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Notation

0l zero vector with l components
1l vector of ones with l components
α step length parameter
A approximation of the Jacobian of active constraints
A(x) index set of active constraints at a point x
B approximation of the reduced Hessian of the Lagrangian ∇xxL
B � 0 B is positive definite
c constraint mapping c : Rn → R

M

cA constraint mapping consisting only of the active constraints
CQ Cholesky factor of a square matrix Q
d step direction
dim dimension of a vector space
E index set of equality constraints
f objective function f : Rn → R

In identity matrix of dimension n× n, n ∈ N
I index set of inequality constraints
ι number of inner loop iterations
l maximal number of stored update vectors (limited memory)
ker kernel of a linear mapping
L semi-normal Cholesky factor
LICQ Linear independence constraint qualification
L Lagrangian mapping
m number of constraints contained in the active set
mE number of equality constraints
mI number of inequality constraints
M = |E|+ |I| total number of constraints
A+ (low-rank) update on a given matrix A
n number of variables
N (A) null space of a matrix A
Ω feasible set
OPS(eval(f)) number of multiplications to evaluate a function f
R(A) range space of a matrix A
s primal step
σ Lagrange multiplier modification
SOSC Second order sufficiency criterion
spec(Q) spectrum of a square matrix Q
Y matrix with orthonormal columns spanning R(A>)
Z matrix with orthonormal columns spanning N (A)





1 INTRODUCTION

1 Introduction

This thesis deals with the discipline of Nonlinear Programming as part of the
well-established and widely-spread field of Mathematical Optimization. The
wish to solve nonlinear programs occurs in various application fields including
physics, engineering and economics. Typical application examples comprise the
most diverse tasks: portfolio optimization under the condition of a certain risk
aversion, optimal control of a large-scale chemical plant or design optimization
of an aircraft for best aerodynamic properties. All these applications may share
the equivalent mathematical formulation of a nonlinear program but differ in
the number of possible variables, constraints or structure. Whereas the first may
just give rise to a few variables up to the hundreds, the latter usually requires op-
timizing over hundreds of thousands of variables, hinging on the parametrization
of the given object. Therefore suitable numerical procedures are necessary to
find reliable solutions to the underlying real-world problem. Intermediate steps,
such as discretizing a partial differential equation (for instance optimization of
aerodynamics problems), might be necessary to retrieve the reformulation of the
problem as a nonlinear program.

A typical and well-known approach to solve these kinds of problems iteratively,
are Quasi-Newton (or Variable-Metric) methods. Known since the 1950’s work1

by William C. Davidon (Argonne National Laboratories), these methods have
been evolving dramatically throughout the last decades leading to different ways
of approximating and evaluating the given problem structure depending on
closely related mathematical fields such as differentiation techniques and nu-
merical linear algebra. At the same time, research had to be aware of a massive
increase in computer performance as well as size and sophistication of the appli-
cations. Nowadays problems easily exceed a complexity of more than ten thou-
sand variables. Resulting implementations therefore need to be as economic as
possible with the input data they require. This gave rise to the class of large-
scale optimization procedures, such as limited memory methods representing a
major concern of this thesis. Thereby, the quest for optimal performance on
arbitrary problems from within the class of nonlinear programs alongside an
efficient organization of the stored data has to serve as a guideline for investi-
gation.

This thesis particularly deals with further extensions to the total Quasi-Newton
solver called Low-Rank Approximation Modification Based Optimizer
(LRAMBO) which are especially dedicated to improve its performance on high-
dimensional problems.

1not published until 1991

1





2 BACKGROUND

2 Background: Constrained Optimization and
Algorithmic Differentiation

2.1 Constrained Optimization

The overall goal of this diploma thesis is to solve a Nonlinear Program (NLP),
which is defined as follows:

min f(x) s.t.

{
cE(x) = 0
cI(x) ≤ 0,

(1)

with

E = {1, . . . ,mE},
I = {mE + 1, . . . ,mE +mI = M},

where the objective function f : Rn → R and the constraint mapping c : Rn →
R
M are required to be twice continuously differentiable functions. In the follow-

ing, Ω shall denote the feasible set defined by the constraints given in (1):

Ω := {x ∈ Rn : cE(x) = 0, cI(x) ≤ 0}.

