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1. Introduction

The Signorini Problem is a linear elastostatic problem that was introduced by
Fichera in [10] and it is the first variational inequality (VI) in the scientific litera-
ture. However, the term “variational inequality” was coined by Lions and Stam-
pacchia in their seminal work [27] where the first abstract approach establishing
existence, uniqueness and approximation techniques for VIs was developed. In
the aforementioned paper, not only the extension of the famous Lax-Milgram re-
sult is established (leading to the renowned Lions-Stampacchia Theorem) but also
semi-coercive and parabolic problems are studied.

∗This work was carried out in the framework of the DFG under grant no. HI 1466/7-1 “Free
Boundary Problems and Level Set Methods” as well as the Research Center Matheon supported
by the Einstein Foundation Berlin within projects OT1, SE5 and SE15.
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In [6], Brézis introduced the concept of a pseudo-monotone operator and suc-
cessfully applied it to parabolic VIs. In the same monograph, Brézis considered the
use of an infinitesimal generator of a C0-semigroup to describe the “time deriva-
tive” of the problem. This approach provided access to monotonicity techniques,
known for elliptic problems, to treat evolution VIs. In this setting, the entire the-
ory is built on the relationship between the closed, convex, non-empty constraint
set and the C0-semigroup that gives rise to the unbounded operator related to the
time derivative.

Quasi-variational inequalites (QVIs) were introduced by Bensoussan and Lions
in [5] and [25] to formulate impulse control problems and have applications to
several phenomena. This type of problems arises in diverse areas of applied sciences
that include game theory, solid mechanics, elastoplasticity and superconductivity.
For an account of models and their analytical properties we refer, e.g., to [30, 8,
13, 26, 31, 33, 22] and the monographs [3, 21, 34] as well as the references therein.

The scientific literature is rather scarce when it comes to QVIs in function
space. More specifically, in function space most of the literature concerning QVIs is
devoted to two types of problems: the obstacle- and the gradient-type constrained
problem. While the first one studies problems where the state (or solution) to the
QVI has to satisfy pointwise constraints on a given subset of the domain, the second
type of problem determines a pointwise bound on the norm of the gradient of such
a solution. The different constraint structure in these two problems developed into
two completely different mathematical approaches: obstacle-type problems have
been attacked by means of increasing monotonicity techniques (fixed point type
results for increasingly monotonic mappings such as Birkhoff, Tartar or Kolodner
fixed point theorems) for the solution mapping with respect to the obstacle (see
[4, 11, 12, 23, 39]); problems with gradient-type constraints have been treated by
means of compactness results. This was done either by the direct combination
of continuity of the solution mapping with respect to the upper bound on the
gradient constraint in composition with some completely continuous operator such
as in [22, 15] or by fine properties of compactness in Lesbesgue-Bochner spaces as
in [36, 2]. An alternative approach to gradient constrained problems is based on
generalized equations, with the QVI problem becoming a particular case; see [17]
[20]. For finite dimensional problems, recently a technique based on generalized
KKT conditions was pursued in [9]. The latter approach, however, seems unlikely
to be applicable in infinite dimensions for the problem class under investigation in
our paper.

Although existence of solutions to QVIs in function space may be obtained by
a variety of fixed point type theorems (e.g., Schauder in [22], Leray-Schauder in
[28] and see [3] for diverse applications for monotonically increasing mappings),
uniqueness results for QVI problems seem to be more difficult to obtain. In the
obstacle-type QVI, uniqueness under assumptions which are rather straightforward
to verify was obtained by Laetsch in [23] and a contraction type result was obtained
by Hanouzet and Joly in [12]. For the gradient-type problem a result of uniqueness
based on contraction was given in [15] together with the numerical implementation
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of a newly developed solution algorithm. The difficulty in obtaining uniqueness
results for QVIs comes from a variety of sources: for example, using Schauder’s
fixed point theorem, uniqueness results usually require differentiability (see [19]) of
the mapping under investigation (differentiability properties, however, are usually
difficult, if not impossible, to obtain for the mappings involved in QVIs) and in
the case of some gradient constrained problems (see for example [33]) it is known
that the physical system does not posses a unique steady state or fixed point.

In [16], the pseudomonotonicity and C0-semigroup approach of Brézis was ap-
plied to parabolic QVIs in combination with approximation methods for infinitesi-
mal generators (similar to the analytical forms of the Trotter-Kato theorem). The
result is an approximation theorem that is suitable for numerical implementation
when the constraint set mapping is of gradient-type and the set is causal, i.e., the
solution to the QVI at time t depends only on previous time instances. However,
this approach cannot be applied to non-causal sets. The present paper addresses
such non-causal problems.

In this paper we study an abstract version of a parabolic QVI which contains
both, the obstacle- and gradient-type constrained problems, respectively. Within
a unified framework we provide existence and uniqueness results based on a con-
traction type property. The result can be considered as an extension of the one
obtained in [15] for elliptic QVIs. We also provide a proof of convergence in func-
tion space of a semi-discrete scheme that is suitable for numerical implementation.
The result is based on monotone operator theory, the previous contraction result
and semismooth Newton methods for solving the associated subproblems. We end
this paper by providing numerical tests involving the Laplace and the p-Laplace
(for p = 3) operator, respectively, and for gradient constrained problems.

The rest of the paper is organized as follows. In section 2 we state the class
of QVI problems under consideration, how this framework includes both problems
with obstacle- and gradient-type constraints, and how QVIs arise in the modeling
of many physical phenomena. Since solutions to QVIs can be considered as fixed
points of a certain mapping S, in Theorem 3.2 of section 3 we show that the map-
ping under investigation is contractive given small data or given a small Lipschitz
constant of the nonlinear mapping associated with the bound in the constraint.
Also in section 3, a class of examples with obstacle and gradient constraints is ad-
dressed and it is shown how the previous contraction result applies to these cases.
In section 4 we state an abstract framework to deal with approximating problems
to the QVI of interest. We show in detail that the scheme includes the semi-
discrete version of the parabolic QVI under investigation with either the obstacle-
or gradient-type constraint. Theorem 4.5 in section 4 states how the mapping S
(whose fixed point are solutions to the QVI) and its discretized version are related
through the weak topology on the state space. Theorem 4.5 together with Proposi-
tion 4.1 are used in Corollary 3.3 to show that the algorithm used in the numerical
implementation is convergent. Numerical tests are carried out in section 5 and a
discussion of the results, as well as, an outlook on future research directions are
given in section 6.
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1.1. Notation. Throughout this paper, for a Banach space X its norm is written
as | · |X and for f ∈ X ′ (the topological dual of X) we denote f(x) := (f, x)X′,X
for x ∈ X, unless X = V with V the state space selected for the problems. In the
latter case, for the sake of brevity and simplicity, we write (f, v) for f ∈ V ′ and
v ∈ V as duality pairing. If H is a Hilbert space and we identify it with its dual
H∗, then we denote the duality pairing as 〈f, x〉H for f ∈ H∗ and x ∈ H.

The natural and real numbers are denoted by N and R, respectively, and by
R+ we denote the set of positive real numbers and R+

0 = R+ ∪ {0}.
For v0 ∈ X and R > 0 we use BR(v0) := {v ∈ X : |v − v0|X < R} (or

BR(v0;X)) and its closure in X by B̄R(v0) (or B̄R(v0;X)). We denote the strong
convergence of a sequence {un} ⊂ X to u ∈ X by un → u. Weak convergence is
written as un ⇀ u. The Lebesgue measure of a measurable set Ω is denoted as |Ω|,
and we say that a property holds “a.e. in Ω”, if it is true in Ω except for a subset
Ω0 ⊂ Ω such that |Ω0| = 0. For a real-valued function v, we define v+ = max(0, v)
in the pointwise sense, that is, v+ = v if v is nonnegative and zero otherwise.

Let I = (0, T ), with 0 < T ≤ ∞, and X be a Banach space. A function
f : I → X is Bochner measurable, if there is a sequence {fn} of simple X-valued
functions such that limn→∞ fn(t) = f(t) a.e. in I (see [14]). We denote by Lp(I;X)
the (Lebesgue-Bochner) space of Bochner measurable X-valued mappings with
domain I such that

∫
I
|f(t)|pX dt < ∞ and the integral is taken in the sense of

Lebesgue.
Let Ω ⊂ RN , with N ≥ 2, be a bounded and open domain. We write Lp(Ω) (or

Lp(Ω;R)) for the usual Lebesgue spaces of real-valued functions, and L∞ν (Ω) :=
{v ∈ L∞(Ω) : v(x) ≥ ν > 0 a.e. x ∈ Ω}. We denote by W 1,p

0 (Ω) for 1 < p < ∞
the Sobolev space of weakly differentiable functions in Lp(Ω) with zero value at
the boundary ∂Ω (in the sense of the trace), whose weak derivatives also belong to
Lp(Ω) (see [1] for a definition of the Sobolev space). It is endowed with the norm
|v|W 1,p

0
= (
∫

Ω
|∇v(x)|p dx)1/p.

Since we will deal with convergence of closed and convex subsets of reflexive
Banach spaces, we make use of Mosco convergence (see [29, 35]).

Definition 1.1 (Mosco convergence). Let K and Kn, for each n ∈ N, be
non-empty, closed and convex subsets of X, a reflexive Banach space. We say that
the sequence {Kn} converges to K in the sense of Mosco as n→∞ if:

i. ∀v ∈ K, ∃vn ∈ Kn : vn → v in X.

ii. If vn ∈ Kn and vn ⇀ v in X with n ∈ N′ ⊂ N, then v ∈ K.

2. Problem Formulation

Let V be a reflexive separable Banach space and H be a separable Hilbert space
so that (V ,H ,V ′) is a Gelfand triple, i.e., the embedding V ↪→ H is dense and
continuous, H is identified with its dual H ′ and hence the embedding H ′ =
H ↪→ V ′ is also continuous (see [7]). For f ∈ V ′ and v ∈ V the duality pairing
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(f, v) is supposed to be the continuous extension of 〈·, ·〉H on H × V ; so that
there is a sequence {hn} ⊂H for which (f, v)V = limn→∞〈hn, v〉H uniformly on
bounded sets of V .

