion
processes where the convective part is perturbed. The problem is formulated as an optimal control
problem where the integral Riccati equation is a constraint and the design variables are sensor
locations. The objective functional involves a term associated to the trace of the solution to the
Riccati equation and a term given by a constrained optimization problem for the directional derivative
of the previous quantity over a set of admissible perturbations. The paper addresses the existence
of the derivative with respect to the convective part of the solution to the Riccati equation, the
well-posedness of the optimization problem and finalizes with a range of numerical tests.
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1. Introduction. The optimal placement of sensors is an important engineer-
ing application related to energy efficiency, potable water monitoring, and detection
of structure integrity in buildings, among others. Moreover, it raises a number of
challenges in, e.g., the applied sciences, but also in mathematics where optimization
criteria influence control schemes, state estimation and/or filtering of an underlying
time-evolution process. A general feature of this problem is that the evolution pro-
cess is infinite dimensional and described by a system of partial differential equations
(PDEs). The induced sensor output, in contrast, is finite dimensional as sensor lo-
cations are considered to be points only, and their measurements are either values of
the state process at those points, or they are an integral average on an effective range
from the sensor location.

In the sensor placement context, a proper definition of a useful and mathemat-
ically sound optimization objective is a problem in its own right. This is partially
related to the fact that the concept of maximal observability admits no simple rigorous
definition for distributed parameter systems. It should further be noted that, even
in finite dimensions, an appropriate definition of this criterion is not always clear as
simple choices may lead to pathological examples. This and other issues were studied
by Khapalov (see [39, 40, 41, 38, 42]) in a robust setting for parabolic and hyperbolic
problems.

The first mathematically rigorous approach, in the infinite dimensional stochastic
setting, for the optimal sensor placement was taken by Bensoussan (see [6, 7]). In his
work, the optimization criterion involves deviations of the state with respect to the
Kalman-Bucy filter, as it was also proved by Bensoussan that the filter is well-defined
in this setting. For a detailed historical development and further results see Curtain’s
work in [19, 20]. In a finite dimensional setting, a similar approach was considered
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by Athans (see [2]), and analogous results to the ones of Bensoussan were obtained
through the use of Pontryagin’s Maximum Principle.

In recent years, significant contributions were due to Demetriou and contributors,
see [21, 22, 23, 27, 24, 26, 25, 31] and references therein. His work combines math-
ematical and engineering approaches to the optimal sensor and actuator placement,
with static and moving networks of controllers and sensors, together with a variety of
objectives and engineering applications. Approaches considering sensor placement for
optimal control were developed by Burns and King in [11, 13, 14, 12] where the main
focus is considered on optimizing gains for optimal feedback controllers. Combined
approaches involving sensor/actuator locations have also been developed by Morris
and contributors (see [36, 43, 44, 52] and references therein) with diverse applications
that include, for example, optimal damping of structure vibrations.

Recently and in the vein of Bensoussan’s approach, Burns and collaborators (see
[15, 10, 17, 16]) have provided a general framework for determining optimal location
and trajectories of sensor networks for optimal filtering. In that work, the optimiza-
tion setting is based on considering solutions to the Riccati equation on the Schatten
p-class and on minimizing a functional involving the trace of that solution. Further,
an approximation and gradient descent scheme was developed for the implementation
of solution algorithms. This paper builds on the aforementioned research. Indeed, we
consider an optimization problem that leads to a robust optimal sensor location: in
addition to the functional that penalizes deviations with respect to the Kalman-Bucy
filter and in extension to Burns’ and collaborator’s work, we consider a worst case
scenario functional involving a further optimization problem for directional sensitiv-
ities over a set of admissible perturbations. This endows the objective functional not
only with the “good information” criterion but also with the feature that good loca-
tions should not be susceptible to perturbations that may render the sensor location
subpar.

The infinite dimensional process that requires estimation is of convection-diffusion
type where the convective part is generated by a baseline stationary velocity profile
v, obtained from solving a Navier-Stokes system. We consider perturbations v + h
via a family of profiles h that may be of a different nature as v, e.g, the regularity of
h may be lower than v. Accordingly, a main question to be answered in the paper is
how the perturbation h affects deviations of the state with respect to the output of
the Kalman-Bucy filter. Such deviations will determine our measure of robustness.

The paper is organized as follows. In section 2 we formulate the optimization
problem of interest together with the underlying convection-diffusion PDE and the
Riccati equation associated with the problem. Further, in subsection 2.1 we provide
some notation and basic results of trace-class operators which are of utmost impor-
tance in our setting. In section 3, we explicitly describe two families of perturbations
h in subsection 3.1 and subsection 3.2, respectively. Subsequently, in subsection 3.3
we show that the perturbed differential operators generates a C0-semigroup of con-
tractions Sh(t) over L2(Ω), and that, under additional assumptions, the domain of
these generators is invariant. In section 4 we assess the differentiability of the map
that goes from the perturbation space into the solution of the Riccati equation. This
is done by first addressing differentiability properties of the semigroup h 7→ Sh(t) in
subsection 4.1 and other maps involving it. Further, in section 5, it is proven that the
original optimization problem is well-posed. We end the paper with section section 6
by a number of 2D and 3D numerical examples in complex geometries and non-trivial
locations for inlets and outlets.
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2. Problem Formulation. We consider a connected Lipschitz domain Ω ⊂ R`
with ` = 2 or ` = 3 and a stationary velocity profile v : Ω→ R` that solves (weakly)
the following Navier-Stokes equations:

(NS)



− 1

Re
∆v + v · ∇v +∇p = 0, in Ω,

div(v) = 0, in Ω,

v = vin, on ∂Ωin,

pn− 1

Re

∂v

∂n
= 0, on ∂Ωout,

v = 0, on ∂Ωwall,

where Re is the Reynolds number, p : Ω → R is the pressure, the inflow profile
vin : ∂Ωin → R` is prescribed, and the boundary ∂Ω is assumed to contain the
disjoint sets ∂Ωin and ∂Ωout of positive (` − 1)-Lebesgue measure, respectively, and
where ∂Ωwall satisfies ∂Ω ≡ ∂Ωwall ∪∂Ωin ∪∂Ωout. The unit normal to ∂Ω is given by
n and the normal derivative of v on the boundary is denoted by ∂v

∂n . The boundary
condition on ∂Ωin imply a fixed inflow velocity and the one on ∂Ωout translates to
free outflow on the outlet. Further, the condition on the remainder of the boundary
is a no slip condition for the flow.

The quantity of interest u : (0, T )×Ω→ R is considered to diffuse with constant
(RePr)−1, where Pr is the Prandtl constant, and to be transported (or convected)
due to the velocity profile v +h. Here, v solves (NS) and h : Ω→ R` belongs to some
admissible set of perturbations of v which we denote by H(Ω). It is assumed that
the value of u vanishes at a certain portion of the boundary ∂ΩD := ∂Ωin ∪ ∂Ωout

and that the normal derivative vanishes at the rest of the boundary ∂ΩN := ∂Ωwall.
Furthermore, we consider the dynamics stochastically perturbed. Hence, u satisfies
the following stochastic Cauchy problem with mixed boundary conditions:

(A)


∂tu+ (v + h) · ∇u− 1

RePr
∆u− σ = f, in (0, T )× Ω

u = 0, on (0, T )× ∂ΩD

∂u

∂n
= 0, on (0, T )× ∂ΩN ,

and u(0, ·) = u0 + ξ, on Ω, where σ is an L2-valued Wiener process, the source
f ∈ L2((0, T )× Ω)), u0 ∈ L2(Ω) is arbitrary and ξ is an L2-valued Gaussian random
process with zero mean and uncorrelated to σ.

The output of the system considers perturbed measurements {zi}ni=1 of u which
are due to n sensors at locations x̂ := {x̂i}ni=1 and in the n admissible regions Γiad ⊂ Ω,
respectively. At time t ∈ (0, T ), these measurements are given by

(B) zi(t) =

∫
Ω

Ki(y − x̂i)u(t, y)dy + νi, i = 1, 2, . . . , n.

Here, it is supposed that Ki ∈ L2(Ω) and the support of y 7→ Ki(y − x̂i) is restricted
to a region around the sensor location x̂i. The perturbations νi are Wiener processes
uncorrelated with νj , for j 6= i, ξ and σ. We write ν := {νi}ni=1.

The problem associated with (A) and (B) can be formulated as the following
abstract infinite dimensional stochastic evolution system:

(AB)
u̇ = −A(h)u+Bη(t),

z = Cx̂u+ ν(t),
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where u(0) = u0 + ξ, and −A(h) := 1
RePr∆− (v + h) · ∇, in a sense that is specified

later. It is further considered that η is a Wiener process with values in a separable
Hilbert space H and B ∈ L (H,L2(Ω)), which implies that Bη is an L2-valued Wiener
process and Bη = σ. By hypotheses, the triple (η, ν, ξ) is assumed to be uncorrelated.
Finally, for t ∈ (0, T ), Cx̂ ∈ L (L2(Ω),Rn) is defined by the sensor measurement
output (B) as Cx̂ := {Cx̂i

}ni=1 with

(1) Cx̂i
(ϕ) =

∫
Ω

Ki(t, y − x̂i)ϕ(y)dy, ∀ϕ ∈ L2(Ω)

Since there is no direct access to the variable of interest u but only to the measured
output z, the implementation of an appropriate filter is of interest. Provided that
A(h), B and Cx̂ satisfy certain assumptions, the output of a generalized Kalman-
Bucy filter determines a stochastic L2(Ω)-valued process, which we denote by ũ(·).
However, the reliability of such a filtering scheme depends substantially on how “close”
ũ(·) is to the real state u(·). In this vein, the expected value of |u(t)− ũ(t)|2L2(Ω) with

t ∈ (0, T ) is given by the trace of an operator Σ(t), i.e.,

(2) E
{
|u(t)− ũ(t)|2L2(Ω)

}
= Tr Σ(t),

with Σ : (0, T )→ L (L2(Ω)), the solution (in a sense specified later ) to the following
Riccati equation:

(3)

{
Σ̇ = −A(h)Σ− ΣA∗(h) +BR2B

∗(t)− Σ(C∗x̂R
−1
1 Cx̂)(t)Σ,

Σ(0) = Σ0,

where the operators R1(·) and R2(·) are the incremental covariances of ν and η (see
[7]), respectively, and Σ0 is the covariance operator of ξ.