Furthermore, the active set A(x) of a feasible point x is defined as

A(x) := E ∪ {i ∈ I : ci(x) = 0}

and throughout this thesis, m := |A(x∗)| shall denote the number of active
constraints at a corresponding solution x∗ to the NLP (1).

In order to define the notion of a constraint qualification, it is necessary to
introduce certain cones associated with the underlying feasible set Ω and a
fixed feasible point x ∈ Ω.

Definition 2.1 (Important cones).

(i) The tangent cone TΩ(x) on Ω at x is defined by the following relation:

u ∈ TΩ(x) :⇐⇒ ∃ (xk)k∈N : xk = x+tku+o(tk) :


tk ↓ 0
ci(xk) = 0 ∀ i ∈ E
ci(xk) ≤ 0 ∀ i ∈ I.

In other words, (xk)k∈N must be a feasible sequence.

(ii) The cone of linearly feasible directions FΩ(x) is defined by the following
relation:

u ∈ FΩ(x) :⇐⇒

{
Dci(x)u = 0 ∀ i ∈ E
Dci(x)u ≤ 0 ∀ i ∈ I ∩ A(x)

3
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We remark that the definition of FΩ does not include inactive inequalities, as
a sufficiently small step in an arbitrary direction will always guarantee validity
of strict inequalities. Using first order Taylor expansion, it is not hard to show
that TΩ(x) ⊂ FΩ(x). However, the reverse inclusion is not always fulfilled. The
subsequent definition aims at filling this gap.

Definition 2.2 (Constraint qualification).
A condition on the constraint mapping c which ensures

TΩ(x) = FΩ(x),

is called a constraint qualification in x ∈ Ω.

The most famous examples, among the quite large number of constraint quali-
fications, will be stated in the following:

Remark 2.3 (Specific constraint qualifications).
The following conditions all represent constraint qualifications in the sense of
Definition 2.2:

(i) Affine-linear constraints: all ci, i = 1, ...,M, are affine:

ci(x) = a>i x+ bi, with ai ∈ Rn, bi ∈ R.

(ii) Linear independence constraint qualification (LICQ): the gradients of the
active constraints

(∇ci(x))i∈A(x)

form a linearly independent system.

(iii) Mangasarian-Fromovitz constraint qualification (MFCQ):

rank (∇ci(x))i∈E = mE

∃u ∈ Rn :

{
∇ci(x)>u = 0 ∀ i ∈ E ∧
∇ci(x)>u < 0 ∀ i ∈ A(x) ∩ I.

It should be remarked, that MFCQ is an often used generalization to LICQ.

The fundamental theoretical basis of a large number of NLP solvers, i.e. algo-
rithms dedicated to find a solution to (1), are the Karush-Kuhn-Tucker (KKT)
conditions:

Theorem 2.4 (KKT-conditions).
Let x∗ be a local minimizer to the NLP (1). If x∗ fulfills a constraint qualification
then ∃λ∗ ∈ RM :

∇f(x∗) +
∑
i∈E λ

i
∗∇ci(x) +

∑
i∈I λ

i
∗∇ci(x) = 0,

x∗ ∈ Ω,
λi∗ ≥ 0 ∀ i ∈ I,
λi∗ci(x∗) = 0 ∀ i ∈ {1, ...,M}.

(2)

4
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Proof. A proof of this essential result can for instance be found in [20].

A not necessarily uniquely determined solution (x∗, λ∗) to the KKT-conditions
(2) is called a KKT-point. If additionally LICQ holds at a given local solution
x∗ ∈ Rn, then the associated Lagrange multiplier vector λ∗ ∈ RM is uniquely
determined.

The second condition is the feasibility condition required for a solution to our
original problem. With the help of the Lagrangian function

L : Rn × RM → R

L(x, λ) := f(x) +
∑
i∈E∪I

λici(x)

and the fourth condition (the so-called complementarity condition), the first
KKT-condition can be reformulated as

∇xL(x∗, λ∗) = ∇f(x∗) +
∑

i∈A(x∗)

λi∗∇ci(x∗) = 0.

The complementarity condition demands that Lagrange multipliers associated
with non-active constraints vanish. Another even stronger condition, named
strict complementarity, requires additionally that Lagrange multipliers associ-
ated with active constraints are nonzero. Many NLP solvers presume this strict
form of complementarity, in order to correctly identify the active set at the
solution.