Unless stated otherwise, V = Lp(I;V ) and H = L2(I;H), where p ≥ 2, I =
(0, T ) for 0 < T <∞ and (V,H, V ′) a Gelfand triple with V a separable reflexive
Banach space and H a separable Hilbert space. Also, if T = ∞, then we take
V = L2(I;V ) and H = L2(I;H). In this case, since I = (0, T ) is σ-finite, there
is a concrete characterization of the dual of V as V ′ = Lp

′
(I;V ′) by the Phillips

Theorem (see [38] or [14]).
We assume that the (usually nonlinear) map A : V → V ′ is

H1. uniformly monotone, i.e., there are constants c > 0 and r > 1 such that,

(A(u)−A(v), u− v) ≥ c|u− v|rV , for all u, v ∈ V ;

H2. hemicontinuous, i.e., the real-valued function ζ 7→ (A(u+ζv), w) is continuous
for ζ ∈ [0, 1] for all u, v, w ∈ V ;

H3. bounded, i.e., it maps bounded sets in V into bounded sets in V ′.

Since V is assumed to be reflexive, then H1 together with H2 imply that A
is pseudomonotone (see [38]), i.e., if un ⇀ u and limn→∞(A(un), un − u)V ≤ 0,
then (A(u), u− v)V ≤ limn→∞(A(un), un− v), for all v ∈ V , and demicontinuous,
i.e., if un → u in V , then A(un) → A(u) in the weak-star topology and hence
A(un) ⇀ A(u) in V ′ (due to the reflexivity of V ).

In order to introduce some form of “time derivative”, we make use of C0-
semigroup theory. To the best of our knowledge, this approach was pioneered (for
variational problems associated with monotone operators) by Brézis (see [6]). For
that matter, we assume in the following that −L be the infinitesimal generator
of a C0-semigroup S(τ) in V ,H and V ′ with domains D(L; V ),D(L; H ) and
D(L; V ′), respectively (see [32] for the concept of a C0-semigroup). Additionally,
we assume that S(τ) is a C0-semigroup of contractions in H . Summarising, we
suppose that for τ ∈ [0,∞), S(τ) belongs L (V ),L (H ) and L (V ′), such that
|S(τ)|L (H ) ≤ 1 for all τ ≥ 0 and in addition

a. S(0) = I = id, the identity operator in V ,H and V ′;

b. S(τ + ρ) = S(τ)S(ρ) for all τ, ρ ≥ 0;

c. ∀v ∈ V , limτ↓0 S(τ)v = v in V and the same holds true whenV is exchanged
for H and V ′.

The domain D(L; V ) is defined as

D(L; V ) :=

{
v ∈ V : lim

τ↓0

S(τ)v − v
τ

exists in V

}
,

where D(L; H ) and D(L; V ′) are defined similarly. The perhaps most common
example is stated next
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Example 2.1. Let V = Lp(I;X), for I = (0, T ) with 0 < T ≤ ∞, with X a
Banach space. For f ∈ V , let S(τ) be defined by

(S(τ)f)(t) =

{
f(t− τ), τ < t < T ;
0, otherwise.

Clearly S(0) = I = id, S(τ1 + τ2) = S(τ1)S(τ2) and limτ↓0 S(τ)f = f in V . Hence
S(τ) is a C0-semigroup over V . Moreover, S(τ) is a C0-semigroup of contrac-
tions (since |S(τ)f |V ≤ |f |V ) which is not uniformly continuous. Its domain is
determined by

D(L; V ) = {v ∈ V : v is absolutely continuous, v′ ∈ V and v(0) = 0},

where v′ is the pointwise strong derivative; for a proof see [16] or [24].

Suppose that C is a closed and convex subset of V , 0 ∈ C , and that there exist
r > 0 such that B̄r(0; V ) ⊂ C . Consider the (usually nonlinear) map Φ : C →
Eν ⊂ E where

E := L∞(I;L∞(Ω))M , Eν := L∞(I;L∞(Ω))M−1 × L∞(I;L∞ν (Ω)) and

L∞ν (Ω) := {ϕ ∈ L∞(Ω) : ϕ(x) ≥ ν > 0 a.e. in Ω},

whereM ∈ N. If ϕ = {ϕm}Mm=1 ∈ E , then we define |ϕ|E :=
∑M
m=1 |ϕm|L∞(I;L∞(Ω))

as its norm. It should be noted that for ϕ ∈ Eν we have |ϕ|E ≥ ν > 0.
Also, consider the set-valued map K : E → 2V such that the map K (Φ(·)) :

C → 2V satisfies that K (Φ(v)) is a closed and convex subset of V and 0 ∈
K (Φ(v)), for each v ∈ C . Let f ∈ V ′ and A : V → V ′, then we define the
problem (P) as the following parabolic QVI.

Problem (P)

Find u ∈ K (Φ(u))∩D(L; V ′) : (Lu+A(u)−f, v−u) ≥ 0, ∀v ∈ K (Φ(u)). (P)

The space V is considered to be a Banach space of mappings of the type
f : I→ V where I = (0, T ) with 0 < T ≤ ∞ and V is a separable reflexive Banach
space. Then a general form of K (·) is given by

K (Φ(v)) = {w ∈ V : w(t) ∈ K(Φ(v), t) a.e. t ∈ I}, (1)

where K : E × I → 2V and, for each w ∈ V and t ∈ I, K(Φ(w), t) is a closed and
convex subset of V with 0 ∈ K(Φ(w), t).

The following problem will be called the weak form of problem (P).

Problem (wP)

Find u ∈ K (Φ(u)) : (Lv+A(u)−f, v−u) ≥ 0, ∀v ∈ K (Φ(u))∩D(L; V ′). (wP)

If u is a solution to (P), then it is also a solution (wP) and if u solves (wP) and
u ∈ D(L; V ′) then it also solves (P) (see [24]).
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2.1. Typical Constraint Sets. The two most important forms for the con-
straint set K are the following ones.

Gradient-type. Let G ∈ L (V,W ), a bounded linear operator with domain
in V and image in W , a Banach space of functions over some domain Ω ⊂ RN and
range in Rl be given. In this case, Φ : V → Eν with Eν = L∞(I;L∞ν (Ω)) and

Kgrad(v, t) := {y ∈ V : |(Gy)(x)|Rl ≤ (Φ(v)(t))(x) a.e. in Ω}.

Obstacle-type. Let K ∈ L (V,X), where X is a Banach space of func-
tions with domain in Ω and range in R. Consider in this case Φ : V → Eν
with Eν = L∞(I;L∞(Ω)) × L∞(I;L∞ν (Ω)), such that Φ(v) = (Φ1(v),Φ2(v)), with
(Φ1(v)(t))(x) ≤ (Φ2(v)(t))(x) a.e. for t ∈ I and x ∈ Ω and with

Kobs(v, t) := {y ∈ V : (Φ1(v)(t))(x) ≤ (Ky)(x) ≤ (Φ2(v)(t))(x) a.e. in Ω}. (2)

The most common operators for the previous two types of constraint sets are
given by G = ∇ and K = I = id. Hence, the condition Φ(C ) ⊂ Eν ⊂ E determines
that ν ≤ Φ(v) a.e. in the gradient constrained case, and ν ≤ Φ2(v) a.e. for
Φ = (Φ1,Φ2) (with Φ1 ≤ 0 ≤ Φ2 a.e.) in the obstacle-type constraint. This
implies that we are ruling out the possibility of zero gradients and the possibility
of obstacles in contact, i.e., Φ1(x) = u(x) = Φ2(x) on a set of nonzero measure.
Both of these situations, although perhaps not critical with respect to the proof of
existence of solutions, create difficulties in the numerical approximation approach
and the uniqueness of solutions to QVIs under consideration.

2.2. Practical Applications. Several practical applications of parabolic QVIs
of the type considered here are discussed next.

2.2.1. The magnetization of superconductors. The magnetization of type-
II superconductors has been studied by means of Bean’s critical-state model.
Prigozhin (in [33]) has shown that Bean’s critical state model is equivalent to
a QVI with gradient constraints. In the case of a stationary model with longitudi-
nal geometry (Ω is a domain in R2), the main unknown hz is the z-component of
the magnetic field (see [36] or [22] for the elliptic case). In this case, the constraint
set is determined as

K(v) := {y ∈W 1,p
0 (Ω) : |(∇y)(x)|RN ≤ jc(|v + he|) a.e. in Ω},

where p ≥ 2, he is related to the density of external currents and jc is an operator
associated with the critical current density value. Defining u = h−he, the pertinent
QVI problem is given by: Find u ∈ K (u) such that(

u′ − ρ0

µ
∆p(u)− f, v − u

)
≥ 0 ∀v ∈ K (u),
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with K (v) := {w ∈ V : w(t) ∈ K(v)}, ρ0 > 0 a constant related to the scalar
resistivity, µ > 0, ∆p is the p-Laplacian, i.e.,

(−∆p(w), v) :=

∫
Ω

|∇w|p−2∇w · ∇v dx,

with u′ ∈ V ′ and u(0) = u0 ∈ W 1,p
0 (Ω), and where f is also related to external

currents.

2.2.2. Damped elastic membrane with compliant obstacles. Let Ω be
some domain in RN with N = 1 or N = 2. Consider an elastic homogeneous
membrane, whose displacement is denoted by u and which is zero at t = 0, that
occupies the entire domain Ω and that has zero displacement on the boundary, i.e.,
u|∂Ω = 0. Suppose that the membrane is loaded by the uniformly distributed force
f and that there are two obstacles Φ1 ≤ 0 ≤ Φ2 a.e. such that Φ1 ≤ u ≤ Φ2 a.e. on
Ω constraining the deflection of the membrane. In this case, consider V = L2(I;V )
and H = L2(I;H), where (V,H, V ′) ≡ (H1

0 (Ω), L2(Ω), H−1(Ω)). Also, we have
K ≡ id ∈ L (H1

0 (Ω), H1
0 (Ω)) (where K is as in (2)) leading to

K = {y ∈ H1
0 (Ω) : Φ1(x) ≤ y(x) ≤ Φ2(x) a.e. in Ω}.