Since A and C are maps depending on the perturbation h and on the sensors
locations x̂ = {x̂i}ni=1, respectively, it follows that the solution to (3) satisfies

(4) Γad ×H(Ω) 3 (x̂,h) 7→ Σ(x̂,h),

where H(Ω) is the set of admissible perturbations to v and Γad :=
∏n
i=1 Γiad is the

region for admissible location of the sensors. The study of the map (4) is one of the
major focus points of this work.

It follows from (2) that criteria for the quality of information of the sensors
should be related to reducing the value of Tr Σ(t) for each t and to not increase it
significantly under the family perturbations H(Ω). This second criterion is related to
the sensitivity of (4) with respect to h ∈ H(Ω). Hence, the following optimization
problem arises naturally from these two quality criteria:

Problem (P). Let λ ∈ [0, 1] and M > 0 be given. Consider

min
x̂∈Γad

J(x̂) := λJ1(x̂) + (1− λ)J2(x̂),

where

J1(x̂) :=

∫ T

0

Tr (Σ(x̂,0)(t)) dt and J2(x̂) := sup
|z|H(Ω)≤M

∫ T

0

Tr (W (x̂,0)z(t)) dt,

with W (x̂,0)z denoting the directional derivative of h 7→ Σ(x̂,h) at zero in direction
z, and W (x̂,0) is its Fréchet derivative at zero.
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A few words concerning problem (P) and its analysis are in order. We consider
−A(h) as the infinitesimal generator of a C0-semigroup Sh(t) over L2(Ω) and with
domain D(−A(h)). This is studied in section 3. Further, the Riccati equation (3) is
considered in its integral form:

Σ(t) = Sh(t)Σ0S
∗
h(t) +

∫ t

0

Sh(t− s)
(
BR2B

∗ − ΣC∗x̂R
−1
1 Cx̂Σ

)
(s)S∗h(t− s) ds,(R)

which makes it amenable to our approach. Additionally, conditions on B and Cx̂ so
that the solution to the integral equation satisfies Σ(x̂,h) ∈ C([0, T ]; I1) are given,
where I1 is the Banach space of trace class operators as described in subsection 2.1
below. Further, W (x̂,0)z refers to the directional derivative of the map H(Ω) 3 h 7→
Σ(x̂,h) ∈ C([0, T ]; I1) in direction z ∈ H(Ω). The associated differentiability proof
is given in subsection 4.2. As it is a known fact that the trace is a linear bounded
functional over I1 and also W (x̂,0) ∈ L (H(Ω), C([0, T ]; I1)) we can conclude that∫ T

0
Tr(W (x̂,0)(·)(t)) dt is an element of the dual of H(Ω) and J2(x̂) a scaled dual

norm of the aforementioned functional.
It is clear that a low value in J1(x̂) implies good quality of information associated

to the location of the sensors in x̂. On the other hand, J2(x̂) measures the worst
case scenario with respect to perturbations h bounded in energy |h|H(Ω) ≤M . High
values J2(x̂) indicate that the location x̂ is susceptible to strong changes of the map

(5) h 7→
∫ T

0

Tr (Σ(x̂,h)(t)) dt,

under perturbations of h, as well.
Furthermore, in addition to J1 and J2, we are interested in a third map, x̂ 7→

J3(x̂), that is associated to only one given perturbation and defined as

J3(x̂) :=

∫ T

0

Tr (W (x̂,0)h∗(t)) dt,

for some fixed h∗ ∈ H(Ω). While J2 measures a worst-case-scenario, J3 is the direc-
tional derivative at zero of the map (5) in direction h∗.

2.1. Trace class operators. Throughout this paper we consider H ≡ L2(Ω)
over the field C, so that it is a separable complex Hilbert space. An operator D ∈
L (H ) is called non-negative if (Dx, x) ≥ 0 for all x ∈H which is denoted by D ≥ 0.
Since H is a complex Hilbert space it follows that if D ∈ L (H ) and D ≥ 0, D is
self-adjoint (see [47]), i.e., D∗ = D.

If D ≥ 0, then the trace of D is defined by Tr (D) :=
∑∞
n=1〈φn, Aφn〉, where

{φn}∞n=1 is any orthonormal basis of H . In this case, the value of Tr (D) may be +∞
but it is invariant with respect to orthonormal bases. The polar decomposition (see
for example [47]) of D ∈ L (H ) is uniquely given as D = U |D| where |D| ∈ L (H )
and |D| ≥ 0 and U is the unique partial isometry such that Ker U = Ker|D|. The
following definition fixes the Banach space where the trace can be applied and is finite.

Definition 1. The set of all D ∈ L (H ) such that Tr (|D|) < ∞ is denoted by
I1. If D ∈ I1, then the I1-norm of D is defined as |D|I1

:= Tr (|D|) <∞.

Endowed with the I1-norm, the linear space I1 is a Banach space (see [29], [33]
or [48]). If D ∈ I1, then D is a compact operator and |D|L (H ) ≤ |D|I1

. The class
I1 is called the space of Trace Class (or Nuclear) operators. It is known (see for
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example [48]), that the finite rank operators are dense (in the I1-norm) in I1 and
that I1 is a two-sided ∗-ideal in the ring L (H ), i.e., I1 is a vector space and:

(1) If D ∈ I1 and E ∈ L (H ), then DE ∈ I1 and ED ∈ I1. Further, |DE|I1
≤

|D|I1 |E|L (H ) and |ED|I1 ≤ |D|I1 |E|L (H )

(2) If D ∈ I1 then D∗ ∈ I1, and |D∗|I1 = |D|I1 .
The trace is a continuous linear functional over I1 (see [29]). Consequently, if

D ∈ I1, the value Tr (D) =
∑∞
n=1(φn, Dφn) does not depend on the choice of the

orthonormal basis {φn}∞n=1.

3. Semigroup Setting. We now consider problem (A) in a semigroup setting
in which h represents perturbations of the infinitesimal generator of a semigroup. The
state space is given by the closure of E(Ω) := {φ ∈ C∞(Ω) : supp φ ∩ ∂ΩD = ∅} in
the H1(Ω)-norm, i.e.,

(6) H1
D(Ω) := E(Ω)

H1(Ω)
.

We note that H1
D(Ω), when endowed with the inner product

(7) ((v, w)) :=

∫
Ω

∇v · ∇w dx, ∀v, w ∈ H1
D(Ω),

is a Hilbert space and that the closure (6) can be also taken with respect to the
H1

0 (Ω)-norm without changing the outcome. This follows from the fact that since
|∂ΩD| > 0, the norm defined as v 7→ |v|D := |∇v|L2(Ω)` + |

∫
∂ΩD

v dS| is equivalent to

the usual norm on H1(Ω). Hence, for v ∈ H1
D(Ω) we have that |v|D = |∇v|L2(Ω)` and

then |v|H1(Ω) ≤ C|v|H1
D(Ω), for some constant C > 0 not depending on v.

Further note that (H1
D(Ω), L2(Ω), H1

D(Ω)∗) forms a Gelfand triple. Indeed, the
natural injection H1

D(Ω) ↪→ L2(Ω) is dense and continuous and we identify the dual
of L2(Ω) with itself. The previous implies that the injection L2(Ω) ↪→ H1

D(Ω)∗ is also
dense and continuous (see [50] or [51], for example).

Let α := (RePr)−1, and define the form a as

(8) a(u,w) := α

∫
Ω

∇u · ∇w dx+

∫
Ω

(v · ∇u)w dx+

∫
Ω

(h · ∇u)w dx.

The well-posedness of the form, its domain of definition and properties are tied directly
to v and h. In this connection, the regularity of v and h is important and it is
addressed next. Since v is assumed to be the weak solution to (NS), then v ∈
H1(Ω)`. In general, no extra global regularity can be expected due to the “do nothing”
boundary condition in ∂Ωout, i.e., we assume that v /∈ H2(Ω)`. Additionally we have
that div(v) = 0 in Ω, v = 0 in ∂Ωwall ≡ ∂ΩN and v = vin in ∂Ωin ⊂ ∂ΩD.

For the admissible space of perturbations, in this section, we consider (at this
point) two possibilites: H(Ω), and H̃(Ω). The first choice is a space with the same
regularity as v and the second one results from a particular construction via PDEs
that is considered within numerical implementation and possesses lower regularity
of its elements. While, the first approach works for ` = 2, 3, the second one, is
mathematically rigorous only for ` = 2.

3.1. First Perturbation Approach. As stated before, the fact that v solves
weakly (NS) limits its global regularity. We consider first a general family of per-
turbations that share the same regularity as v, and the incompressibility condition,
but that have a more general boundary condition than v on ∂Ωwall: we assume the
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perturbations h only need to satisfy the slip boundary condition h · n = 0 on ∂Ωwall.
Specifically, we define

(9) H(Ω) := {h ∈ H1(Ω)` : div h = 0 in Ω, n · h|∂Ωwall
= 0},

where n is the outer unit normal to ∂Ω. As with H1
D(Ω), note that H(Ω) endowed

with the inner product in (7) is a Hilbert space.
Since, at this point, neither v or h are necessarily in L∞(Ω)`, it is not straight-

forward to state that the operator associated with a(·, ·) generates a C0-semigroup.
Hence, we need to clarify the necessary properties for the form first. For this reason,
we need the following result. Note first that v ∈ H(Ω) since v is the solution to (NS).

Proposition 2. Let h ∈ H(Ω) and ` = 2, 3. Then, the form in (8) is well-defined
as a : H1

D(Ω)×H1
D(Ω)→ R, and further, it is bilinear, continuous and coercive.

Proof. First, note that H1(Ω) ↪→ Lq(Ω) for 2 ≤ q < ∞ if ` = 2, for 2 ≤ q ≤ 6 if
` = 3. Then, for ` = 2, 3, z ∈ H1(Ω) and u,w ∈ H1

D(Ω) , we have∣∣∣∣∫
Ω

z
∂u

∂xi
w dx

∣∣∣∣ ≤ |z|L4(Ω)|w|L4(Ω)|u|H1
D(Ω) ≤ C1|z|H1(Ω)|w|H1

D(Ω)|u|H1
D(Ω),

for some C1 > 0. Hence, the integrals involving h and v in the definition of a(·, ·),
are well defined and bounded. The bilinearity of the form a(·, ·) is direct. Further,

(10) |a(u,w)| ≤ C|w|H1
D(Ω)|u|H1

D(Ω),

for some C depending linearly on α, |∇v|L2(Ω)`×` and |∇h|L2(Ω)`×` . Hence, a(·, ·) is
also continuous.