Note that the KKT-conditions are not sufficient to characterize an optimal point.
In order to derive a suitable sufficient optimality criterion, we consider another
important cone.

Definition 2.5 (Critical tangent cone).
Let (x∗, λ∗) be a KKT-point. Define the critical tangent cone as follows:

C(x∗) := {u ∈ F(x∗) : ∇ci(x∗)>u = 0 ∀ i ∈ A(x∗) ∩ I : λi∗ > 0}

With the help of the Langrangian function, it is easy to see that the critical tan-
gent cone contains those linearly feasible directions for which we cannot decide
from first order derivative information alone, whether the objective function
decreases along the corresponding direction or not. Notably, this cone enables
formulation of a second order sufficiency criterion (SOSC):

Theorem 2.6 (SOSC).
Let (x∗, λ∗) be a KKT-point satisfying

〈u,∇2
xxL(x∗, λ∗)u〉 > 0 ∀u ∈ C(x∗) \ {0}. (3)

Then x∗ is a strict local minimizer to the NLP (1).

5
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Proof. See [20].

In the case where both, the LICQ and the strict complementarity hold, we have

C(x∗, λ∗) = C(x∗) = N
([
∇ci(x∗)>

]
i∈A(x∗)

)
,

and one can conclude that the SOSC simplifies to the verification of the positive
definiteness of the reduced Hessian

Z>∇2
xxL(x∗, λ∗)Z,

where the columns of Z ∈ Rn×(n−m) shall constitute a basis for the null space
of the Jacobian of active constraints

[
∇ci(x∗)>

]
i∈A(x∗)

.

A large number of contemporary algorithms employ a working set strategy to
correctly predict the a priori unknown active set A := A(x∗) at a solution x∗.
Once A is correctly identified, the problem of finding a local solution to the gen-
eral equality- and inequality-constrained NLP (1) can locally be reformulated
as a corresponding reduced equality-constrained problem:{

min f(x) s.t.
cA(x) = 0, with cA := (ci)i∈A.

(4)

Thereby, the inequality constraints and thus the complementarity condition
disappear and one exploits the first two KKT-conditions to generate iterates
which converge to a zero of ∇x,λL, where

L : Rn × Rm → R

L(x, λ) = f(x) + λ>cA(x)

denotes from now on the Lagrangian function associated with the reduced
equality-constrained problem. Thus the initial constrained problem (4) can
be turned into the numerically tractable problem of finding a zero to the system
of (n+m) nonlinear equations given by

F (x, λ) :=
[
∇xL(x, λ)
∇λL(x, λ)

]
=
[
∇f(x) +∇cA(x)λ

cA(x)

]
= 0, (5)

or, in other words, (4) has been turned into an unconstrained problem via the
Lagrangian L.

Naturally, this gives rise to classical root-finding algorithms, such as Newton-
type methods. However, it should be mentioned that even if an appropriate
algorithm converges to a zero of F , the limit does not necessarily have to be a
minimum of f on Ω. Unless additional properties (like convexity) are given, it
might as well be a maximum or a saddle point. Hence, verification of the desired
minimality property by a suitable suffiency criterion, such as (3), is necessary.
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2.2 Algorithmic Differentiation

Computing derivatives is indispensable in almost every optimization procedure.
Of course, this also holds true for the total Quasi-Newton framework, which
will be discussed in the forthcoming sections. Excluding the analytical ap-
proach, there are three major techniques to compute derivatives and associated
quantities: Numerical (i.e. Divided Differences), Symbolic and Algorithmic Dif-
ferentiation (AD). This section shall suggest usage of AD and give an insight
into basic complexity results which will influence later considerations on Quasi-
Newton methods.

Consider a differentiable scalar function f : R → R. Numerical Differentia-
tion proceeds by approximating its derivative f ′(x) for a given x ∈ R, by the
difference quotient

f(x+ h)− f(x)
h

,

by setting h ≈ 0. Choosing h too small may cause severe problems due too
cancellation errors whereas a too big h implies significant truncation errors. The
optimal choice of h however can be rather tedious and once having obtained such
an optimal value, truncation errors are still present.