If we neglect inertia and suppose the membraned damped, then a simplified model
for the evolutionary dynamics of the problem is given by: Find u ∈ K := {v ∈
V : v(t) ∈ K} with u′ ∈ V ′ and u(0) = 0 such that

(u′ −∆(u)− f, v − u) ≥ 0, ∀v ∈ K .

The associated QVI version of the above parabolic VI modeling the damped
obstacle problem can be considered as the problem where the obstacles Φ1,Φ2

are not “fixed” but rather depend on the displacement of the membrane u (for
example, this situation would consider that when the membrane is in contact with
some obstacle, the latter suffers a force exerted by the membrane that determines
its movement). In this case we also have K ≡ id ∈ L (H1

0 (Ω), H1
0 (Ω)). However,

for v ∈ V , let Φ(v) := (Φ1(v),Φ2(v)) with (Φ1(v),Φ2(v)) ∈ L∞(Ω)× L∞ν (Ω) such
that Φ1(v) ≤ 0 ≤ Φ2(v) a.e. for all v ∈ V . Hence, we obtain

K(v) := {y ∈ H1
0 (Ω) : (Φ1(v))(x) ≤ y(x) ≤ (Φ2(v))(x) a.e. in Ω}.

Then, the QVI problem amounts to finding u ∈ K (Φ(u)) with u′ ∈ V ′ and
u(0) = 0 such that

(u′ −∆(u)− f, v − u) ≥ 0, ∀v ∈ K (Φ(u)).



Uniqueness and Numerical Approximation of Solutions to Parabolic QVIs 9

3. Conditions for u 7→ S(A, f,K (Φ(u))) to be contractive

Let f , K and S(τ), the C0-semigroup that is generated by −L, satisfy conditions
so that S(A, f,K ) is well defined as the unique solution to

Find u ∈ D(L; V ) ∩K : (Lu+A(u)− f, v − u) ≥ 0, ∀v ∈ K . (3)

Conditions for this to hold are for example given by f ∈ D(L; V ′), K = {v ∈ V :
v(t) ∈ K a.e.} with K some closed, convex set in V with 0 ∈ K and S(τ) given
by Example 2.1 (see for example [24, 6]). When K is not constant, we assume
that each evaluation K (v) satisfies the previous condition. If t 7→ K(t) is not
constant, and K(t) is of the obstacle- or gradient-type, then regularity and growth
conditions on the obstacle or gradient bounds are required in order to ensure
existence and uniqueness of the solution to (3) (see, for example, section 5.2 in
[16]). In the setting of Theorem 3.2 below, for the gradient constraint case, this
would require second-order in time regularity and more stringent growth conditions
on the function φ.

Note, however, that weaker forms of solutions could be considered in (3). Then
analogous results to the ones developed subsequently hold true for the appropriate
QVI formulation. In fact, if there is a unique solution S̃(A, f,K ) to:

Find u ∈ V ∩K , ∂tu ∈ V ′ : (∂tu+A(u)− f, v − u) ≥ 0, ∀v ∈ K , (4)

with u(0) = 0, where ∂tu denotes the weak partial derivative in time of u, and
where K = K (Φ(v)) for any v ∈ C , then Theorem 3.2 and Corollary 3.3 also
hold for S̃.

In this section we establish conditions for contractibility of the solution mapping
u 7→ S(A, f,K (Φ(u))). We start with some preliminary results of stability and
continuity of A 7→ S(A, f,K ).

Proposition 3.1. Let A1 and A2 satisfy H1 (with c1 > 0, r1 > 1 and c2 > 0, r2 >
1, respectively), H2 and H3, then

|S(A2, f,K )− S(A1, f,K )|V ≤M (δ(A2,A1))
1
r̄−1 ,

where r̄ = min(r1, r2), for some M > 0, and

δ(A2,A1) := sup
v∈B̄R(0;V )

|A2(v)−A1(v)|V ′ ,

with R := max((|f |V ′/c1)1/(r1−1), (|f |V ′/c2)1/(r2−1)).

Proof. Without loss of generality suppose that r2 ≤ r1. Define ui = S(Ai, f,K )
for i = 1, 2. Since ui solves (P), it also solves (wP). Let v = 0 in (wP), then
(Ai(ui), ui) ≤ (f, ui) and hence |ui|V ≤ R (by the uniform monotonicity of Ai for
i = 1, 2). Since u1, u2 ∈ K , we have

(Lu1 +A1(u1)− f, u2 − u1) ≥ 0 and (Lu2 +A2(u2)− f, u1 − u2) ≥ 0.
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Hence, from these two inequalities, we infer

(L(u2−u1), u2−u1)V +(A2(u2)−A2(u1), u2−u1)V ≤ (A1(u1)−A2(u1), u2−u1)V .

If w ∈ D(L; V ′)∩K , then (Lw,w) = limτ↓0
1
τ (I−S(τ)w,w)V = limτ↓0

1
τ (|w|2H −

〈S(τ)w,w〉H ) ≥ 0, since S(τ) is a C0-semigroup of contractions over H .
Then, due to the uniform monotonicity of A2, we have

c2|u2 − u1|r2V ≤ (A2(u2)−A2(u1), u2 − u1) ≤ (A1(u1)−A2(u1), u2 − u1).

Since |ui|V ≤ R, we find (A1(u1)−A2(u1), u2− u1) ≤ δ(A2,A1)|u2− u1|V , which
implies

|u2 − u1|V ≤ (2R/c2)1/(r2−1)(δ(A2,A1))1/(r2−1).

We now state the main result of the paper which guarantees the contractivity
of the map u 7→ S(A, f,K (Φ(u))) under certain conditions. The result can be
seen as the extension of the one in [15] for elliptic QVIs to the parabolic case.

Theorem 3.2. Let V ≡ Lp(I;V ) with I = (0, T ), where (V,H, V ′) is a Gelfand
triple and 1 < p <∞ if |I| <∞ (and p = 2 if |I| =∞). In addition, suppose

i. A : V → V ′ satisfies H1 with min(2, p) ≥ r > 1 if |I| < ∞ (and r = 2 if
|I| = ∞), H2, H3 and is homogeneous of order β ≥ 1, i.e., for fixed s > 0,
we have sβA(v) = A(sv) for all v ∈ V .

ii. f ∈ Lr′(I;V ′) ⊂ Lp′(I;V ′), such that (f, v) =
∫

I
(f(t), v(t))V dt for all v ∈ V ≡

Lp(I;V ), where 1/r + 1/r′ = 1 and 1/p+ 1/p′ = 1.

iii. K : E → 2V , satisfies that if ϕ ∈ Eν ⊂ E , then αK (ϕ) = K (αϕ) for all
α > 0.

iv. Φ : C ⊂ V → Eν ⊂ E is defined as Φ(u) = Γ(u)φ with φ = {φm}Mm=1 ∈ E ≡
L∞(I;L∞(Ω))M and Γ : C → R such that there exists

a. γ > 0 with

γ ≤ Γ(u), ∀u ∈ B̄R(0; V );

where R := (|f |Lr′ (I;V ′))1/(r−1).

b. LΓ > 0 for which

|Γ(v)− Γ(w)| ≤ LΓ|v − w|V , ∀v, w ∈ B̄R(0; V ).

Then, the map u 7→ S(A, f,K (Φ(u))) satisfies S(A, f,K (Φ(·))) : B̄R(0; V ) →
B̄R(0; V ) and

|S(A, f,K (Φ(u2)))− S(A, f,K (Φ(u1)))|V ≤ LS(f)|u2 − u1|V ,

for all u1, u2 ∈ B̄R(0; V ) and some LS(f) > 0 such that lim|f |
Lr
′
(I;V ′)→0 LS(f) = 0.

Moreover, LS(f) = O(LΓ) implying limLΓ→0 LS(f) = 0.
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Proof. First, note that S(A, f,K (Φ(v))) ∈ D(L; V ) ∩ K (Φ(v)), for each v ∈
B̄R(0; V ) ⊂ C , is well defined as the unique solution to (3) (with K = K (Φ(v)))
by the initial hypotheses and the first paragraph of this section.

Let ϕ ∈ Eν , ϕ ∈ Range (Φ), and denote K ≡ K (ϕ). Also, define ui =
S(A, fi,K ) for i = 1, 2. Then,

(L(u2 − u1) +A(u2)−A(u1), u2 − u1) ≤ (f2 − f1, u2 − u1).

The uniform monotonicity of A and (Lw,w) ≥ 0,∀w ∈ D(L; V ′) ∩K imply (as
in the proof of Proposition 3.1) that

c|u2 − u1|rV ≤ (f2 − f1, u2 − u1).

Young’s inequality states
∫

Ω
|gv| dx ≤ εr

′

r′

∫
Ω
|g|r′ dx + 1

rεr

∫
Ω
|v|r dx, for all g ∈

Lr
′
(Ω), v ∈ Lr(Ω), and all ε > 0. Now, since p ≥ r, we obtain by Young’s and

Hölder’s (when p > r) inequalities

c|u2 − u1|rV ≤ (f2 − f1, u2 − u1) =

∫
I

((f2 − f1)(t), (u2 − u1)(t))V dt

≤ εr
′

r′

∫
I

|(f1 − f2)(t)|r
′

V ′ dt+
1

rεr

∫
I

|(u1 − u2)(t)|rV dt

≤ εr
′

r′

∫
I

|(f1 − f2)(t)|r
′

V ′ dt+
|I|(p−r)/p

rεr

(∫
I

|(u1 − u2)(t)|pV dt

)r/p
.

Hence for a sufficiently large ε > 0

|u2 − u1|V ≤

 εr
′

r′(
c− |I|

(p−r)/p

rεr

)
1/r (∫

I

|(f1 − f2)(t)|r
′

V ′ dt

)1/r

.

In the case when |I| = ∞ (and then p = r = 2 by the initial hypotheses), we
similarly have

c|u2 − u1|2V ≤
ε2

2

∫
I

|(f1 − f2)(t)|2V ′ dt+
1

2ε2

(∫
I

|(u1 − u2)(t)|2V dt

)
,

and again for ε > 0 large enough,

|u2 − u1|V ≤

(
ε2

2(
c− 1

2ε2

))1/2(∫
I

|(f1 − f2)(t)|2V ′ dt

)1/2

.