Let z ∈ H(Ω) and note that ∂Ωwall ≡ ∂ΩN . Then, for u ∈ H1
D(Ω), we observe by

Green’s formula (see [45, Chapter 3, Theorem 1.1]) that∫
Ω

zi
∂u

∂xi
u dx = −

∫
Ω

u
∂

∂xi
(ziu) dx+

∫
∂Ω

ziu
2ni dS,

= −
(∫

Ω

u2 ∂zi
∂xi

+ u
∂u

∂xi
zi dx

)
+

∫
∂Ω

ziu
2ni dS,

where we have used that for ` = 2, 3 u ∈ W 1,2(Ω) and ziu ∈ W 1,3/2(Ω) and hence of
usage the Green’s formula is justified. In order to check that ziu ∈W 1,3/2(Ω), simply
note that zi, u ∈ L6(Ω), so by Hölder’s inequality we observe that ziu ∈ L3(Ω) ⊂
L3/2(Ω) and ∇(ziu) ∈ L3/2(Ω)`. Summation of the above identity over the index i
implies ∫

Ω

(z · ∇u)u dx = −
(∫

Ω

u2 div(z) + (z · ∇u)u dx

)
+

∫
∂Ω

(z · n)u2 dS

= −
∫

Ω

(z · ∇u)u dx,

where we have used that div(z) = 0 in Ω, z · n|∂ΩN
= 0 and u|∂ΩD

= 0. Therefore,

(11)

∫
Ω

(z · ∇u)u dx = 0,

and we obtain

(12) a(u, u) = α|u|2H1
D(Ω),

i.e., a(·, ·) is coercive.
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3.2. Second Perturbation Approach. We consider now a different approach
for possible perturbations on the baseline velocity profile v. Although, the space
defined in this section would also provide slip boundary conditions for the perturbation
on ∂Ωwall, the global regularity of the perturbation will be lower than the one of v.
For the second approach concerning the perturbations in Ω ⊂ R2 we consider ∂Ω to be
of class C3 and pursue the following construction. Let Γ0 ⊂ ∂ΩD and Γ1 denote open
disjoint subsets of ∂Ω consisting of a finite number of connected open subsets. Note
that this implies that Γ0 ∩Γ1 is equal to a finite number of points. Given g : Γ0 → R,
consider the following mixed boundary value problem:

(M)


−∆w = 0, in Ω,

w = g, on Γ0,

∂w

∂n
= 0, on Γ1.

Let 1 < p < 4/3. We define H̃(Ω) as

H̃(Ω) := {∇w : w weakly solves (M) for some Lipschitz g ∈W 2− 1
p ,p(Γ0)}.

A few words are in order concerning H̃(Ω). If h ∈ H̃(Ω), then this implies that h =

∇w for some weak solution to (M) determined by a Lipschitz function g ∈W 2− 1
p ,p(Γ0)

where 1 < p < 4/3. PDE regularity theory implies w ∈ W 2,p(Ω) ∩W 1,q(Ω) for all
q < 4 (see [49, Theorem 7.9, Chapter 3]). By the first and third equations in (M),
we have that div(h) = ∆w = 0 a.e. in Ω, h ∈ W 1,p(Ω) and h · n = 0 in the sense
of W 1−1/p,p(Γ1) (see, for example, [34]). We see in the following results that this is
enough regularity for the well-posedness of the form a(·, ·), its coercivity, continuity
and bilinearity.

Proposition 3. Suppose that h ∈ H̃(Ω) and ` = 2. Then, the form in (8) is
well defined as a : H1

D(Ω) × H1
D(Ω) → R and further, it is bilinear, continuous and

coercive.

Proof. Since h ∈ H̃(Ω), by definition this implies that div(h) = 0 a.e. in Ω,
h ∈ W 1,p(Ω)2 and h · n = 0 in the sense of W 1−1/p,p(Γ1) all for some 1 < p < 4/3.
Then, it follows that the integral involving h in the definition of a(·, ·) in (8) is well-
defined: Note that the following continuous embeddings hold true W 1,p(Ω) ↪→ Lp

∗
(Ω)

and H1(Ω) ↪→ Lq
∗
(Ω) with

2 < p∗ :=
2p

2− p
< 4, and 4 < q∗ :=

2p∗

p∗ − 2
<∞.

Then, if h ∈ W 1,p(Ω) and u,w ∈ H1
D(Ω), we have that h ∂u

∂xi
w is integrable and

bounded as∣∣∣∣∫
Ω

h
∂u

∂xi
w dx

∣∣∣∣ ≤ |h|Lp∗ (Ω)|u|H1
D(Ω)|w|Lq∗ (Ω) ≤ C|h|Lp∗ (Ω)|u|H1

D(Ω)|w|H1
D(Ω),

for some C > 0. From this we again obtain the boundedness as in (10) (and hence
continuity) of the form a(·, ·) but where the constant C, now depends linearly on α,
|∇v|L2(Ω)2×2 and |h|W 1,p(Ω)2 . Hence, a(·, ·) is also continuous.

Now we focus on obtaining (11) for h ∈ H̃(Ω) and u ∈ H1
D(Ω). For that, we first

show that u2 ∈ W 1,q(Ω), with 1 ≤ q < 2. By Sobolev embeddings, u ∈ Lr(Ω), with
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2 ≤ r < ∞, and consequently u2 ∈ Lr/2(Ω). On the other hand, ∂xi
u ∈ L2(Ω) so

that ∂xi
u2 = 2u ∂xi

u ∈ L2r/r+2. Since r ≥ 2, we have r/2 > 2r/(r+ 2), which implies
that u2 ∈ W 1,2r/(r+2). Noting that the range of [2,+∞) 3 r 7→ 2r/(r + 2) is [1, 2),
we conclude u2 ∈W 1,q(Ω) for 1 ≤ q < 2.

Further, since hi ∈ W 1,p(Ω), with 1 < p < 4/3, there exist q ∈ [1, 2) such that
1
p + 1

q ≤
`+1
` = 3

2 , and where 1 ≤ p, q < ` = 2, it follows that Green’s formula (see

[45, Chapter 3, Theorem 1.1]) is applicable in the following:∫
Ω

hi
∂(u2)

∂xi
dx = −

∫
Ω

u2 ∂hi
∂xi

dx+

∫
∂Ω

hiu
2ni dS.

Summation of the above identity along i, yields∫
Ω

(h · ∇u)u dx = −
∫

Ω

u2 div(h) dx+

∫
∂Ω

(h · n)u2 dS = 0,

where we have used that div(h) = 0 a.e. in Ω, h · n|∂ΩN
= 0 and u|∂ΩD

= 0. This
implies that (12) also holds in this case, and hence a(·, ·) is coercive.

3.3. Infinitesimal Generator. We are now in position to prove that the oper-
ator induced by the form a(·, ·) generates a C0-semigroup on L2(Ω), the pivot space
in (H1

D(Ω), L2(Ω), H1
D(Ω)∗) for the cases where h ∈ H(Ω) and h ∈ H̃(Ω). We further

prove that the domain of the generator is invariant to the perturbations under an
additional assumption. The latter is of utmost importance for determining sensitivity
properties of h 7→ Σ(h).

Proposition 4. Let h ∈ H(Ω) or h ∈ H̃(Ω). Then, the associated operator
−A(h) to the form a : H1

D(Ω) × H1
D(Ω) → R generates a contractive holomorphic

C0-semigroup Sh(t) over L2(Ω).
Further, for any two h1,h2 ∈ H(Ω) ∩ L∞(Ω)` for ` = 2, 3 or h1,h2 ∈ H̃(Ω) ∩

L∞(Ω)2, we have

(13) D := D(A(h1)) ≡ D(A(h2)),

i.e., the operator is domain invariant.

Proof. From the several possible approaches to do so, we follow [1] and drop the
h-dependence notation in this paragraph. Define A and its domain D(A) as follows:
Given w ∈ H1

D(Ω), z ∈ L2(Ω), we say that w ∈ D(A) and Aw = z if

a(w, v) = (z, v), ∀v ∈ H1
D(Ω).

Since the form a : H1
D(Ω)×H1

D(Ω)→ R is bilinear, continuous and coercive, it follows
that A : D(A)→ L2(Ω) generates a contractive holomorphic C0-semigroup S(t) over
L2(Ω) (see [1, Theorem 4.2]).

We argue that D(A(h)) ≡ D(A(0)) if h ∈ H(Ω) ∩ L∞(Ω)` for ` = 1, 2 or h ∈
H̃(Ω) ∩ L∞(Ω)2. In order to emphasize the h-dependence, we write ah(·, ·) for a(·, ·)
in (8) and further

ah(w, v) := a0(w, v) + (h · ∇w, v), ∀w, v ∈ H1
D(Ω).

Suppose that w0 ∈ D(A(0)). Hence a0(w0, v) = (z0, v) for some z0 ∈ L2(Ω) and for
all v ∈ H1

D(Ω). Then, ah(w0, v) = (z0, v) + (h · ∇w0, v) for all v ∈ H1
D(Ω). Since

z0 +h ·∇w0 ∈ L2(Ω) it follows that w0 ∈ D(A(h)), so that D(A(0)) ⊂ D(A(h)). The
reverse inclusion is shown analogously.
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Since A changes when h does, it follows that for each h ∈ H(Ω) (or h ∈ H̃(Ω)),
the above procedure provides one associated semigroup Sh(t). The study of the
perturbations of h 7→ Sh(t) and also h 7→ Σ(h) is carried out in the following section.

4. Sensitivity Analysis. We now establish sensitivity results for h 7→ Σh. For
this purpose, in what follows we assume that D = D(A(h)) for every chosen h. Hence,
it is useful to consider the following:

H∞(Ω) := H(Ω) ∩ L∞(Ω)` ` = 2, 3, and H̃∞(Ω) := H̃(Ω) ∩ L∞(Ω)2,

which, endowed with the usual norm for intersection of normed spaces, are normed
spaces in their own right. Throughout this section we use the following notation: we
write H(Ω) either for H∞(Ω) or H̃∞(Ω), Sh(t) denotes the semigroup generated by
A(h), S(t) := S0(t), A := A(0) and P (h) := A(h)−A.