Making use of consecutive chain rule application, Symbolic Differentiation merely
generates an entirely symbolic algebraic expression of the derivative before eval-
uating the resulting expression at a desired point. This may lead to an excessive
expression swell in addition to a distinct loss in efficiency by ignoring common
subexpressions as a well-known drastic example by Speelpenning shows, cf. [23].

Like Symbolic Differentiation, Algorithmic Differentiation is also based on con-
secutive application of the chain rule. However, symbolic expressions are never
generated, the chain rule is rather applied directly to numerical values origi-
nating from the intermediate quantities of an evaluation procedure for the un-
derlying function. Applying AD to compute derivative-related expressions thus
rather yields a program than a formula. Moreover, in contrast to Divided Differ-
ences, Algorithmic Differentiation does not incur truncation errors and returns
exact2 derivative values! To calculate Jacobian-vector and Jacobian-transposed
vector products, we use the forward and reverse mode, respectively. The latter
can in turn be split into a forward sweep and a return sweep. The forward sweep
is necessary to compute the elemental partials which are needed to compute the
intermediate adjoints for the return sweep. Moreover, the vector mode of AD
enables simultaneous tangent and gradient propagation. In terms of accuracy,
reliability, efficiency and speed, the superiority of AD is further manifested by
the subsequent results on computational complexity bounds. Instead of an elab-
orate discussion, we merely state major results of AD application and refer to
[12] for details.

For simplicity reasons, the number of multiplications (symbolized by OPS) shall
serve as a naïve complexity measure for our predominating task of evaluating
(‘eval’) Jacobian-vector products and gradients. It is further assumed that a

2disregarding round-off errors
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given differentiable function F : Rn → R
m can be safely evaluated at x ∈ Rn by

an underlying evaluation procedure, which can be represented by a composition
of continuously differentiable elemental functions ϕi. These can be imagined to
be taken from a given library Ψ:

ϕi ∈ Ψ := {c,±, ∗, log, exp, sin, cos, ...},

which should comprise all intrinsic operators. In the following, we will adhere
to the usual notation for tangent and gradient propagation.

Theorem 2.7 (Complexity of derivative calculations using AD).
The computational cost of computing Jacobian-vector or Jacobian-transposed
vector products is a task of linearly bounded complexity w.r.t. the number of
operations for the function evaluation. More precisely, we obtain the following
dimension-invariant bounds for the multiplicative measure OPS:

(i) OPS(eval(F ′(x)ẋ)) ≤ 3 ·OPS(eval(F (x)))

(ii) OPS(eval(ȳ>F ′(x))) ≤ 3 ·OPS(eval(F (x))),

with x ∈ Rn, ȳ ∈ Rm. Applying the vector mode for simultaneous propagation of
tangents or gradients, we obtain

(iii) OPS(eval(F ′(x)Ẋ)) ≤ (1 + 2p) ·OPS(eval(F (x)))

(iii) OPS(eval(Ȳ >F ′(x))) ≤ (1 + 2q) ·OPS(eval(F (x))),

for matrices Ẋ ∈ Rn×p and Ȳ ∈ Rm×q.

Proof. By considering the evaluation procedure for F and the corresponding
derived evaluation procedure, the bounds can be obtained from the operations
count for differentiating and evaluating the elemental functions ϕi. Among
those, the multiplication operator (ϕi = ∗) requires the highest operations
count, i.e. one multiplication for the evaluation of ϕi and two for its derivative,
cf. [12].

Unfortunately, the task of computing full Jacobians does not have bounded
complexity. Instead it holds

OPS(eval(F ′(x))) ∼ min(m,n) ·OPS(eval(F (x))).

Consequently, exact determination of full derivative matrices will be avoided by
the total Quasi-Newton solver presented subsequently.

Similar results hold true for more realistic complexity measures additionally
accounting for memory stores/fetches, additions, nonlinear operations and other
work associated with the evaluation procedure. By including these criteria,
the reverse mode multiplier becomes slightly higher than the multiplier of the
forward mode. We refer again to [12] for a detailed complexity analyis of AD
calculations.

8
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3 From Quasi-Newton to LRAMBO

In this chapter, we pick up on the issue of iteratively finding a solution x∗ ∈ Rn
to the system of nonlinear equations, given by a function F : Rn → R

n which
is assumed to be at least once continuously differentiable, i.e. F ∈ C1(Rn,Rn)
and F (x∗) = 0.