Therefore,

|S(A, f1,K )− S(A, f2,K )|V ≤M1|f2 − f1|r
′/r

Lr′ (I;V ′)
, (5)
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where M1 > 0 depends on c, p, r and |I| if the latter is finite, otherwise it depends
only on c (given that p = r = 2 if |I| =∞).

Suppose that µ > 0, then µ1−βA (for β ≥ 1) satisfies H1, H2 and H3, µf ∈ V ′

and µK is closed, convex and 0 ∈ µK . Hence, we find

S(A, f,K )− S(A, f, µK ) =
(
S(A, f,K )− S(µ1−βA, µf, µK )

)
+ (6)(

S(µ1−βA, µf, µK )− S(A, µf, µK )
)

+ (S(A, µf, µK )− S(A, f, µK ))

= I + II + III.

(where all evaluations of the mapping S are well defined).
Consider I. Let u = S(A, f,K ), then (Lu+A(u)−f, v−u) ≥ 0,∀v ∈ K . Since

L is a linear operator, and A is homogeneous of order β ≥ 1, for µ > 0 we have
(L(µu) + µ1−βA(µu)− µf,w − µu) ≥ 0,∀w ∈ µK , i.e., µu = S(µ1−βA, µf, µK ).
Then,

|I|V ≤ ΘI(f)|1− µ|,

where ΘI(f) = |S(A, f,K )|V , and as argued before (see the proof of Proposition
3.1) |S(A, f,K )|V ≤ (|f |V ′/c)1/(r−1). Since p ≥ r > 1, we infer r′ ≥ p′ >
1, and hence Lr

′
(I;V ′) ↪→ V ′ ≡ Lp

′
(I;V ′), where the embedding is continuous.

Consequently, we obtain lim|f |
Lr
′
(I;V ′)→0 ΘI(f) = 0.

In order to find a bound on II, we apply Proposition 3.1. In this case A and
µ1−βA satisfy H1 with the same r and with c and µ1−βc, respectively. Then,

|II|V ≤ ΘII(f)|1− µβ−1|
1
r−1 , ΘII(f) :=

(
2R

c
sup

w∈B̄R(0;V )

|A(w)|V ′
) 1
r−1

,

with R ≤ (µ1/(r−1) + µβ/(r−1))(|f |V ′/c)1/(r−1) (where R is the one in Proposition
3.1). Since A maps bounded sets in V into bounded sets in V ′ (Hypothesis H3),
arguing as in the previous paragraph, we have lim|f |

Lr
′
(I;V ′)→0 ΘII(f) = 0.

We now use (5) to bound III. This yields (note that 1
r−1 = r′

r )

|III|V ≤ ΘIII(f)|1− µ|
1
r−1 ,

where ΘIII(f) = M1|f |r
′/r

Lr′ (I;V ′)
and hence lim|f |

Lr
′
(I;V ′)→0 ΘIII(f) = 0.

Suppose that µ ∈ (0, µ̄] for some fixed µ̄ > 0. Since 2 ≥ r > 1 and β ≥ 1, it
holds that |1 − µβ−1|1/(r−1) ≤ δ1|1 − µ| and |1 − µ|1/(r−1) ≤ δ2|1 − µ| for some
δ1 > 0 and δ2 > 0 (depending only on µ̄) for all µ ∈ (0, µ̄]. Then, from (6), we
observe that

|S(A, f,K )− S(A, f, µK )|V ≤ Θ(f)|1− µ|,

where Θ(f) := ΘI(f) + δ1ΘII(f) + δ2ΘIII(f).
We have that K ≡ K (ϕ) for some ϕ ∈ Eν and that µK (ϕ) = K (µϕ), and

we write, for the sake of brevity, S(ϕ) := S(A, f,K ) and S(µϕ) := S(A, f, µK ).
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Since ϕ ∈ Eν , we have |ϕ|E ≥ ν > 0, and hence

|S(ϕ)− S(µϕ)|V ≤
Θ(f)

ν
|1− µ||ϕ|E ≤

Θ(f)

ν
|ϕ− µϕ|E .

Finally, let ϕ = Γ(u2)φ and µ = Γ(u1)/Γ(u2). Since u1, u2 ∈ C , and hence, since
u 7→ Γ(u) is Lipschitz on C (with Lipschitz constant LΓ by assumption), we have

|S(Γ(u2)φ)− S(Γ(u1)φ)|V ≤
Θ(f)

ν
|Γ(u2)φ− Γ(u1)φ|E ≤

Θ(f)|φ|ELΓ

ν
|u2 − u2|V .

Therefore u 7→ S(A, f,K (Φ(u))) is Lipschitz continuous and contractive for all
sufficiently small f . Moreover, the Lipschitz constant of S, LS(f), is proportional
to LΓ.

Remark 1. It should be noted that the map u 7→ S(A, f,K (Φ(u))) is non-
linear (even in the case when A is linear, due to the constraints) and hence the
contractive behavior (and consequently the existence of a unique solution) should
be expected only for small data, i.e., small f in the Lr

′
(I;V ′)-sense. Given the

structure of the constraint mapping v 7→ K (Φ(v)) required for the previous the-
orem, one might think that small f forces the system into “inactivity”, i.e., that
u = S(A, f,K (Φ(u))) belongs to the interior of K (Φ(u)) and, hence, the problem
being dealt with is no longer a proper QVI but satisfies Lu+A(u)− f = 0. This,
however, is not the case! Indeed, for any f , one can choose a small enough LΓ to
obtain the contractive behavior of the map S (and hence uniqueness).

Remark 2. The Lipschitz constant of Γ, LΓ, controls how much v 7→ Φ(v) =
Γ(v)φ changes on the ball B̄R(0; V ). If LΓ = 0, then the QVI problem reduces to
a VI, which has a unique solution. In this sense, as LΓ ↓ 0, it is expected that the
properties of (P) resemble more and more the ones of a VI. The previous theorem
is evidence of such a behavior. In addition, the Lipschitz behavior of Γ implies the
same for S. On the other hand, differentiability properties of S are in general not
implied by differentiability of Γ.

The following corollary is a direct consequence of the previous result and deter-
mines a direct and natural way for approximating solutions to the QVI of interest.
The proof is simply an application of Theorem 3.2 and Banach’s fixed point prin-
ciple.

Corollary 3.3. Suppose the hypotheses of Theorem 3.2 are satisfied and that
|f |Lr′ (I;V ′) is small enough. Define

T (v) := S(A, f,K (Φ(v))),

and consider un = T (un−1) for n ∈ N and u0 ∈ B̄R(0; V ). Then, the sequence
{un} converges (at least, linearly) in the strong topology of V to u∗, the unique
solution u = T (u).
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Remark. Note that even though the approach of the paper is not concentrated
on existence results for QVIs, the result in Corollary 3.3 neither contains nor is
contained in general existence results like the ones in [17].

Theorem 3.2 and Corollary 3.3 now allow to establish the existence and unique-
ness of solutions to certain classes of parabolic QVIs, and they provide a way of
approximating these. Furthermore, note that the two aforementioned results also
hold for S̃ as defined in (4) under minor changes, provided S̃(A, f,K (Φ(w))) is
well defined for each w ∈ B̄R(0; V ). In this case, we observe that there is a unique
solution to u = S̃(A, f,K (Φ(u))), i.e., u satisfies the QVI:

u ∈ V ∩K (Φ(u)), ∂tu ∈ V ′ : (∂tu+A(u)− f, v − u) ≥ 0, ∀ ∈ K (Φ(u)).

A class of examples for the gradient type and obstacle type constrained are
given in the following.

Example 3.4. Let p = 2, V = L2(I;V ) with I = (0, T ) and (V,H, V ′) =
(H1

0 (Ω), L2(Ω), H−1(Ω). Let A : V → V ′ be the time realization of the Laplacian,
i.e., A(v)(t) = A(v(t)) with A = −∆ for all v ∈ V , which satisfies H1 (with r = 2
and c = 1), H2 and H3 and is homogeneous of order β = 1. Let f ∈ L2(I;V ′) so
that (f, v)V =

∫
I
(f(t), v(t))V dt.

Consider K : Eν ⊂ E → 2V where Eν = L∞(I;L∞ν (Ω)), E = L∞(I;L∞(Ω))
and

K (ϕ) = {v ∈ L2(I;H1
0 (Ω)) : |(∇v(t))(x)|Rl ≤ (ϕ(t))(x) a.e. for t ∈ I,x ∈ Ω},

which satisfies that αK (ϕ) = K (αϕ) for all α > 0, ϕ ∈ Eν . Let

Γ(u) = k|Ψ(u)|+ ν, with Ψ ∈ V ′ and ∀u ∈ V ,

k > 0 and φ ≡ 1 such that Φ(u) = Γ(u)φ = Γ(u). In this case, we observe
that for all u ∈ L2(I;H1

0 (Ω)), the set K (Φ(u)) is a closed and non-empty sub-
set of L2(I;H1

0 (Ω)) and contains 0. Then, by Theorem 3.2, the mapping u 7→
S(A, f,K (Φ(u))) is Lipschitz continuous and contractive on some ball provided
that |f |L2(I;V ′) (or k > 0) is small enough.

Example 3.5. Consider again p = 2, V = L2(I;V ) with I = (0, T ) and (V,H, V ′) =
(H1

0 (Ω), L2(Ω), H−1(Ω). Let A : V → V ′ be A(v)(t) = A(v(t)) with A = −∆ as
in the previous example and let f ∈ L2(I;V ′) with (f, v)V =

∫
I
(f(t), v(t))V dt.

Determine K : Eν ⊂ E → 2V where Eν = L∞(I;L∞(Ω)) × L∞(I;L∞ν (Ω)),
E = L∞(I;L∞(Ω))× L∞(I;L∞(Ω)) and

K (ϕ1, ϕ2) = {v ∈ V : (ϕ1(t))(x) ≤ (v(t))(x) ≤ (ϕ2(t))(x) a.e. for t ∈ I,x ∈ Ω},

which satisfies that αK (ϕ) = K (αϕ) for all α > 0, ϕ = (ϕ1, ϕ2) ∈ Eν . Consider
Φ(·) defined as

Φ(v) = Γ(v)(−|ψ2|, |ψ1|+ ε),
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with ψi ∈ L∞(I;L∞(Ω)), ε > 0 and

Γ(v) = k|Ψ(u)|+ δ, with Ψ ∈ V ′ and ∀u ∈ V ,

k > 0 and εδ ≥ ν > 0. Hence, we have Φ : V → Eν ⊂ E . Also, by Theorem
3.2, the mapping u 7→ S(A, f,K (Φ(u))) is Lipschitz continuous and contractive
on some ball provided that |f |L2(I;V ′) (or k > 0) is small enough.