4.1. Sensitivity of h 7→ Sh(t). In this section we provide the preparatory re-
sults and lemmas necessary to prove the differentiability of the map h 7→ Σh. We
provide three results, Lemma 5, Theorem 6, and Lemma 7. The first one endows
a stronger regularity characterization to the semigroup Sh(t) based on PDE theory.
Theorem 6 proves the differentiability of the composition of functions involving Sh(t)
and finally Lemma 7 provides additional bounds required in subsection 4.2.

In order to provide a better regularity characterization of Sh(t), first note that
for φ ∈ L2(Ω), t 7→ u(t, ·) := Sh(t)φ is the unique (weak solution) to

(14)



∂tu+ (v + h) · ∇u− α∆u = 0, in (0, T )× Ω;

u(0, ·) = φ, in Ω;

u = 0, on (0, T )× ∂ΩD;

∂u

∂n
= 0, on (0, T )× ∂ΩN ;

and hence we have the following result.

Lemma 5. Let φ ∈ L2(Ω) and h ∈ H(Ω). Then, Sh(t)φ ∈ H1
D(Ω) for t > 0, and

for any T > 0 it holds true that

(15)

∫ T

0

|Sh(t)φ|2H1
D(Ω) dt ≤ α−1|φ|2L2(Ω),

and

(16)

∫ T

0

|Sh(t)φ− S(t)φ|2H1
D(Ω) dt ≤ C|h|2H(Ω)|φ|

2
L2(Ω),

for some constant C > 0. Further, for any t ∈ [0, T ] we observe

(17) |Sh(t)φ− S(t)φ|2L2(Ω) ≤
t

α
|h|2H(Ω)|φ|

2
L2(Ω),

Proof. Since a : H1
D(Ω)×H1

D(Ω) → R is bilinear, continuous and coercive when
h ∈ H(Ω) by previous results, the weak formulation of (14) is given by the following
problem: Find u ∈ L2(0, T ;H1

D(Ω)), with ∂tu ∈ L2(0, T ;H1
D(Ω)∗), such that u(0) = φ

and for a.e. t ∈ (0, T )

〈∂tu, v〉(H1
D)∗,H1

D
+ a(u, v) = 0, ∀v ∈ H1

D(Ω).
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Note that if u ∈ L2(0, T ;H1
D(Ω)), and ∂tu ∈ L2(0, T ;H1

D(Ω)∗), then it follows that
u ∈ C([0, T ];L2(Ω)) (see [51]) and hence the condition u(0) = φ is considered in the
sense of L2(Ω). Further, from standard PDE theory (see [30]), it is straightforward
to prove that the problem admits a unique solution.

Using v = u above, and noting that 〈∂tu, u〉(H1
D)∗,H1

D
= 1

2
d
dt |u(t)|2L2(Ω) as well as

a(u, u) = α|u|2
H1

D(Ω)
, it follows that

(18) |u(t)|2L2(Ω) + 2α

∫ t

0

|u(s)|2H1
D(Ω) ds = |φ|2L2(Ω),

by integrating between 0 and t ≤ T the previous equality.
Let u1 and u0 denote the weak solutions for h 6= 0 and h = 0, respectively. Then,

by considering v = u1 − u0 in the weak formulations on the respective problems and
adding both we obtain that

〈∂t(u1 − u0), u1 − u0〉+ a0(u1 − u0, u1 − u0) = −(h · ∇u, u1 − u0).

Integrating between 0 and t yields

|(u1 − u0)(t)|2L2(Ω) + 2α

∫ t

0

|(u1 − u0)(s)|2H1
D(Ω) ds ≤

2|h|H(Ω)

(∫ t

0

|u1(s)|2H1
D(Ω) ds

)1/2(∫ t

0

|(u1 − u0)(s)|2L2(Ω) ds

)1/2

,

(19)

by using the Hölder inequality. Therefore, by (18), it follows that

|(u1 − u0)(t)|2L2(Ω) ≤
√

2√
α
|h|H(Ω)|φ|L2(Ω)

(∫ t

0

|(u1 − u0)(s)|2L2(Ω) ds

)1/2

.

Although Gronwall’s inequality is not directly applicable, Bihari’s nonlinear general-
ization is (see [9, 28]) and gives

|(u1 − u0)(t)|2L2(Ω) ≤
t

α
|h|2H(Ω)|φ|

2
L2(Ω), ∀t ∈ [0, T ],

and proves (17), and when applied to (19) together with (18) implies∫ t

0

|(u1 − u0)(s)|2H1
D(Ω) ds ≤ C|h|2H(Ω)|φ|

2
L2(Ω),(20)

for some C > 0 involving T and α, and this finalizes the proof.

With the aid of Lemma 5, we are now in shape to prove sensitivity results con-
cerning the semigroup Sh(t) in the following setting.

Theorem 6. Let Γ1 ∈ C([0, T ]; I1) and Γ2 ∈ L∞(0, T ; I1) with Γ1(t)∗ = Γ1(t)
and Γ2(t)∗ = Γ2(t) for t ∈ [0, T ]. Define

R1(h)(t) := Sh(t)Γ1(t)S∗h(t), and R2(h)(t) :=

∫ t

0

Sh(t− s)Γ2(s)Sh(t− s)∗ ds,

for t ∈ [0, T ]. Then, R1 and R2 are well-defined, they map H(Ω) into C([0, τ ]; I1)
and are Fréchet differentiable at zero.
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Proof. The fact that R1(h), R2(h) ∈ C([0, τ ]; I1) is given in [17]. Note that
the integral that defines R2 is well-defined as a Bochner integral only because Γ2 is
compact-valued.

We focus first on R1. Let φ ∈ D ⊂ L2(Ω). We follow an argument in [46, Chapter
3]. Note that s 7→ H(s) := S(t−s)Sh(s)φ is differentiable in (0, t) (here, we have that
Sh(s)φ ∈ D) with derivative H ′(s) = S(t−s)P (h)Sh(s)φ where P (h) = A(h)−A(0).
Integrating between 0 and t yields

Sh(t)φ = S(t)φ+

∫ t

0

S(t− s)P (h)Sh(s)φ ds, ∀φ ∈ D .

Since D is dense in L2(Ω), and Sh(t) − S(t) is bounded on L2(Ω), the above holds
also for all φ ∈ L2(Ω). Then, for φ ∈ L2(Ω), we observe

Sh(t)φ− S(t)φ−
∫ t

0

S(t− s)P (h)S(s)φ ds =

∫ t

0

S(t− s)P (h)(Sh(s)− S(s))φ ds,

where we have used that
∫ t

0
S(t − s)P (h)S(s)φ ds is well-defined: note that S(·)φ ∈

L2(0, T ;H1
D(Ω)), so that P (h)S(·)φ = (h · ∇)S(·)φ ∈ L2(0, T ;L2(Ω)) which proves

the claim since
∫ t

0
S(t − s)f(s) ds is well defined for f ∈ L1(0, T ;L2(Ω)). Also note

that t 7→
∫ t

0
S(t− s)P (h)S(s)φ ds ∈ L2(Ω) is continuous (see [46]).

Further, for Γ1 ∈ C([0, T ]; I1), the above equality in L2(Ω) implies that

Sh(t)Γ1(t)− S(t)Γ1(t)−
∫ t

0

S(t− s)P (h)S(s)Γ1(t) ds

=

∫ t

0

S(t− s)P (h)(Sh(s)− S(s))Γ1(t) ds(21)

in the operator sense and where the integrals are strong Bochner integrals (see [35]),
i.e., the integrands may fail to be measurable as operator valued functions, but they
are measurable as L2(Ω)-functions when acting on elements in L2(Ω). Additionally,
since Γ1(t) ∈ I1, all the terms in the above equality are also in I1. Further, since the

maps t 7→ Sh(t), t 7→ S(t), and t 7→
∫ t

0
S(t−s)P (h)S(s)(·)ds are strongly continuous,

all terms in (21) belong to C([0, T ]; I1) (see for example [17]).
Since |S(t)|L (L2(Ω)) ≤ 1, P (h)y = h · ∇y for y ∈ H1

D(Ω), and because (16) holds,
we have∣∣∣∣Sh(t)Γ1(t)− S(t)Γ1(t)−

∫ t

0

S(t− s)P (h)S(s)Γ1(t) ds

∣∣∣∣
I1

≤ C1|h|2H(Ω)|Γ1(t)|I1 ,
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for some C1 > 0, as the following inequalities hold true

∣∣∣∣∫ t

0

S(t− s)P (h)(Sh(s)− S(s))Γ1(t) ds

∣∣∣∣
I1

≤

(22)

≤ |Γ1(t)|I1
sup

|φ|L2(Ω)≤1

(∣∣∣∣∫ t

0

S(t− s)P (h)(Sh(s)− S(s))φ ds

∣∣∣∣
L2(Ω)

)

≤ |Γ1(t)|I1
sup

|φ|L2(Ω)≤1

(∫ t

0

|P (h)(Sh(s)− S(s))φ|L2(Ω) ds

)

≤ |Γ1(t)|I1 |h|H(Ω) sup
|φ|L2(Ω)≤1

(∫ t

0

|∇(Sh(s)− S(s))φ|L2(Ω) ds

)

= |Γ1(t)|I1
|h|H(Ω) sup

|φ|L2(Ω)≤1

(∫ t

0

|(Sh(s)− S(s))φ|H1
D(Ω) ds

)

≤ T 1/2|Γ1(t)|I1 |h|H(Ω) sup
|φ|L2(Ω)≤1

(∫ T

0

|(Sh(s)− S(s))φ|2H1
D(Ω) ds

)1/2

≤ CT 1/2|Γ1(t)|I1
|h|2H(Ω),

where we have used (16), and that if R ∈ L (L2(Ω)), then |RΓ|I1
≤ |R|L (L2(Ω))|Γ|I1

.
Hence, we obtain

sup
t∈[0,T ]

∣∣∣∣Sh(t)Γ1(t)− S(t)Γ1(t)−
∫ t

0

S(t− s)P (h)S(s)Γ1(t) ds

∣∣∣∣
I1

≤ C1|h|2H(Ω) sup
t∈[0,T ]

|Γ(t)|I1 .