3.1 Theoretical Background

In case of a nondegenerate root x∗, i.e. F ′(x∗) is nonsingular, it is well known
that Newton’s method, under the local Lipschitz-continuity of F , converges
locally quadratically to x∗. In this context, locally refers to the starting point
x0 ∈ Rn which has to be chosen sufficiently ‘close’ to a zero x∗.

In optimization, the overall incentive for Quasi-Newton methods is the aspi-
ration to design a method that combines the behavior of the steepest descent
method in view of global convergence and the fast local convergence of Newton’s
method, without the need to compute exact (and generally costly) Jacobians
F ′(x).

Quasi–Newton methods embedded in a line search procedure procede by the
following iteration rule:

xk+1 = xk + αkdk, (6)

where αk denotes the step size determined by a properly chosen step size strat-
egy, and dk is the actual search direction given by the condition

Mkdk = −F (xk),

where Mk denotes the Quasi-Newton matrix which is supposed to approximate
the real Jacobian at the current iterate xk, i.e. Mk ≈ F ′(xk). As a special case,
Newton’s method is defined by setting Mk := F ′(xk). From now on, the actual
step from xk to xk+1 will be denoted by sk := αkdk.

Secant condition and rate of convergence. The question of how to choose the
matrices Mk naturally arises. For that reason it should be emphasized that the
quality of the approximation is directly related to the so-called secant condition
or Quasi-Newton equation

Mk+1sk = yk := F (xk+1)− F (xk). (7)

This condition is inspired by the first order Taylor expansion of F at xk+1

as described for instance in the classical work by Dennis and Moré [9]. In
the case, where F originates from an optimization problem, one may demand
equivalently that the objective function and its quadratic approximation share
the same slope at the current iterate as well as the previous one. The following
remarkable result, in particular characterization (iv), established by Dennis and
Moré [8], further bolsters imposition of (7):

9
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Theorem 3.1 (Characterization of superlinear convergence).
Let F ∈ C1,1(Rn,Rn). Suppose there exists an x∗ ∈ R

n : F (x∗) = 0 and
detF ′(x∗) 6= 0. Assume a sequence (xk)k∈N with xk+1 6= xk and xk 6= x∗
generated by iteration (6) with nonsingular matrices Mk and unit step lengths
ak ≡ 1, converges to x∗. Further suppose that (Mk) as well as (M−1

k ) are uni-
formly bounded, i.e. supk ‖Mk‖ <∞ and supk ‖M−1

k ‖ <∞, respectively. Then
the following assertions are equivalent:

(i) xk converges superlinearly to x∗,

(ii) lim
k

‖sk−sN
k ‖

‖sk‖ = 0, with sNk := −F ′(xk)−1F (xk),

(iii) lim
k

‖(F ′(xk)−Mk)sk‖
‖sk‖ = 0,

(iv) lim
k

‖yk−Mksk‖
‖sk‖ = 0.

Proof. See [8].

The key observation is that Mk must ‘only’ be a good approximation of the
exact Jacobian F ′k (alternatively also F ′∗) along the current step sk, or, equiva-
lently, the Quasi-Newton direction shall approximate the Newton direction sNk
as accurately as possible. In particular, the matrix sequence (Mk)k∈N does not
need to converge to F∗ to obtain superlinear convergence.

In the context of unconstrained optimization, F equals the gradient of an arbi-
trary twice differentiable function f : Rn → R, i.e. F := ∇f . Thus we have

dk = −M−1
k ∇f(xk) andMk ≈ ∇2f(xk),

such that the basic scheme of any Quasi-Newton procedure can be summarized
as follows:

Algorithm 1 (Quasi-Newton).

choose x0 ∈ Rn,M0 ∈ Rn×n, ε > 0
while ‖∇f(xk)‖ > ε

determine dk = −M−1
k ∇f(xk)

determine αk
set xk+1 = xk + akdk
update Mk →Mk+1, k → k + 1

end

Thereby, x0 denotes a ‘suitable’ starting point (compare remarks on global con-
vergence below), M0 the initial Jacobian approximation, and ε > 0 determines
the preferred accuracy of the computed root. Additionally, one should impose
an upper bound on the total number of iterations. M0 is usually chosen sparse,

10
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for instance a multiple of the identity capturing the scaling of the exact Hessian
∇2
xxf(x0).