3.1. Approximations in a General Setting. The previous result may also
be useful when the constraint map Φ has a different structure compared to the
one required in Theorem 3.2. In fact, in some cases it is possible to construct a
sequence of approximating problems for which the theory still applies. Indeed,
we sketch such an approximation procedure in what follows. For this purpose we
confine ourselves to the obstacle type example with Φ(v) := (0,Φ2(v)) and where
Φ2 : H1

0 (Ω) → (ν,+∞) is Lipschitz continuous with constant LΦ and a forcing
term f(t) = f ∈ L2(Ω), for all t ∈ [0, T ].

Let In = [tn−1, tn) for n = 1, 2, . . . , N , tn := nT/N , and consider the se-
quence of maps {Λn} with Λn : L2(In;H1

0 (Ω)) → (ν,+∞) defined by Λn(v) :=
1
|In|

∫
In

Φ2(v(t)) dt. Note that each Λn is Lipschitz continuous with constant

LΦ. Also, if w ∈ L2((0, T );H1
0 (Ω)), then standard integration results yield that

1
h

∫ s+h
s

Φ2(v(t))dt→ Φ2(v(s)) as h ↓ 0 for almost all s ∈ (0, T ). Since |f |L2(In;L2(Ω)) =

|In|1/2|f |L2(Ω), then for sufficiently large N , |f |L2(In;L2(Ω)) gets arbitrarily small.
Then, Theorem 3.2 and Corollary 3.3 can be applied to T (v) := S(A, f,K (Λn(v)))
(or T̃ (v) := S̃(A, f,K (Λn(v)))) on V := L2(In;H1

0 (Ω)), for n = 1. Provided the
maps S and S̃ are also uniquely defined for non-zero initial conditions (under cer-
tain assumptions on u0), the same procedure can be repeated for n > 1, provided
that |f |L2(Ω) and |u0|H1

0 (Ω) are sufficiently small. In this way one approximates
the solution to the original problem.

Note, however, that the well-posedness of the maps S (and S̃) with non-zero
boundary conditions u(0) = u0 6= 0 may be a challenging problem in its own right
(see [20], section 5.4 in [16] and [24]), which requires additional studies as N →∞.

In the gradient constrained case of magnetization of superconductors, the up-
per bound of the gradient constraint operator jc is in general a superposition (or
Nemytskii) operator such that the scheme above is not directly applicable. How-
ever, an approximation of the magnetization problem for p = 2 can be obtained
when jc : H1

0 (Ω) → L2(Ω) is replaced by ĵc(v) = jc(Sv) with Sv = 1
|Ω|
∫
v(x) dx.

In this case, the above procedure can be applied with the obvious changes.

4. A Semi-Discrete Scheme

Let {Xn} be a sequence of Banach spaces related to a Banach space X by the
following extension and projection operators.
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Assumption 1. For n ∈ N, there are Pn ∈ L (X,Xn) and En ∈ L (Xn, X) such
that

A1. For all n ∈ N, we have |Pn|L (X,Xn) ≤ 1 and |En|L (Xn,X) ≤ 1.

A2. |EnPnv − v|V → 0 as n→∞ for all v ∈ X.

A3. PnEn is the identity operator in Xn.

Theorem 4.1. Let X and Xn for n ∈ N0 be Banach spaces related by projection
and extension operators Pn and En that satisfy A1 and A3. Let T : X → X and
Tn : Xn → Xn be a sequence of contractive operators such that

|Tn(x)− Tn(y)|Xn ≤ ηn|x− y|Xn with η̄ := sup
n∈N

ηn < 1. (7)

Consider the sequence of operators T̂n : X → X defined as T̂n(x) = EnTn(Pnx)
for each x ∈ X.

If there exists x0 ∈ X with |Tn(Pnx0)|Xn ≤ K for all n ∈ N and T̂n satisfies

lim
n→∞

T̂n(xn) = T (x), in X if xn ⇀ x in X, (8)

then the sequence of fixed points

yn = Tn(yn),

satisfies that {Enyn} converges strongly to the unique fixed point of T .

Proof. First we prove that T has a unique fixed point. By the definition of T̂n,
and the fact that the norms of En ∈ L (Xn, X) and Pn ∈ L (X,Xn) are uniformly
bounded by 1, we have that

|T̂n(x)− T̂n(y)|X ≤ |Tn(Pnx)− Tn(Pny)|Xn ≤ ηn|Pnx− Pny|Xn ≤ η̄|x− y|X .

Then we infer from (8)

|T (x)− T (y)|X = lim
n→∞

|T̂n(x)− T̂n(y)|X ≤ η̄|x− y|X ,

i.e., T : X → X is contractive and hence has a unique fixed point.
Consider the sequence of fixed points yn = Tn(yn). Since PnEn is the identity,

we have that Enyn = EnTn(PnEnyn). Then defining ŷn := Enyn, we have that
ŷn = T̂n(ŷn). The sequence {ŷn} is uniformly bounded. Indeed, we have

|ŷn|X − |T̂n(x0)|X ≤ |T̂n(ŷn)− T̂n(x0)|X ≤ η̄|ŷn − x0|X ≤ η̄|ŷn|X + η̄|x0|X ,

and hence

(1− η̄)|ŷn|X ≤ |T̂n(x0)|X + η̄|x0|X ≤ |Tn(Pnx0)|Xn + η̄|x0|X ≤ K + η̄|x0|X .
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Therefore, ŷni ⇀ y∗ in X and T̂ni(ŷni) → T (y∗) by (8). Since ŷni = T̂ni(ŷni), we
obtain y∗ = T (y∗).

Suppose that there is a subsequence of ŷn = T̂n(ŷn) that does not converge to
y∗. Then there exists a sequence {ŷnj} such that ŷnj = T̂nj (ŷnj ) and ε > 0 for
which |y∗ − ŷnj |X ≥ ε > 0 for j ∈ N. However, the argument at the beginning
of the proof also applies to {ŷnj}. Thus, there is a subsequence that converges to
some fixed point ȳ of the map T . As there is only one fixed point for T , we have
ȳ = y∗. Consequently, all subsequences converge to y∗.

We consider now a semi-discretization scheme that makes the previous exten-
sion of Banach’s fixed point principle useful in the study of parabolic QVIs. The
abstract framework of this section is suitable for numerical methods computing
approximate solutions to (P).

Let V = Lp(I;V ) (with p ≥ 2) where I = (0, T ) with 0 < T < ∞ and
Vn = V n := V ×V ×· · ·×V (n copies of V ) with norm |w|Vn = (h

∑n
m=1 |wm|

p
V )1/p,

h = T
n , and where w = {wm}nm=1 ∈ Vn. We assume that (V,H, V ′) is a Gelfand

triple and hence (V ,H ,V ′) and (Vn,Hn,V ′n) are as well, with H = L2(I;H) and
Hn = Hn. Then, consider Pn ∈ L (V ,Vn) and En ∈ L (Vn,V ) defined as

Pnv :=

{
1

h

∫
Im

v(t) dt

}n
m=1

, (Enw)(t) :=

n∑
m=1

wmχIm(t), (9)

where v ∈ V , w = {wm}nm=1 ∈ Vn and Im = ((m− 1)h,mh) for m = 1, . . . , n (we
also extend the latter to m ∈ Z). We refer to Pn and En as the “projection” and
“extension” operators, respectively.

Proposition 4.2. Let Pn : V → Vn and En : Vn → V be as defined in (9), then
A1,A2 and A3 of Assumption 1 are satisfied.

Proof. It follows from the definition of En and Pn that A3 is satisfied. In order
to prove A1, observe that from the definition of En and the norm | · |Vn that
|Enw|V = |w|Vn for w ∈ Vn and by Hölder’s inequality we obtain

|Pnv|pVn = h

n∑
m=1

∣∣∣∣ 1h
∫

Im

v(t) dt

∣∣∣∣p
V

≤ h1−p
n∑

m=1

(∫
Im

|v(t)|V dt

)p
≤

n∑
m=1

∫
Im

|v(t)|pV dt = |v|pV .

Hence, |En|L (Vn,V ), |Pn|L (V ,Vn) ≤ 1 and A1 holds. Now, we consider A2 and
suppose that v ∈ V is of the form v = aχ[tα,tβ) with a ∈ V , 0 ≤ tα < tβ and
[tα, tβ) ∈ I. Then it is elementary to check that EnPnv → v as n→∞ in V . Since

EnPn is linear, then it also holds for step functions v =
∑N
k=1 akχ[tαk ,tβk ) with

ak ∈ V . Since step functions are dense in V = Lp(I;V ), given v ∈ V there is a
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step function vε such that |v− vε| ≤ ε
3 . Let n ≥ N(ε) so that |EnPnvε− vε|V ≤ ε

3 .
Then, we have

|EnPnv − v|V ≤ |EnPn(v − vε)|V + |EnPnvε − vε|V + |vε − v|V ≤ ε,

given that |EnPn|L (V ,V ) ≤ |En|L (Vn,V )|Pn|L (V ,Vn) ≤ 1. Since ε > 0 was arbi-
trary, the assertion is proven and A2 holds. Hence, Assumption 1 holds true for
our semi-discrete scheme.

Also, it is useful to note that from the definition of Pn and En, we observe that
the restriction of the adjoints P ′n (to Vn) and E′n (to V ) are given by P ′n|Vn = En
and E′n|V = Pn.

The semi-discrete problem approximating (P) is given as follows.