Therefore, H(Ω) 3 h 7→ Sh(·)Γ1(·) ∈ C([0, T ]; I1) if Fréchet differentiable at zero

with directional derivative (W1(Γ1)h)(t) :=
∫ t

0
S(t−s)P (h)S(s)Γ1(t)ds for h ∈ H(Ω),

t ∈ [0, T ]. Since operators in I1 have the same I1-norm as their adjoints, and since
Γ1(t)∗ = Γ1(t) for t ∈ [0, T ], we also observe that

sup
t∈[0,T ]

|Γ1(t)Sh(t)∗ − Γ1(t)S(t)∗ −W2(Γ1)h(t)|I1
≤ C1|h|2H(Ω) sup

t∈[0,T ]

|Γ(t)|I1
,

where (W2(Γ1)h)(t) := (W1(Γ1)h)(t)∗. Finally, since we can write

R1(h)(t)−R1(0)(t) = (Sh(t)Γ1(t)− S(t)Γ1(t))S(t)∗ + S(t)(Γ1(t)Sh(t)− Γ1(t)S(t))∗

+ (Sh − S)(t)Γ1(t)(Sh − S)(t)∗,

the differentiability of R1(h) is implied by the differentiability of H(Ω) 3 h 7→
Sh(·)Γ1(·) ∈ C([0, T ]; I1) and H(Ω) 3 h 7→ Γ1(·)Sh(·)∗ ∈ C([0, T ]; I1), and the
fact that supt∈[0,T ] |(Sh − S)(t)Γ1(t)(Sh − S)(t)∗|I1 = o(|h|H(Ω)). The latter can be
directly inferred from property (1) in section 2.1 and the pointwise bound (17):

sup
t∈[0,T ]

|(Sh − S)(t)Γ1(t)(Sh − S)(t)∗|I1
≤ T

α
|h|2H(Ω) sup

t∈[0,T ]

|Γ(t)|I1
.
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Now we focus on R2. Consider the equality in (21). We change t to t− s, and Γ1

for Γ2(s)Sh(t− s)∗. Integration with respect to s from 0 to t yields∫ t

0

Sh(t− s)Γ2(s)Sh(t− s)∗ ds−
∫ t

0

S(t− s)Γ2(s)Sh(t− s)∗ ds

−
∫ t

0

∫ t−s

0

S(t− s− σ)P (h)S(σ)Γ2(s)S(t− s)∗ dσ ds = I1(23)

with

I1(t) :=

∫ t

0

∫ t−s

0

S(t− s− σ)P (h)(Sh − S)(σ)Γ2(s)Sh(t− s)∗ dσ ds

+

∫ t

0

∫ t−s

0

S(t− s− σ)P (h)S(σ)Γ2(s)(Sh − S)(t− s)∗ dσ ds.

Note that the first two terms in (23) are Bochner integrals but the remaining ones
are strong Bochner integrals.

Analogously as done in the first part of the proof in (22), we bound I1 by

|I1(t)|I1 ≤ C2|h|2H(Ω)|Γ2|L∞(0,T ;I1),

for some C2 > 0, and all t ∈ [0, T ]. Once more we consider the equality in (21),
exchange t to t − s, and Γ1 to Γ2(s)S(t − s)∗. Then, integrating with respect to s
from 0 to t yields∫ t

0

Sh(t− s)Γ2(s)S(t− s)∗ ds−
∫ t

0

S(t− s)Γ2(s)S(t− s)∗ ds

−
∫ t

0

∫ t−s

0

S(t− s− σ)P (h)S(σ)Γ2(s)S(t− s)∗ dσ ds = I2(t),(24)

where

I2(t) :=

∫ t

0

∫ t−s

0

S(t− s− σ)P (h)(Sh(σ)− S(σ))Γ2(s)S(t− s)∗ dσ ds,

and analogously as with I1, we observe

|I2(t)|I1 ≤ C3|h|2H(Ω)|Γ2|L∞(0,T ;I1),

for some C3 > 0. Finally, taking the adjoint of (24), adding the resulting expression
to (23) and noting that |I2(t)∗|I1

= |I2(t)|I1
, we observe that∣∣∣∣∫ t

0

Sh(t− s)Γ2(s)Sh(t− s)∗ ds−
∫ t

0

S(t− s)Γ2(s)S(t− s)∗ ds− (W (Γ2)h)(t)

∣∣∣∣
I1

≤ C|h|2H(Ω)|Γ2|L∞(0,T ;I1),

(25)

for some C > 0 and W (Γ2)h ∈ C([0, T ]; I1) which completes the proof.

Analogous techniques as the ones displayed above are used for the following result
which is required in the proof of the sensitivity of the Riccati equation.
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Lemma 7. Let E1, E2 ∈ L∞(0, T ; I1). Then there exist Ci > 0 for i = 1, 2, 3, 4,
such that∣∣∣∣∫ t

0

(Sh − S)(t− s)(E1E2)(s)(Sh − S)(t− s)∗ ds

∣∣∣∣
I1

≤ C1|E1|X |E2|X |h|2H(Ω);∣∣∣∣∫ t

0

Sh(t− s)(E1E2)(s)Sh(t− s)∗ ds

∣∣∣∣
I1

≤ C2|E1|X |E2|X ;∣∣∣∣∫ t

0

(Sh − S)(t− s)(E1E2)(s)Sh(t− s)∗ ds

∣∣∣∣
I1

≤ C3|E1|X |E2|X |h|H(Ω);∣∣∣∣∫ t

0

Sh(t− s)(E1E2)(s)(Sh − S)(t− s)∗ ds

∣∣∣∣
I1

≤ C4|E1|X |E2|X |h|H(Ω),

where X = L∞(0, T ; I1).

Proof. We only prove the first inequality as other follow identically. First note
that the integral in the first inequality is a well-defined Bochner integral with values
in I1. Further, by Hölder’s inequality∣∣∣∣∫ t

0

(Sh − S)(t− s)(E1E2)(s)(Sh − S)(t− s)∗ ds

∣∣∣∣
I1

≤

(∫ t

0

|(Sh − S)(t− s)E1(s)|2I1
ds

)1/2(∫ t

0

|(Sh − S)(t− s)E∗2 (s)|2I1
ds

)1/2

,

where we have used that |L∗|I1
= |L|I1

for L ∈ I1. Further,∫ t

0

|(Sh − S)(t− s)E1(s)|2I1
ds ≤ |E1|X sup

|φ|L2(Ω)≤1

∫ t

0

|(Sh − S)(t− s)φ|2L2(Ω)

≤ C|E1|X |h|2H(Ω),

where we exploit Lemma 5 and that if R ∈ L (L2(Ω)) and E ∈ I1, then we have
|RE|I1

≤ |R|L (L2(Ω))|E|I1
. An analogous bound can be obtained for E1 exchanged

by E∗2 . Considering the latter inequality in the first one of the proof, the result
follows.

4.2. Sensitivity of the solution to the Riccati equation. In this section
we concentrate on the map h 7→ Σ(h). The results in the previous section allow us to
prove Theorem 10, the main result of the section which provides the differentiability
result for the aforementioned map. For that matter, we first need the continuity of
the map h 7→ Σ(h) which is given in what follows.

First, for the sake of brevity we adopt the following notation and keep it through-
out the rest of the section. Let Σ0 ∈ I1 with Σ0 ≥ 0, and consider F ∈ L1(0, T ; I1),
G ∈ L∞(0, T ; L (L2(Ω))), with F (t) ≥ 0 and G(t) ≥ 0 for t ∈ [0, T ]. Then, for h ∈
H(Ω) and denote Σh to the unique pointwise non-negative function Π ∈ C([0, T ]; I1)
that satisfies

Π(t) = Sh(t)Σ0S
∗
h(t) +

∫ t

0

Sh(t− s)
(
F −ΠGΠ

)
(s)S∗h(t− s) ds,(26)

and we further denote by Σ to Σh for h = 0.
We can now prove that the map defined above is continuous with respect to the

topology given for the perturbations h.
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Lemma 8. The map

H(Ω) 3 h 7→ Σh ∈ C([0, T ]; I1)

is continuous at zero.

Proof. Note first that |Σh(t)|I1
, |Σ(t)|I1

≤ |Σ0|I1
for all t ∈ [0, T ] (see [17]).

Secondly, note that by Theorem 6, we have that Zh → Z0 in C([0, T ]; I1) as h → 0
in H(Ω), where

Zh(t) := Sh(t)Σ0S
∗
h(t) +

∫ t

0

Sh(t− s)F (s)S∗h(t− s) ds, t ∈ [0, T ].

Further, by (25) and since |(ΣhGΣh)(t)|I1
≤ |Σ0|2I1

|G|L∞(0,T ;L (L2(Ω))), it follows
that Yh → 0 in C([0, T ]; I1) as h→ 0 in H(Ω), where

Yh(t) :=

∫ t

0

Sh(t− s)(ΣhGΣh)(s)S∗h(t− s)− S(t− s)(ΣhGΣh)(s)S∗(t− s) ds,

for t ∈ [0, T ]. Define Wh ∈ C([0, T ]; I1) as Wh(t) := Zh(t)−Z0(t)−Yh(t) for t ∈ [0, T ]
and note that because of Theorem 6, we have that

(27) |Wh(t)|I1
≤ C1|h|H(Ω),

for some C1 > 0 when h is restricted to some bounded set in H(Ω).
It follows from (26), that

(Σh − Σ)(t) = Wh(t)−
∫ t

0

Sh(t− s)
(
ΣhGΣh − ΣGΣ

)
(s)S∗h(t− s) ds,

= Wh(t)−
∫ t

0

Sh(t− s)
(
ΣhG(Σh − Σ) + (Σh − Σ)GΣ

)
(s)S∗h(t− s) ds.

Hence,

|(Σh − Σ)(t)|I1
≤ |Wh|C([0,T ];I1) + C2

∫ t

0

|(Σh − Σ)(s)|I1
ds,

where C2 := 2|Σ0|I1
|G|L∞(0,T ;L (L2(Ω))). Then, by application of Gronwall’s inequal-

ity and (27), we observe

|(Σh − Σ)(t)|I1 ≤ C3|Wh|C([0,T ];I1) ≤ C3C1|h|H(Ω),(28)

for some C3 > 0, which proves the initial statement.

Before we prove the differentiability results concerning h 7→ Σh, we prove that
the sensitivity equation associated with the Riccati equation is well-posed.