In contrast to the nonlinear equations case, where nonsymmetric approximations
are quite reasonable, we requireMk to be symmetric in order to reflect symmetry
of the exact Hessian. Combining the secant condition with the requirement that
Mk changes ‘as little as possible’ (with regard to a certain norm) throughout the
iteration leads to the so-called least-change secant updates, such as BFGS (see
section 3.2.1). Positive definiteness is also desired, in order to obtain a descent
direction with respect to f . Moreover, the secant condition implies the positive
curvature condition

s>k yk > 0,

provided that positive definiteness of Mk+1 is given. Positive curvature can
also be ensured by imposing certain line search conditions, for example those
proposed by Wolfe, see for instance the textbook by Nocedal and Wright [20].

As far as the choice of the starting point x0 is concerned, we have to remark that
there is no general global convergence result for typical Quasi-Newton methods
such as BFGS or SR1, in that convergence to a minimizer x∗ from an arbi-
trary starting point x0 cannot be guaranteed. In case of convexity, a global
convergence result for BFGS (and in a slightly weaker form also for SR1) can
be established, cf. [20]. However, one can give a rather theoretical result which
is valid for all Quasi-Newton iterations.

Proposition 3.2 (Quasi–Newton: global convergence).
Let f ∈ C1,1(Rn,R). Consider the preceding Algorithm 1 and assume an effective
line search (e.g. Wolfe line search) is performed. Suppose the Quasi-Newton
matrices Mk are symmetric positive definite and their condition numbers κ(Mk)
are uniformly bounded. Then Algorithm 1 is globally convergent, in the sense
that all cluster points of the sequence (xk)k∈N generated by Algorithm 1 are
stationary points.

Proof. By virtue of Theorem A.8, it suffices to prove gradient-relatedness of the
search directions dk. Let ‖.‖ = ‖.‖2 denote the Euclidean norm and consider

cosϕk = − ∇f>d
‖∇f‖‖d‖

=
d>Mkd

‖Mkd‖‖d‖

≥ d̃>Mkd̃

‖Mk‖
, d̃ := d/‖d‖

≥ λ1(Mk)
‖Mk‖

, λ1 := min spec(Mk)

Mk�0=
1

‖Mk‖‖M−1
k ‖

=
1

κ(Mk)
.

11
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Consequently, uniformly bounded condition numbers of the Quasi-Newton ma-
trices Mk imply gradient-relatedness.

3.2 Total Quasi-Newton

In this section we leave the unconstrained case in favor of the constrained case.
Therefore consider the step determination in Newton’s method applied to F (5)
arising from the equality-constrained NLP (4):[

dk
σk

]
:= −

[
∇xxL(xk, λk) ∇cA(xk)
∇cA(xk)> 0

]−1 [∇xL(xk, λk)
cA(xk)

]
.

Despite of the quadratic rate of convergence in a vicinity of the solution (x∗, λ∗),
this approach is only of theoretical interest, as computation of (dk, σk) ∈ Rn×m
would require determination and factorization of exact Hessians and Jacobians,
which can be assumed prohibitively expensive even if Algorithmic Differentiation
is used. Especially in large-scale optimization (n ≥ 10000), it is essential to avoid
costly full derivative matrices.

Conventional mixed Quasi-Newton methods procede by replacing the reduced
Hessian ∇xxL(xk, λk) ∈ R

n×n by a given approximation B, such as BFGS or
SR1 (see section 3.2.1), whereas expressions involving ∇cA(xk) are determined
by more or less reliable differentiation techniques such as divided differences.
Major practical drawback is again the high cost of evaluating and factorizing
the (possibly large) Jacobians c′A ∈ Rm×n as well as the cubic effort which is
necessary to solve the KKT-system[

B c′A(x)>

c′A(x) 0

] [
d
σ

]
= −

[
g(x, λ)
cA(x)

]
.