Problem (Pn) :

Find u ∈ Kn(Φn(u)) : (Lnu+An(u)− fn, v − u)V ′n,Vn ≥ 0, ∀v ∈ Kn(Φn(u)),
(Pn)

where {Kn,Φn, Ln,An, fn} approximate their counterparts {K ,Φ, L,A, f} in (P)
as described in the following paragraphs. We assume throughout this section that
the conditions for the solution mapping u 7→ S(A, f,K (Φ(u))) to be contractive
from Theorem 3.2 are satisfied and conditions for S(A, f,K (Φ(v))) ∈ D(L; V ) ⊂
D(L; V ′) also hold. Further conditions on (P) and (Pn) are stated next.

Assumption 2. The following statements are assumed to hold true.

B1. The operator L is the infinitesimal generator of the semigroup of translations
on V and V ′ (and of contractions on H ) defined in Example 2.1. Therefore,

D(L;X) = {v ∈ X : v is absolutely continuous, v′ ∈ X and v(0) = 0},

where X is V ,H or V ′. The approximated sequence {Ln} is defined as Ln =
I−F (1/n)

1/n , where F (1/n)w = {0, w1, w2, . . . , wn−1} ∈ Vn for w = {wi}ni=1 ∈
Vn, i.e., Lnw = {(Lnw)i}ni=1 with

(Lnw)i =

{
w1

1/n , i = 1;
wi−wi−1

1/n , 2 ≤ i ≤ n.

B2. f ∈ D(L; V ) ⊂ D(L; V ′) and fn = Pnf .

B3. A is the time realization of a linear uniformly monotone operator A in V ,
i.e., A(y)(t) = A(y(t)) for t ∈ I where A : V → V ′ satisfies H1, H2 and H3.
An : Vn → V ′n is defined as An(w) = {A(wi)}ni=1 where w = {wi}ni=1 ∈ Vn.
In this sense, An ≡ A.

B4. Suppose that φ ∈ (L∞(Ω))M−1×L∞ν (Ω) so that φ(t) = φ for all t ∈ I satisfies
φ ∈ Eν ⊂ E with E = L∞(I;L∞(Ω))M , and Eν = L∞(I;L∞(Ω))M−1 ×
L∞(I;L∞ν (Ω)). Then, we define

Φ(v) = Γ(v)φ and Φn(v) = Γn(v)φ for all v ∈ V .
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Consider g ∈ V ⊂ V ′, Γ : V → R and Γn : Vn → R defined as

Γ(v) =

∣∣∣∣∣
∫ T

0

(g(t), v(t))V ′,V dt

∣∣∣∣∣+ γ Γn(w) =

∣∣∣∣∣
∫ T

0

(g(t), (Enw)(t))V ′,V dt

∣∣∣∣∣+ γ,

(10)

with γ > 0.

B5. The set-valued mappings K (·) and Kn(·) are defined as

K (Φ(y)) = {w ∈ V : w(t) ∈ K(Φ(y)) a.e. t ∈ I},
Kn(Φn(z)) = {{wm}nm=1 ∈ Vn : wm ∈ K(Φn(z)) for m = 1, . . . , n},

where y ∈ V and zn ∈ Vn. We assume the following type of convergence

(i) If vn ∈ Kn(Φn(Pnwn)), wn ⇀ w in V and Envn ⇀ v in V for n ∈ N′ ⊂
N, then v ∈ K (Φ(w))

(ii) If wn ⇀ w in V for n ∈ N′ ⊂ N and v ∈ K (Φ(w)), then there exists a
sequence {ηn} ⊂ R+ such limn→∞ ηn = 1 and ηnPnv ∈ Kn(Φn(Pnwn))
for n ∈ N′ ⊂ N.

Conditions B1 and B2 in Assumption 2 determine that we approximate the
time derivative “L” by a forward difference and invoke a more regular forcing term
f (when compared to the existence proof, but the additional regularity is needed
for the approximation results) and its approximate fn. These assumptions are
appropriate for the kind of convergence needed in Theorem 4.5: If v ∈ D(L; V ′)∩
V then limn→∞ P ′nLnPnv = Lv in V ′ (see Proposition 1 in [16]) and Enfn =
EnPnf → f by A2, Assumption 1. Condition B3 is clearly satisfied by A being
the time realization of A = −∆ where ∆ is the Laplacian, i.e., it is satisfied for
the operator that arises in most applications. Assumptions B4 and B5 state the
general form for the mappings Φ and Φn as well as the type of convergence needed
for Kn towards K . In particular, B5 is analogous to Mosco convergence of sets
but written here in a form, which is more suitable for our approximation scheme.
In the following paragraphs we study the implications of B4 and we show that the
gradient-type and obstacle-type problems satisfy B5, respectively.

We start by considering the relationship between Γ (the nonlinear functional
in Theorem 3.2) and Γn (the counterpart of Γ in the approximate problem). By
invoking B4 above, we assume that Γ and Γn satisfy the conditions necessary for
Theorem 3.2 to hold true. Hence, the solution mapping of the original problem
and its semi-discretized version are Lipschitz continuous and become contractive for
small enough g in the sense of V . The following result relates the weak convergence
in V and the functionals Γ and Γn.

Proposition 4.3. Let vn ⇀ v in V . Then Γn(Pnvn)→ Γ(v).
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Proof. Denote (g, w) =
∫ T

0
(g(t), w(t)) dt for w ∈ V . Hence, since P ′n|Vn = En,

E′n|V = Pn and g ∈ V we have that

(g,EnPnw) = (Png, Pnw)V ′n,Vn = (EnPng, w).

But EnPn converges strongly to the identity by A2 in Assumption 1. Thus,
EnPng → g in V as n → ∞. Then, (g,EnPnvn) = (EnPng, vn) → (g, v) and
hence Γn(Pnvn)→ Γ(v) follows.

In the case of the gradient constraint we have that Kn(Φn(v)) ∈ 2Vn for v ∈ Vn
and K (Φ(z)) for z ∈ V are given by

K (Φ(z)) = {w ∈ V : |∇w(t)|Rl ≤ Γ(z)φ a.e. on Ω, t ∈ I}. (11)

Kn(Φn(v)) = {{wm}nm=1 ∈ Vn : |∇wm|Rl ≤ Γn(v)φ a.e. on Ω, for 1 ≤ m ≤ n},

and in the case of the obstacle-type problem by

K (Φ(z)) = {w ∈ V : Γ(z)φ1 ≤ w(t) ≤ Γ(z)φ2 a.e. on Ω, t ∈ I}. (12)

Kn(Φn(v)) = {{wm}nm=1 ∈ Vn : Γn(v)φ1 ≤ wm ≤ Γn(v)φ2 a.e. on Ω, for 1 ≤ m ≤ n},

where “(x)” is suppressed for the sake of clarity and brevity.
The following proposition shows that for the gradient-type and obstacle-type

problems, the assumptions B5(i) and B5(ii) hold for the scheme already described
above.

Proposition 4.4. Let Kn(Φn(·)) : Vn → 2Vn and K (Φ(·)) : V → 2V be as in
(11) or (12). Then, B5(i) and B5(ii) hold.

Proof. Consider B5(i) for the gradient constrained case. Clearly, if vn ∈ Kn(Φn(Pnwn)),
then Envn ∈ K (Φ(EnPnwn)). Since wn ⇀ w in V , then by Proposition 4.3,
Φ(EnPnwn) = Φn(Pnwn) → Φ(w) in E = L∞(I;L∞(Ω)). This implies that
K (Φ(EnPnwn)) → K (Φ(w)) in the sense of Mosco (see [16, 37]) and hence that
v ∈ K (Φ(w)).

For the case of the obstacle-type problem, we have that

Γ(EnPnwn)φ1(x) ≤ Envn(t)(x) ≤ Γ(EnPnwn)φ2(x),

a.e. for x ∈ Ω, t ∈ I. Since Envn ⇀ v in V , by Mazur’s Lemma there ex-

ists a convex combination ṽn =
∑N(n)
i=1 λi(n)Eivi such ṽn → v in V . Then the

above inequality implies that Γ(EnPnwn)φ1(x) ≤ ṽn(t)(x) ≤ Γ(EnPnwn)φ2(x).
Since Γ(EnPnwn) → Γ(w) by Proposition 4.3, we have Γ(w)φ1(x) ≤ v(t)(x) ≤
Γ(w)φ2(x) (since strong convergence in V implies a.e. pointwise convergence
(along a subsequence) in the strong topology of V , for t ∈ I, and in turn pointwise
convergence in Ω along another subsequence). Hence v ∈ K (Φ(w)) also for the
obstacle-type constraint, and B5(i) holds.

We turn our attention to the gradient constrained case. Since wn ⇀ v, then
due to the definition of Φ, we have that Φn(Pnwn) = Φ(EnPnwn) → Φ(w) in
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E = L∞(I;L∞(Ω)) (and actually in L∞(Ω) since Φ(v) = Γ(v)φ with φ ∈ L∞(Ω)
and similarly for Φn) and also Φ(EnPnwn),Φ(w) ≥ ν > 0 for n ∈ N′ ⊂ N. Then,
it is possible to prove (see [15]) that there is a sequence ηn ↑ 1 such ηnΦ(w) ≤
Φ(EnPnwn) for n ∈ N′ ⊂ N. Since v ∈ K (Φ(w)), we have |(∇v(t))(x)| ≤ Φ(w)
a.e. on t ∈ I, x ∈ Ω. As Φ(w) is constant in time, we have Pnv ∈ Kn(Φ(w)).
Hence vn := ηnPnv belongs to Kn(Φn(Pnwn)), i.e., B5(ii) holds.

Consider now B5(ii) in the obstacle-type case. As before, we have Γn(Pnwn) =
Γ(EnPnwn)→ Γ(w). Hence Γ(EnPnwn)φi → Γ(w)φi in L∞(Ω) for i = 1, 2. Since
Γ(EnPnwn)φ1 ≤ 0 ≤ ν ≤ Γ(EnPnwn)φ2, similarly with the paragraph above,
there exists {ηn} such ηn ↑ 1 with

Γ(EnPnwn)φ1 ≤ ηnΓ(w)φ1 ≤ 0 ≤ ηnΓ(w)φ2 ≤ Γ(EnPnwn)φ2.

Again, as v ∈ K (Φ(w)), we have Pnv ∈ Kn(Φ(w)), and vn := ηnPnv belongs to
Kn(Φn(Pnwn)).

We are now in the position to state how the solution mappings of (P) and (Pn)
are related by means of the weak topology on V .