Lemma 9. Let H,Σ ∈ C([0, T ]; I1), and G ∈ L∞(0, T ; L (L2(Ω))). There exists
a unique solution Λ ∈ C([0, T ]; I1) to the following integral equation

Λ(t) = H(t)−
∫ t

0

S(t− s)(ΛGΣ + ΣGΛ)(s)S∗(t− s) ds.(29)
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Proof. Note first that the integrand is Bochner measurable, the integral is well-
defined as a I1-valued Bochner integral and that the right hand side belongs to
C([0, T ]; I1) (see [16]).

The proof follows a classical renormalization technique due to Bielecki [8] also
applied similarly in [16]. On the space C([0, T ]; I1) we consider the norm |F |λ :=
supt∈[0,T ] e

−λt|F (t)|1 for F ∈ C([0, T ]; I1), which is equivalent to the usual norm on
C([0, T ]; I1).

Denote the right hand side of (29) by L(Λ). It follows that L : C([0, T ]; I1) →
C([0, T ]; I1) and

|L(Λ1)(t)− L(Λ2)(t)|I1
≤ 2M

∫ t

0

|Λ1(s)− Λ2(s)|I1
ds ≤

≤ 2M |Λ1 − Λ2|λ
∫ t

0

eλs ds ≤ 2Meλt

λ
|Λ1 − Λ2|λ,

where M := |G|L∞(0,T ;L (L2(Ω)))|Σ|C([0,T ];I1). Therefore,

|L(Λ1)− L(Λ2)|λ ≤
2M

λ
|Λ1 − Λ2|λ.

Hence, for λ > 0 sufficiently large L is a contraction, and hence there is an unique
solution to (29).

We can now finally state our sensitivity results for the integral Riccati equation.

Theorem 10. The map

H(Ω) 3 h 7→ Σh ∈ C([0, T ]; I1)

is Fréchet differentiable at zero.

Proof. Note that since F and G are point-wise non-negative, they subsequently
are point-wise self-adjoint as we consider L2(Ω) as a complex Hilbert space. It follows
by Lemma 6 that H(Ω) 3 h 7→ Rh ∈ C([0, T ]; I1) defined as

Rh(t) := Sh(t)Σ0S
∗
h(t) +

∫ t

0

Sh(t− s)F (s)S∗h(t− s) ds,

for t ∈ [0, T ], is Fréchet differentiable at zero and define R := R0.
We prove that the Gâteaux derivative of h 7→ Σh at zero and in direction h,

denoted as Λh, solves

(Λh)(t) = (W ′(0)h)(t)−
∫ t

0

S(t− s)((Λh)GΣ + ΣG(Λh))(s)S∗(t− s) ds,(30)

where Σ solves (26) for h = 0, i.e., it satisfies

Σ(t) = S(t)Σ0S
∗(t) +

∫ t

0

S(t− s)
(
F − ΣGΣ

)
(s)S∗(t− s) ds,(31)

and W ′(0) is the Fréchet derivative at zero of

W (h)(t) := Rh(t)−
∫ T

0

Sh(t− s)(ΣGΣ)(s)S∗h(t− s) ds.
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Further, note that Λ : H(Ω) → C([0, T ]; I1) is linear and bounded, and then it will
follow that Λ is the Fréchet derivative of h 7→ Σh at zero.

Note that the following identity holds

(Σh − Σ)(t) = (Rh −R)(t) +Nh(t) +Qh(t) +Oh(t),(32)

where

Nh(t) := −
∫ T

0

(Sh − S)(t− s)(ΣGΣ)(s)S∗(t− s)+

S(t− s)(ΣGΣ)(s)(Sh − S)∗(t− s) ds;

Qh(t) := −
∫
S(t− s)((Σh − Σ)GΣ +GΣ(Σh − Σ))(s)S∗(t− s) ds.

and

Oh(t) :=

∫ T

0

(Sh − S)(t− s)(ΣGΣ)(s)(Sh − S)(t− s)∗(t− s) ds+∫ T

0

(Sh − S)(t− s)(ΣG(Σh − Σ) + (Σh − Σ)GΣ)(s)S∗h(t− s) ds+∫ T

0

S(t− s)(ΣG(Σh − Σ) + (Σh − Σ)GΣ)(s)(Sh − S)∗(t− s) ds+∫ T

0

Sh(t− s)((Σh − Σ)G(Σh − Σ))(s)S∗h(t− s) ds.

Additionally, note that since (28) and Lemma 7 hold true, we observe

(33) |Oh(t)|I1 ≤ C1|h|2H(Ω),

for some C1 > 0. Furthermore, by Lemma 7 and the proof of Theorem 6,

|(Rh −R)(t) +Nh(t)− (W ′(0)h)(t)|I1
≤ C2|h|2H(Ω),

for some C2 > 0 and∣∣∣∣Qh(t) +

∫ t

0

S(t− s)((Λh)GΣ + ΣG(Λh))(s)S∗(t− s) ds

∣∣∣∣
I1

≤ C3|(Σh − Σ− (Λh))(t)|I1
,

for some C3 > 0 and all t ∈ [0, T ].
Therefore, it follows from (32) that

|(Σh − Σ− (Λh))(t)|I1 ≤ C4|h|2H(Ω) + C3

∫ t

0

|(Σh − Σ− (Λh))(s)|I1 ds,

for some C4 > 0. Finally, by Gronwall’s inequality, we have

|(Σh − Σ− (Λh))(t)|I1

|h|H(Ω)
≤ C5|h|H(Ω),

for some C5 > 0, which prove the initial statement since the map h 7→ Λh is linear
and bounded.
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5. The Optimization Problem. We are now in shape to prove the result
concerning Problem (P). Recall that Γiad ⊂ Ω is closed and bounded for i = 1, 2, . . . , n,
and that the admissible location set is given by Γad ≡

∏n
i=1 Γiad. Throughout this

section we involve the following assumption.

Assumption 1. Let the following statements to hold true:
(a) Σ0 ∈ I1 and Σ0 ≥ 0.
(b) BR2B

∗(·) ∈ L∞(0, T ; I1) and BR2B
∗(t) ≥ 0 for a.e. t ∈ (0, T ).

(c) C∗x̂R
−1
1 Cx̂(·) ∈ L∞(0, T ; I1) and C∗x̂R

−1
1 Cx̂(t) ≥ 0 for a.e. t ∈ (0, T ), and

for each x̂ ∈ Γad. Further, we assume that the map x̂ 7→ Cx̂ is such that, the
map

(34) Γad 3 x̂ 7→ C∗x̂R
−1
1 Cx̂ ∈ L∞(0, T ; I1),

is continuous.

A a few words are in order concerning Assumption 1. Since the maps R2 and R−1
1

are I1-valued by definition (see [7]), the same holds true for BR2B
∗ and C∗x̂R

−1
1 Cx̂,

and since R2 ≥ 0 and R−1
1 ≥ 0, the same follows for BR2B

∗ and C∗x̂R
−1
1 Cx̂. The

assumption involving the essential boundedness of both of these maps is largely sat-
isfied for C∗x̂R

−1
1 Cx̂ and on the majority of applications for BR2B

∗. For example,
when variant spatial intensity of the noise is allowed involving B like a multiplication
operator with an L∞(Ω) function. Finally, the continuity of the map (34) is satisfied
in the majority of the sensor scenarios (see [16]), and as consequence, it implies that
the map

(35) Γad 3 x̂ 7→ Σx̂ ∈ C([0, T ]; I1),

is continuous where Σx̂ is the solution to (26) for F ≡ BR2B
∗, G ≡ C∗x̂R

−1
1 Cx̂ and

h = 0 (see [16]). We are now in position to prove the main result in this section.

Theorem 11. Problem (P) admits a solution.

Proof. Let {x̂k} be an infimizing sequence for Problem (P), and denote also by
{x̂k} to the convergent subsequence in Γad with limiting point x̂∗ ∈ Γad. It follows
by assumption that

(36) J1(x̂k)→ J1(x̂∗),

given that Σx̂k
→ Σx̂∗ in C([0, T ]; I1).

Define Gk := C∗x̂k
R−1

1 Cx̂k
and G := C∗x̂∗R

−1
1 Cx̂∗ . We now prove that the Fréchet

derivative at zero of

h 7→
∫ t

0

Sh(t− s)(ΣGkΣ)(s)S∗h(t− s) ds =: Lk(h),

converges to the one of h 7→
∫ t

0
Sh(t − s)(ΣGΣ)(s)S∗h(t − s) ds =: L(h). It follows

from the proof of Theorem 6 (analogous as the bound for I1 in (23)) that∣∣∣∣−∫ t

0

∫ t−s

0

S(t− s− σ)P (h)S(σ)(G−Gk)(s)S(t− s)∗ dσ ds

∣∣∣∣
I1

≤ C1|h|H(Ω)|G−Gk|L∞(0,T ;I1),
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for some C1 > 0. Hence, from the proof of Theorem 6, the Fréchet derivative of
h 7→ Lk(h)− L(h) is bounded by

|L′k(0)− L′(0)|L (H(Ω),C([0,T ];I1)) ≤ sup
h∈H(Ω)

|(L′k(0)− L′(0))h|C([0,T ];I1)

|h|H(Ω)

≤ 2C1|G−Gk|L∞(0,T ;I1),

which proves the statement at the beginning of the paragraph.
From the previous section we know that the maps h 7→ Σh,x̂∗ ,Σh,x̂k

are differen-
tiable at zero. The difference between both directional derivatives at zero in the h
direction gives:

(Λkh− Λh)(t) = ((L′k(0)− L′(0))h)(t)

−
∫ t

0

S(t− s)(ΛkhGkΣk + ΣkGkΛkh− ΛhGΣ− ΣGΛh)(s)S∗(t− s) ds.

Additionally, for X = C([0, T ]; I1), we know that |Λkh|X , |Λh|X , |Σ|X , |Σk|X are
uniformly bounded in k for some C2 > 0 and |h|H(Ω) = 1, and further that νk :=
|GkΣk − GΣ|X → 0 as k → ∞. Hence, adding and subtracting the terms S(t −
s)(ΛGkΣk)(s)S∗(t− s) and S(t− s)(ΣkGkΛ)(s)S∗(t− s) in the above integral, yields

|(Λkh− Λh)(t)|I1
≤ C3(|G−Gk|L∞(0,T ;I1) + νk) + C4

∫ t

0

|(Λkh− Λh)(s)|I1
ds,

for some C3, C4 > 0 and all t ∈ [0, T ], with T < +∞. Then, by Gronwall’s inequality,
we obtain

|(Λkh− Λh)(t)|I1
≤ C5(|G−Gk|L∞(0,T ;I1) + νk),

which implies

|Λk − Λ|L (H(Ω),C([0,T ];I1)) ≤ sup
|h|H(Ω)=1

max
t∈[0,T ]

|(Λkh− Λh)(t)|I1

≤ C5(|G−Gk|L∞(0,T ;I1) + νk).

Also, note for J2 in Problem (P), we have that

J2(x̂k) = sup
|z|H(Ω)≤M

L(Λkz), and J2(x̂∗) = sup
|z|H(Ω)≤M

L(Λz),

where L(·) :=
∫ T

0
Tr (·) dt is a bounded linear functional on C([0, T ]; I1). It follows

that,

|J2(x̂k)− J2(x̂∗)| ≤ sup
|z|H(Ω)≤M

|L((Λk − Λ)z)| ≤M |L|Y |Λk − Λ|L (H(Ω),C([0,T ];I1)),

where Y = C([0, T ]; I1)∗ which implies that

(37) J2(x̂k)→ J2(x̂∗).

Finally (36) and (37) prove that x̂∗ is a minimizer of Problem (P).
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6. Numerical Tests. We consider numerical tests in 2D and 3D in a variety of
settings. In all our tests we utilize A(h) = −α∆ + (v + h) · ∇ induced by the bilinear
form a : H1

D(Ω)×H1
D(Ω)→ R defined in (8), the input map Bη = 1 ·η and the output

one Cx̂i defined as

(38) Cx̂i(ϕ) :=

∫
Ω

e−r|y−x̂i|2Rnϕ(y) dy, ∀ϕ ∈ L2(Ω),

for some r > 0 and we consider R1 = R2 = I.
It follows that the sensor kernel is smooth enough so that also the derivative of the

map x̂ 7→ Σ(x̂,h) ∈ C([0, T ]; I1) exists (see [16]) which is enough to derive gradient
descent methods for the optimal placement of sensors in the case λ = 1 in (P).

We focus on the following tests associated with Problem (P):

a. Consider λ = 1 and obtain the full map x̂ 7→ J1(x̂) for the one sensor case.
b. Consider λ = 0 and obtain the full map x̂ 7→ J2(x̂) for the one sensor case.
c. Study robust locations for a fixed specific perturbation h. Specifically, study if

there exist significant differences between the maps x̂ 7→ J2(x̂) and x̂ 7→ J3(x̂).
That is, between

sup
|z|H(Ω)≤M

∫ T

0

Tr (W (x̂,0)z(t)) dt, and

∫ T

0

Tr (W (x̂,0)h∗(t)) dt,

for some fixed h∗, where x̂ ∈ Ω
d. Multiple sensor location for 2D and 3D cases for the case λ = 1.

Since all tasks are computationally very intensive, a variety of model reduction
techniques and algorithms are used. Each of them is made explicit in what follows.
Also, task d. is performed with a projected gradient descent method with an Armijo
line search and later specified.

6.1. Discretization. The discrete stationary flow v is obtained in a different
environment as the rest of the discrete variables due to the subtleties of Navier-Stokes
solvers. In fact, the stationary velocity v is computed using Star-CD CCM+ consid-
ering the system in (NS). Here, extensions of the inlet and outlet structures are used
to stabilize the inflow at the inlet and to prevent back-flow at the outlet. In all cases,
the solution to Navier-Stokes is computed with a constant inflow value v0

in, (7.5 ·10−4

in the 3D example and 2 · 10−3 in the 2D case) and at the real inlet, a parabolic pro-
file is developed (see Figure 1(a) and Figure 2(a)). Hence, an approximate parabolic
vin is considered on ∂Ωin. Since the finite volume method is involved a polyhedral
mesh with boundary layers is utilized. The resulting meshes approximately consists
of 250.000 cells and 1.000.000 grid points. Later, vN is exported to be used in the
the finite element scheme described below.

Let HN = span {φNi }
N

i=1 ⊂ H1
D(Ω) be the finite dimensional subspace approx-

imating the state space L2(Ω) where the basis functions φNi (·), i = 1, . . . , N , are
continuous piecewise linear splines. We define these functions on a quadrilateral mesh
for Ω ⊂ R2, and on a hexahedral mesh when Ω ⊂ R3, while each mesh consists of N
nodes. We characterize the basis functions with the properties that φNi is unity at
node i, and zero at all other nodes. Moreover, φNi is nonzero only at those parts of Ω
which contain some neighbour node with node i.

Using standard notation we denote the mass MN := [(φNi , φ
N
j )]i,j and stiffness

matrix KN := [a(φNi , φ
N
j )]i,j and in our scenario the discrete approximation AN (h)
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(a) (b)

Fig. 1. Streamlines generated from v in the cube geometry in Figure 1(a). Initial (red circles)
and optimal sensor network location (blue squares) in Figure 1(b) where the admissible location
region for the sensors Γi

ad for i = 1, 2, 3 are the walls in which they are initialized.

and BN to A(h) and B, respectively, are given by

−AN (hN ) := −(MN )−1KN , and BN := (MN )−1PN (1),

where PN : L2(Ω) → HN is the orthogonal projection of L2(Ω) onto HN and with
hN the discrete perturbation described subsection 6.2; see the monograph by Banks
[3] for a detailed explanation of this choice for the discrete versions of the operators
involved. Note that these matrices are not explicitly computed but considered im-
plicitly as MNAN (h) := −KN and MNBN = PN (1). Further, in this setting, the
approximation AN (hN ) satisfies the Trotter-Kato approximation theorem, so that

the semigroup SNh (t) := e−tA
N (hN ) satisfies SNh (t)PNz → S(t)z for each z ∈ H1

D(Ω),
uniformly on compact intervals (see [3, Chapter 12]). Further, the discrete version of
Cx̂i

is then given by

CNx̂i
:=
[
Cx̂i(φ

N
j )
]
j
.

6.2. Perturbation Generation and J2 discretization. The perturbations h
are computed as the gradient of the solution to the mixed boundary value problem
(M) where Γ1 ≡ ∂Ωwall and g = 0 in all but one inlet that we denote by Γ ⊂ ∂Ωin.
For practical reasons of implementation, we consider g : Γ→ R to have zero boundary
conditions in the sense of the trace so that g ∈ H1

0 (Γ). Hence, every h considered is
constructed as

h = ∇Z(g),

where Z is the solution mapping to (M) for some g ∈ H1
0 (Γ).

We utilize in our numerical tests

J2(x̂) := sup
|g|

H1
0(Γ)
≤M

∫ T

0

Tr (W (x̂,0)∇Z(g)(t)) dt,

for some M > 0. Provided that g 7→
∫ T

0
Tr
(
WN (x̂,0)(t)∇Z(g)

)
dt is a bounded

linear functional over H1
0 (Γ) (see the remarks after the definition of Problem (P)),
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(a) (b)

Fig. 2. Velocity profile v in the airport geometry in Figure 2(a). Initial (red circles) and
optimal sensor network location (blue squares) where the admissible location region for the sensors
Γi
ad for i = 1, 2, 3, 4 are given by the black segments on the walls and the encircled region on the

center of Ω

there exists Lx̂ ∈ H−1(Γ), such that

J2(x̂) = sup
|g|

H1
0(Γ)
≤M

Lx̂(g) = M |Lx̂|H−1(Γ).

Hence, upon identification of Lx̂, the value J2(x̂) is the M scaled dual norm of Lx̂.
This entails that once Lx̂ is given, |Lx̂|H−1(Γ) is computed as |R−1L|H1

0 (Γ) where R is

the associated Riesz map, i.e., R−1L solves the problem: Find y ∈ H1
0 (Γ) such that

−∆y = L in Γ and y = 0 on ∂Γ.
As there is no direct access to W (x̂,0), but only to W (x̂,0)z for some z ∈ H(Ω),

the construction of Lx̂ can be done over a basis {ψj} of H1
0 (Γ). Hence, 〈Lx̂, ψj〉 is

identified, and since Lx̂(ψ) =
∑
j〈Lx̂, ψj〉(ψ,ψj)H1

0 (Γ)ψj the full Lx̂ can be represented
with respect to this basis. In the finite element scheme, the {ψj} reduce to a basis
of linear splines and the described above procedure is used to determine the value of
J2(x̂) for a given sensor location x̂.

6.3. The Riccati equation solver. The approximation of the Riccati equation
can be performed as follows. For the time step δ > 0, and given ΣNk we consider ΣNk+1

to be the solution of the following equation
(39)
ΣNk+1 − ΣNk

δ
= −AN (hN )ΣNk+1−ΣNk+1(AN (hN ))∗+BN (BN )∗−ΣNk+1(CNx̂ )∗(CNx̂ )ΣNk+1,

which reduces to the resolution of an algebraic Riccati equation. As the above equa-
tion represents the implicit Euler scheme applied to (3), it provides an approximation
to (R). Although the discrete problem is very high dimensional, it can be handled
by state of the art model reduction techniques and advanced Kleinman-Newton vari-
ations available now from Benner and collaborators ([4, 5]). We utilize an inexact
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low-rank Newton-ADI method (see [5]) after the model reduction provided in [4].
Convergence results of these discrete approximations towards their infinite dimen-
sional counterparts are not available (and perhaps not attainable). However, we have
tested these approximations in contrast to inexact Kleinman-Newton ([18, 32]) with
no model reduction on the finest mesh that still allowed storage of the full versions
of AN , BN , CNx̂ , and ΣNk and noticed that errors are neglectable: For example, in the
3D tests, this comparison was done with mesh size 1/10 and cube volume equal to 1.
Model reduction techniques allowed us then to treat mesh sizes down to 1/40 on the
same cube. Note that without model reduction, the number of elements the matrix
ΣNk is in the order of 4.7 · 109 entries, which makes it even challenging to store.

In case (ΣNk+1 − ΣNk )δ−1 ' 0, then (39) reduces to the computation of an unique
algebraic Riccati equation

(40) 0 = −AN (hN )ΣN − ΣN (AN (hN ))∗ +BN (BN )∗ − ΣN (CNx̂ )∗(CNx̂ )ΣN .