Theorem 4.5. Given w ∈ V , let u = T (w) ∈ D(L; V ) ∩K (Φ(w)), where T (w)
is defined as the solution to

(Lu+A(u)− f, v − u) ≥ 0, ∀v ∈ K (Φ(w)), (13)

and, similarly, un = Tn(z) ∈ Kn(Φn(z)), with z ∈ Vn, where Tn(z) denotes the
solution to

(Lnun +A(un)− fn, v − un)V ′n,Vn ≥ 0, ∀v ∈ Kn(Φn(z)). (14)

Then, if wn ⇀ w in V ,

EnTn(Pnwn)→ T (w) in V .

Proof. Both maps T : V → V and Tn : Vn → Vn are well-defined and single valued
since K (Φ(w)) and Kn(Φn(Pnwn)) are closed, convex (in V and Vn, respectively)
and contain 0, respectively.

By definition, un := Tn(Pnwn) ∈ Kn(Φn(Pnwn)) and the usual monotonicity
trick gives |un|Vn ≤ (|fn|V ′n/c)

1/(r−1). By assumption B2 we have fn = Pnf ,
and, thus, the sequence {|fn|}V ′n is uniformly bounded. Indeed, it holds that
|fn|V ′n = |fn|Vn ≤ |Pn|L (V ,Vn)|f |V ≤ |f |V . Then the sequence {|un|Vn} is
bounded uniformly, as well. Since we have the uniform bound |En|L (Vn,V ) ≤ 1,
the sequence {Enun} is uniformly bounded in V . By the reflexivity of V , there
exists a weakly convergent subsequence, i.e., Enun ⇀ u in V for n ∈ N′ ⊂ N. This
and B5(i) now imply that u ∈ K (Φ(w)).

Next, define Ãn(·) := P ′nA(Pn·) and f̃n = P ′nfn, where P ′n : V ′n → V ′.
Minty’s Lemma yields that (14) holds when “Lun” is exchanged by “Lv” with
v ∈ Kn(Φn(Pnwn)). Since PnEn = I = id in Vn for all n ∈ N, (14) implies that

(P ′nLnv + Ã(Enun)− f̃n, Env − Enun) ≥ 0, ∀v ∈ Kn(Φn(Pnwn)). (15)
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Let v ∈ D(L; V ′) ∩K (Φ(w)), then by B5(ii) there exists a real-valued sequence
{ηn} such limn→∞ ηn = 1 for which ηnPnv ∈ Kn(Φn(Pnwn)). Define vn = ηnPnv.
Since EnPn converges strongly to the identity (A2, Assumption 1) and ηn → 1,
we have Envn → v in V as n→∞. Using v = vn in (15), we obtain

(Ãn(Enun), Enun − u) ≤ (ηnP
′
nLnPnv − f̃n, Envn − Enun) + (Ãn(Enun), Envn − u).

(16)

From the first paragraph of the proof, we have that {Enun} is bounded in V . Since
A maps bounded sets into bounded sets and the norms of Pn and P ′n are uniformly
bounded in n ∈ N (|Pn|L (V ,Vn) ≤ 1 and hence also |P ′n|L (V ′n,V

′) ≤ 1), we have

that {Ãn(Enun)} is bounded. By the reflexivity of V ′, there exists a subsequence
converging weakly to some g ∈ V ′. Also, we have that P ′nLnPnv → Lv since
v ∈ D(L; V ′) (see Proposition 1 in [16]) and hence ηnP

′
nLnPnv → Lv as n → ∞.

By our hypotheses, we further have f̃n = P ′nfn = P ′nPnf = EnPnf → f in V ′

(actually in V ) as n→∞. Summarising , we have the following relations:

Ãn(Enun) ⇀ g, f̃n → f, ηnP
′
nLnPnv → Lv in V ′ and Enun ⇀ u, Envn → v in V .

Henceforth, taking “lim” in (16), we obtain

lim
n→∞

(Ãn(Enun), Enun − u) ≤ (Lv − f + g, v − u). (17)

Let v = vα ∈ D(L; V ′) ∩ K (Φ(w)) with limα→0 vα = u and (Lvα, vα − u) ≤ 0
(which is possible due to the compatibility of S(τ) and K (Φ(w)), see [24, 6]). This
choice implies limn→∞(Ãn(Enun), Enun − u) ≤ 0. Here we also have assumed
that A is the time realization of a linear uniformly monotone operator A in V
(B3 of Assumption 2), i.e., A(y)(t) = A(y(t)) for t ∈ I and y ∈ V = Lp(I;V ).
Consequently, we have P ′nA(Pnv) = P ′nA(Pnv(t)) and hence

(P ′nA(Pny), z) =

∫ T

0

n∑
m=1

(
A

(
1

h

∫
Im

y(t) dt

)
, z(t)

)
V ′,V

χIm(t) dt =

=

∫ T

0

(
A

(
n∑

m=1

1

h

∫
Im

y(t) dtχIm(t)

)
, z(t)

)
V ′,V

dt =

= (A(EnPny), z).

The relation PnEn = I thus yields P ′nA(Pn(Enun)) = A(Enun). This and (17)
imply

lim
n→∞

(A(Enun), Enun − u) ≤ 0. (18)

Since the operator A is pseudomonotone (it satisfies H1 and H3 which imply
pseudomonotinicity, see the paragraph that follows the definition of H1-H3 and
see [38] for a proof) and Ãn(Enun) = P ′nA(Pn(Enun)) = A(Enun), we observe

(A(u), u− z) ≤ lim
n→∞

(A(Enun), Enun − z) = lim
n→∞

(Ãn(Enun), Enun − zn), (19)
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for all z ∈ V and {zn} such zn → z in V .
Let z ∈ D(L; V ′) ∩ K (Φ(w)) be arbitrary. Then by B5(ii) there exists a

real-valued sequence {ηn} with limn→∞ ηn = 1. We next define zn := ηnPnz ∈
Kn(Φn(Pnwn)) and have Enzn → z in V . Assigning v = zn in (15), we observe
that

lim
n→∞

(Ãn(Enun), Enun − Enzn) ≤ (f − Lz, u− z).

The above, together with (19), yields that u ∈ K (Φ(w)) satisfies

(Lz +A(u)− f, z − u) ≥ 0, for all z ∈ D(L; V ′) ∩K (Φ(w)),

i.e., u solves (wP). The increased regularity of f , the uniform monotonicity of A
and the S(τ)-invariance of K (Φ(w)) yield u ∈ D(L; V ) (see [24, 6]). Hence u also
solves (P).

Finally, from (18), the uniform monotonicity of A and the fact that Enun ⇀ u,
we have

c lim
n→∞

|Enun − u|rV ≤ lim
n→∞

(A(Enun)−A(u), Enun − u) ≤ 0,

i.e., Enun → u in V , along a subsequence.
Suppose that there exists a subsequence of {un} := {Tn(Pnwn)} which does

not converge to the solution u determined above. Hence, there is ε > 0 such that
|uni − u| ≥ ε for i ∈ N. On the other hand, we can apply the same reasoning as
above to {uni} which yields the existence of a subsequence of {uni} converging to
u∗ that solves Problem (P). Theorem 3.2 and Corollary 3.3 establish uniqueness
of the solution, which implies that u∗ = u. Thus, the entire sequence {un} satisfies
Enun → u.

Finally we state the result required for the numerical approximation of the
parabolic QVI of interest.

Corollary 4.6. Let fn = Pnf = {fm}nm=1, and let, for each n ∈ N, un =
{um}nm=1 ∈ Vn be the unique solution to

um ∈ K(Φn(un)) :(
um − um−1

h
+A(um)− fm, vm − um

)
V

≥ 0, ∀vm ∈ K(Φn(un));

u1 = 0,

(NQVI)

for m = 2, . . . , n and with h = T/n. Then,

Enun → u∗, in V as n→∞,

where u∗ solves (P).

Proof. Combining Theorem 4.1 and Theorem 4.5 proves the assertion.



24 M. Hintermüller and C. N. Rautenberg

4.1. Solution Algorithm. The previous results yield Algorithm 1 below for
computing the solution to (NQVI). In its statement the term “Suitable Convergence
Criteria” refers to a stopping rule associated with the fixed point equation u =
Sn(A, fn,Kn(Φn(u))). In our case, and following [16], we use a criterion based on
the linear convergence of the approximate sequence defined in Step 3 of Algorithm
1; see (SPconv.) below.

Algorithm 1

Require: n ∈ N, fn ∈ V ′n, A : Vn → V ′n and Kn(Φn(·)) : Vn ×{1, 2, . . . , n} → 2Vn

1: Initialization. Set ` := 1 and v1 := 0.
2: while Suitable Convergence Criteria have not been met do
3: Compute v`+1 = Sn(A, fn,Kn(Φn(v`))).
4: Set ` := `+ 1.
5: end while
6: Set un := v`+1.

5. Numerics

In this section we are concerned with computing an approximate solution to (P)
by means of solving the approximating problem (NQVI), where the operator A is
the time realization of the p-Laplacian, with p = 2 or p = 3. We use I = (0, 1) and
Ω = (0, 1)× (0, 1) in all examples below. The state space is given by V = Lp(I;V )
with V = W 1,p

0 (Ω) with the Gelfand triple structures (V ,H ,V ′) and (V,H, V ′)
with H = L2(I;H) and H = L2(Ω). All our test examples are of gradient-type.

The discretization in time is realised by considering (NQVI) where the uniform
mesh size is given by h = T/n on I = (0, 1). Our finite difference approximation
scheme in space has M2 uniformly distributed nodes implying the mesh size k =
1/(M + 1) in each coordinate direction. At a node xij = (xi, xj), with xi = ik and
xj = jk for 1 ≤ i, j ≤ M , we approximate w(xij), for w ∈ V , by wij = w(xi, xj)
and denote by wk the corresponding discrete approximation of w on the given mesh.
We approximate the V -norm by |wk|pV :=

∑M
i,j=1 |(D−wk)|pijk2 with (D−w

k)ij =
1
k (wij−w(i−1)j , wij−wi(j−1))

> and |(uk, vk)>|2ij = u2
ij+v2

ij . The approximation of

the V -norm is given by |v|pVn =
∑n
j=1 h|vkj |

p
V with v =

∑
j v

k
j χIj . The discretization

of the second order elliptic operator −∆p : W 1,p
0 (Ω) → W−1,p′(Ω) is based on a

second order accurate five-point centered difference scheme. More details on this
scheme can be found in [18, 15].