The approximation of the directional derivative ΛN at zero and in the hN direction,
in both cases (40) and (39), reduces to the computation of Lyapunov equations (see
[37]) of the general form

DNΛN + ΛN (DN )∗ = EN ,

where DN is a function of AN (0), CNx̂ , ΣN and EN is a function of ΣN , AN (hN ) −
AN (0) and possibly the previous time-step value of DN in the case of (39). It should
be noted that, in general, the above equation need not to have a solution (see [37]),
and requirements of the matrix components such as that the stabilizability of the pair
(−AN (hN ), (CNx̂ )∗(CNx̂ )) are needed.

6.4. 2D Tests. The velocity profile is generated with v0
in = 2 · 10−3 and a

Reynolds number given by Re ' 13. The resulting velocity profile vN is shown in
Figure 2(a). Also, the inlet Γ used to generate perturbations is the only inlet whose
inflow is perpendicular to the x-axis (center of the image).

In all of these examples we consider a diffusion coefficient α = 0.05 and the sensor
Cx̂i

of the form (38) is considered with parameter r = 50 in the kernel. The mesh
size is given by 0.0062 which results in a number of entries of the non-reduced Riccati
equation on the order of 2.7 · 108 elements.

Concerning the test in a., the behaviour of x̂ 7→ J1(x̂) is depicted in Figure 3.
This shows that the in the case of one sensor, and when no robustness is demanded
from the sensor location, the best possible placement (provided that the admissible
location for the sensor is the entire domain) is unique. The range of values in Figure 3
depends significantly with respect to the diffusion coefficient α and the parameter in
the exponential in the kernel r.

We turn the attention to numerical tests b. and c.: We consider one perturbation
h generated with g = 1.5811 ·10−4 in Γ and compute x̂ 7→ J3(x̂) (defined at beginning
of section 6) in the one sensor example. This should be compared with x̂ 7→ J2(x̂),
in which for each sensor position x̂ the worst perturbation is considered with bound
|g|H1

0 (Ω) ≤M . The discrete versions of the maps x̂ 7→ J3(x̂) and x̂ 7→ J2(x̂) for x̂ ∈ Ω
are given in Figure 4(a) and Figure 4(b), respectively.

Further, it should be noticed that Figure 3 and Figure 4(b) provide good evidence
that although walls, edges, and corners do not provide optimal places in terms of
quality of information, they are relatively robust places. This holds even for corners
which are significantly close to locations of perturbation.
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Fig. 3. Colormap of Ω 3 x̂ 7→ J1(x̂) for the one sensor case.

Finally, we consider d.: In Figure 2(b) we show the behaviour of the optimization
procedure (λ = 1) in the case of 4 sensors: we consider 3 sensors restricted to confined
regions on the walls, where these regions are the dark segments on the boundary of
Ω, and one sensor on the interior of the domain restricted to the ellipse depicted
with black boundary. The red circles show the initial position of the sensors and the
blue squares the final position of these sensors at the end of the optimization routine.
The solution algorithm is a projected gradient descent over the sensor position with
Armijo line search. The reduction of the objective functional from initial points to
final points is around 3% which due to the restricted locations of the sensors is also
the best possible gain in this scenario.

6.5. 3D Tests. We utilize a cube geometry with one inlet in a lower position
close to a corner and one outlet in a higher position close to the corner that diagonally
opposes the first one (see Figure 1(a)). The mesh size is given by 1/40 with unitary
sides.

For the generation of the stationary velocity profile v, we consider v0
in = 7.5 ·10−4

and kinematic viscosity ν = 1.56 · 10−5 which determines in our example that the
Reynolds number is given by Re ' 9.6. The streamlines generated from the velocity
profile v that is utilized in the operator A(h) are seen in Figure 1(a). In these
examples we utilize a diffusion coefficient α = 0.005 and the sensor Cx̂i

of the form
(38) is considered with parameter r = 60 in the kernel.

In Figure 5 we solve the numerical task a. and observe the behaviour of the iso-
surfaces of x̂ 7→ J1(x̂). There seems to be a symmetry associated with the direction
of the main flow, but better sensor locations are closer to the outlet than to the
inlet. It becomes clear that walls, edges, and corners (in this order) are bad places
for location (this is also seen in the 2D example). This is mainly explained by the
fact that the operator Cx̂i

when restricted to any of those locations, reduce the area
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(a) (b)

Fig. 4. Approximations to x̂ 7→ J3(x̂) and x̂ 7→ J2(x̂) are given in Figure 4(a) and Fig-
ure 4(b),respectively. Note that the units in the colormap of J2 are given with respect to M , the
bound on |g|H1

0 (Ω) ≤M in the generation of h (see subsection 6.2). Note that although J2 represents

the value associated with the worst perturbation, it has a qualitative behaviour similar to the one
determined by only one perturbation.

of integration and hence less information is attained. Additionally, in Figure 5(f), we
observe x̂ 7→ J1(x̂) when restricted to the boundary of our domain. Although hard
to notice due to the colormap, in general, regions closer to the outlet are relatively
better to locate sensors than regions closer to the inlet.

Associated with task b. and c., we observe that the behaviour of x̂ 7→ J2(x̂) is
significantly different to the one in the 2D test. The map η 7→ {x ∈ Ω : J2(x̂) < η},
as η decreases, creates an uniform filling from top to bottom of the cube with no
significant variation on the x and y direction. Here, it seems that higher locations
are more robust, and lower locations are less robust, with no significant features in
other coordinate directions. Analogously as done in the 2D case, we consider one
perturbation h generated with g = 1.1180 · 10−4 in Γin = Γ and show x̂ 7→ J3(x̂)
(defined at beginning of section 6) in the one sensor example. The results of this test
are shown in Figure 6. The results, for this one perturbation, show that locations
near the inlet, where the perturbation is gene rated, worsen in terms of quality of
information, while location near the outlet would perform better.

Finally, for task d., we observe in Figure 1(b) the initial sensor network location
(red circles) comprised of three sensors (each one located at the center of a side of
the cube) and the optimized sensor network location (blue squares), and where the
admissible location for each one of the sensors corresponds to the wall in which the
sensor is initialized. The optimization problem is considered for λ = 1 and the solution
algorithm utilized was projected gradient descent over the sensor position with Armijo
line search. The reduction of the objective functional from initial points to final points
is around 4%.

7. Conclusion and future work. A theoretical framework for studying an
optimization problem associated with a robust and optimal sensor network placement
is introduced. The source of complexity in the problem is given by the perturbation
of the differential operator of the underlying convection-diffusion process. Since the
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problem is formulated as an optimization problem where the integral Riccati equation
is a constraint, the sensitivity of the Riccati equation with respect to perturbations
of the convection-diffusion differential operator is developed. Existence of solutions
for the optimization problem is proven and a variety of numerical tests are shown.

It remains an open question and source of further research where the functional
x̂ 7→ J2(x̂) is differentiable. If this is the case, then a variety of solutions algorithms
could be applied for the solution of Problem (P). Regularity of J2 added to the
complex Riccati framework would make classical schemes applicable.

The consideration of moving sensors which become increasingly common in prac-
tical applications is in the scope of future research. However, it should be noted that
this adds another level of complexity to the problem. Additionally, as two objectives
are considered, one is naturally confronted with computing Pareto optima (Pareto
front) which is also within future research endeavours.
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équations différentielles ordinaires. Bull. Acad. Polon. Sci. Cl. III., 4:261–264, 1956.
[9] I. Bihari. A generalization of a lemma of bellman and its application to uniqueness problems of

differential equations. Acta Mathematica Academiae Scientiarum Hungarica, 7(1):81–94.
[10] J. A. Burns, E. M. Cliff, and C. N. Rautenberg. A distributed parameter control approach

to optimal filtering and smoothing with mobile sensor networks. In Proceedings of the
2009 17th Mediterranean Conference on Control and Automation, pages 181–186. IEEE
Computer Society, 2009.

[11] J. A. Burns and B. B. King. A note on the regularity of solutions of infinite-dimensional Riccati
equations. Appl. Math. Lett., 7(6):13–17, 1994.

[12] J. A. Burns and B. B. King. A reduced basis approach to the design of low-order feedback
controllers for nonlinear continuous systems. J. Vib. Control, 4(3):297–323, 1998.

[13] J. A. Burns, B. B. King, et al. Optimal sensor location for robust control of distributed
parameter systems. In IEEE Conference on Decision and Control, volume 4, pages 3967–
3967. Institute of Electrical Engineers Inc (IEE), 1994.

[14] J. A. Burns, B. B. King, and Y.-R. Ou. Computational approach to sensor/actuator location
for feedback control of fluid flow systems, 1995.

[15] J. A. Burns and C. N. Rautenberg. Bochner integrable solutions to riccati partial differential
equations and optimal sensor placement. In American Control Conference (ACC), 2011,
pages 2368–2373. IEEE, 2011.

[16] J. A. Burns and C. N. Rautenberg. The infinite-dimensional optimal filtering problem with
mobile and stationary sensor networks. Numer. Funct. Anal. Optim., 36(2):181–224, 2015.

[17] J. A. Burns and C. N. Rautenberg. Solutions and Approximations to the Riccati Integral Equa-
tion with Values in a Space of Compact Operators. SIAM J. Control Optim., 53(5):2846–

http://www.mpi-magdeburg.mpg.de/preprints/
http://www.mpi-magdeburg.mpg.de/preprints/
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(a) J1(x̂) = 4.7 · 106 (b) J1(x̂) = 4.71 · 106

(c) J1(x̂) = 4.73 · 106 (d) J1(x̂) = 4.75 · 106

(e) J1(x̂) = 5.65 · 106 (f) Values of ∂Ω 3 x̂ 7→ J1(x̂)

Fig. 5. Isosurfaces for x̂ 7→ J1(x̂), when x̂ is restricted to the interior of the domain in
Figures 5(a) to 5(e) and values of x̂ 7→ J1(x̂) when restricted to the boundary in Figure 5(f)
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(a) J3(x̂) = −366.73 (b) J3(x̂) = −182.06

(c) J3(x̂) = −1.19 (d) J3(x̂) = 99.71

(e) J3(x̂) = 196.81 (f) J3(x̂) = 465.25

Fig. 6. Isosurfaces for x̂ 7→ J3(x̂), when x̂ is restricted to the interior of the domain, are shown
in Figures 6(a) to 6(f).
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