In all the examples, we have f(t) = g(t)ψ, where g ∈ C1(̄I) with g(0) = 1 and
ψ ∈ W 1,p

0 (Ω) ∩ C∞(Ω). In particular, we choose ψ(x, y) = N(xy(x − 1)(y − 1))2

with N a normalization constant such that ψ(1/2, 1/2) = 1. The forcing term is
then given by

f(t, x, y) = r1(1− e−r3t
r2

)ψ(x, y),
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where r1, r2, r3 > 0 are chosen differently for each example.
For the sequence {v`} generated as in Step 3 of Algorithm 1, we define the

linear convergence coefficient sequence {µ`} by µ` := |v`+2−v`+1|Vn/|v`+1−v`|Vn .
The convergence criteria of Algorithm 1 are considered satisfied as soon as for some
` > `0

max`−`0≤r,s≤` |µr − µs| < ε1,

|v2−v1|V
1−µ`

∏`
i=1 µ

i < ε2,

 (SPconv.)

with some prescribed `0 ∈ N, ε1 > 0 and ε2 > 0. Then, Algorithm 1 is stopped.
In our numerical tests, using `0 = 4, ε1 = 1e-2 and ε2 = 1e-4, the conditions in
(SPconv.) are satisfied for ` = 8 in Examples 1 and 2, and ` = 14 for Example 3.
For a detailed explanation of these convergence criteria we refer to [15]. The values
of the linear convergence coefficients {µ`} satisfy µ` ≤ 0.15 in the first example
and µ` ≤ 0.13 in the second one for ` ≤ 8. The behavior of these coefficients
is stable under mesh refinements for h = 2−n for n = 5, 6, 7 (i.e., there are no
substantial differences on the bounds for {µ`} under mesh refinements). Although
Example 3 does not fall into the scope of Theorem 3.2 (the p-Laplacian for p = 3
does not satisfies the necessary hypothesis for the theorem to hold) the algorithm
nevertheless exhibits linear convergence. On the other hand, this behavior appears
unstable under perturbations of the forcing term. In fact (slight) variations of f
(for example considering Example 3 with the forcing term of Examples 2 and
1) make the algorithm non-convergent. This is substantially different for elliptic
QVIs; compare [15].

The computation in Step 3 of Algorithm 1 is based on a penalty-method com-
bined with a semismooth Newton iteration. This approach was successfully applied
in [15] and [16] and the reader is referred to these references for further details. In
our examples, we stop the Newton iteration when the norm of the distance between
two successive iterates is below NewtonTol=1e-5. The total number of iterations
for the semismooth Newton algorithm, using the continuation technique for the
penalty parameter described in [15], remained stable under mesh refinements. The
behavior in each time step is analogous to the one reported in [15].

The computational domain consists of M2 uniformly distributed nodes in Ω =
(0, 1) × (0, 1), where M = 128 and the mesh size is k = 1/(M+1)). The time
interval I = (0, 1) is discretized uniformly with mesh size h = 1/100

5.1. Example 1. Let A = −∆, with r1 = 0.1, r2 = 2 and r3 = 10 and with
Φ(v)(t) determined by

Φ(v) =

(∣∣∣ ∫ 1

0

(∫
Ω

v(s,x) dx

)
ds
∣∣∣+ 0.001

)
(0.2 + 0.8ψ(x, y))

The forcing term t 7→ f(t) at t = 0.01, 0.12, 1 is shown in Figures 1(a), 1(b)
and 1(c), and the approximate solution, t 7→ u(t), to the QVI is depicted at the
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same time steps in Figures 1(d), 1(e) and 1(f). The behavior of the norm of the
gradient t 7→ |∇u(t)| is shown in Figures 1(g), 1(h) and 1(i), also at the same
time steps, and finally the approximation of the active set t 7→ A(t) = {x ∈ Ω :
|∇u(t,x)| −Φ(u)(x) = 0} at times t = 0.12, 1 is depicted in Figures 1(j) and 1(k).

The spatial part of the gradient bound Φ(v) is proportional to (0.2+0.8ψ) with
the latter being a concave function with maximum in the center of the square and
minimum on the sides of the square. We also note that the finite difference scheme
is an implicit one. Therefore whenever the solution at a time step is inactive in
Ω, it is the solution of an elliptic problem where the second order operator is
the Laplacian. Since solutions of such problems satisfy maximum principles for
the gradient (i.e. the supremum of the norm of the gradient is obtained at the
boundary) it is expected that the solution hits activity starting from regions on
the sides of the square (this is observed in Figure 1(j)). On the other hand, f
forces the norm of the gradient of the solution to keep growing (in the inactive
parts) as time evolves such that the solution at t = 1 has a large active set as can
be seen in Figure 1(k). Finally, due to the constraint, the maximum of the norm
of the gradient is no longer found on the boundaries as it would be expected in the
unconstrained version of the problem.

5.2. Example 2. Let A = −∆, with r1 = 0.1, r2 = 2 and r3 = 10 and with
Φ(v)(t) determined by

Φ(v)(t) =

(∣∣∣ ∫ 1

0

(∫
Ω

v(s,x) dx

)
ds
∣∣∣+ 0.001

)
(1− 0.2ψ(x, y)).

The forcing term t 7→ f(t) is the same as in Example 1. The approximated
solution, t 7→ u(t), to the QVI at the time steps t = 0.01, 0.12, 1 is shown in
Figures 2(a), 2(b) and 2(c). The behavior of the norm of the gradient t 7→ |∇u(t)|
is displayed in Figures 2(d), 2(e) and 2(f), also at the same time steps. Finally,
the approximation of the active set t 7→ A(t) = {x ∈ Ω : |∇u(t,x)| −Φ(u)(x) = 0}
at times t = 0.12, 1 can be observed in Figures 2(g) and 2(h).

In this example, the spatial part of the gradient bound Φ(v) is proportional to
(1− 0.2ψ), which is a convex function with a minimum in the center of the square
and maximum on the boundary of the square. As discussed in the previous exam-
ple, in each time step without activity, the maximum of the norm of the gradient
is expected at the boundaries. However, given the convexity of the constraint, the
approximate solution to the QVI hits activity in a region inside the domain as can
be seen in Figures 2(g).

5.3. Example 3. Let A = −∆p, with p = 3, with r1 = 0.01, r2 = 2 and r3 = 0.15
and with Φ(v)(t) determined by

Φ(v)(t) =

(∣∣∣ ∫ 1

0

(∫
Ω

v(s,x) dx

)
ds
∣∣∣+ 0.001

)



Uniqueness and Numerical Approximation of Solutions to Parabolic QVIs 27

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 1. x 7→ f(t,x) for t = 0.01, t = 0.12 and t = 1 in 1(a), 1(b) and 1(c), respectively.
x 7→ u(t,x) for t = 0.01, t = 0.12 and t = 1 in 1(d), 1(e) and 1(f), respectively. x 7→
|∇u(t,x)| for t = 0.01, t = 0.12 and t = 1 in 1(g), 1(h) and 1(i), respectively. 1(j) Active
set at time t = 0.12. 1(k) Active set at time t = 1
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2. x 7→ u(t,x) for t = 0.01, t = 0.15 and t = 1 in 2(a), 2(b) and 2(c), respectively.
|∇u(t,x)| for t = 0.01, t = 0.15 and t = 1 in 2(d), 2(e) and 2(f), respectively.2(g) Active
set at time t = 0.15. 2(h) Active set at time t = 1
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The forcing term t 7→ f(t) at t = 0.01, 0.12, 1 is shown in Figures 3(a), 3(b)
and 3(c), and the approximate solution, t 7→ u(t), to the QVI is depicted at the
same time steps in Figures 3(d), 3(e) and 3(f). The behavior of the norm of the
gradient t 7→ |∇u(t)| is shown in Figures 3(g), 3(h) and 3(i), also at the same
time steps, and finally the approximation of the active set t 7→ A(t) = {x ∈ Ω :
|∇u(t,x)| − Φ(u)(x) = 0} at times t = 0.89, 0.94 can be observed in Figures 3(j)
and 3(k).

6. Discussion and Further Research

In Theorem 3.2 a contraction result for the mapping v 7→ S(A, f,K (Φ(v))) is
provided, when Φ(v) = Γ(v)φ for some φ and Γ a Lipschitz continuous functional.
Given the structure of the proof of the aforementioned theorem, it is not trivial
to extend the result to operators of higher rank, as for example when Φ(v) =∑n
i Γi(v)φi. Another open question is wether the class of operators A, under

which a contractive behavior is observed, can be extended to operators such as the
p-Laplacian. Theorem 3.2 is an extension of a result in [15] for elliptic QVIs where
several numerical tests show the linear convergence behavior for the p-Laplacian
case, when p = 3. Such a good convergence behavior seems much more delicate to
obtain in the parabolic case as stated in §5.

The structure of the constraint sets K (Φ(v)) = {w ∈ V : w(t) ∈ K(Φ(v)) a.e. t ∈
I} under the hypothesis of Theorem 3.2, i.e., with Φ(v) = Γ(v)φ and Γ a nonlin-
ear Lipschitz continuous functional, implies at time t that the information on the
bound Φ(v) of the state variable u(t) comes from the entire interval I. A scheme
for causal sets, i.e., when the solution to the QVI at time t, u(t), can be ob-
tained as a solution to a QVI where the constraint set depends only on the set
{v : v = u(τ) for 0 ≤ τ ≤ t} was developed on [16]. However, it is not known under
what conditions on these types of constraints solutions are unique. An answer to
this question is of paramount importance.

The axiomatic approximation scheme developed in §4 appears to be suitable
to be extended to a fully discretized scheme. For parabolic VIs, such a path was
followed by Glowinski, Lions and Trémolières in [11]. However, in the QVI case
the discretization of the constraint set mapping v 7→ K (Φ(v)) requires special
attention, and conditions for this discretization to be useful for approximation
methods are currently unkwown.
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