Hereby the mapping g : Rn × Rm → R is defined by

g(x, λ) := ∇xL(x, λ) = ∇f(x) +∇cA(x)λ,

and for notational convenience, the index k has been omitted such that x and
x+ denote the current and the subsequent iterate, respectively. NLP solvers
which employ a working set strategy, usually solve the KKT-system with vary-
ing working set and thus varying constraint number m ∈ {mE , ...,M} instead
of a fixed active set A, which is unknown in the first place. For notational
convenience, we will however stick to the current notation.

g(x, λ) ∈ Rn can be rather inexpensively evaluated by making use of the reverse
mode of Algorithmic Differentiation, which essentially means a small multiple
of the cost of evaluating the objective and the constraint functions.

In a full or, more accurately, total Quasi-Newton approach, both ∇xxL(x, λ)
and c′A(x) are replaced by certain approximations B and A, respectively, aiming
at a distinct reduction in the per-iteration-cost. To keep the linear algebra cost
as low as possible, one usually starts with sparse initial approximations B0 and
A0, and adds certain low-rank secant updates to B and A. Several popular
updating formulae will be presented in sections 3.2.1 and 3.2.2.

12



3 FROM QUASI-NEWTON TO LRAMBO

Finally, the entirely approximative KKT-system has the form[
B A>

A 0

] [
d
σ

]
= −

[
g(x, λ)
cA(x)

]
, (8)

where the right side of the equation can be determined exactly, i.e. without
incurring truncation errors, by Algorithmic Differentiation.

A system which has the structure of (8) and fulfills the additional conditions

� B is symmetric positive definite;

� A has full row rank,

is often called equilibrium system (see Golub and Van Loan [11] for a brief
summary) and occurs in several physical applications (e.g. electrical networks)
as well as in the finite element method, see for instance Vavasis [26] for details.

In the following theorem, the fundamental link between equilibrium systems
and quadratic programs of the form{

min
d

1
2d
>Bd+ g>d

s.t. Ad+ c = 0
(9)

will be established. Owing to its importance, a combination of the proofs de-
scribed in [4] and [20] will be presented, too.

Theorem 3.3 (SQP).
Consider the equilibrium system (8) with coefficient matrix

M :=
[
B A>

A 0

]
.

Then it holds that:

(i) M is nonsingular if and only if A is surjective and Z>BZ is nonsingular
for a matrix Z with linearly independent columns spanning N (A). In this
case, (8) has a unique solution (d, σ)>.

(ii) If A is surjective and Z>BZ is even positive definite, then d is the unique
global solution to the QP (9).

Proof. (i) (”=⇒”) Surjectivity of A is given by surjectivity of M . Assume
Z>BZu = 0 for u ∈ R

n−m. Define p := Zu ∈ N (A). Then Bp ∈ N (Z>)

by assumption. But N (Z>) = R(A>), thus there is a µ ∈ Rm : M
[
p
µ

]
= 0.

Nonsingularity of M yields p = 0 = u, since Z is injective by definition.
(”⇐=”) Let (p, µ) ∈ N (M). It follows

Ap = 0 and Bp+A>µ = 0. (10)

13



3 FROM QUASI-NEWTON TO LRAMBO

Thus p ∈ N (A) and we have p = Zu for suitable u ∈ Rn−m. (10) also implies
0 = Z>Bp = Z>BZu, thus u = 0 by assumption and consequently p = 0. Now,
the right equation in (10) yields µ = 0 by surjectivity of A.

(ii) Let d̄ be any other feasible point of the QP (9). Let q(.) denote the quadratic
objective function. Define r := d− d̄. Now,

q(d̄) = q(d− r) = q(d) +
1
2
r>Br − r>Bd− r>g

= q(d) +
1
2
r>Br−r>(−A>σ − g)− r>g︸ ︷︷ ︸

=(Ar)>σ=0

,

since (d, σ) is a solution to (8) and Ar = 0. We further write r = Zu with
suitable u ∈ Rn×(n−m) and conclude

q(d̄) = q(d) +
1
2
r>Br = q(d) +

1
2
u>Z>BZu.

Positive definiteness of Z>BZ yields the assertion.

As a consequence, computing the step direction d according to (8) is, under rea-
sonable conditions on the approximations, well-defined and equivalent to mini-
mizing the (inexact) quadratic approximation of the Lagrangian considered as
a function of x under (inexact) linearized constraints. This is the fundamental
link between Newton-type and SQP (successive quadratic programming) meth-
ods. Fundamental differences might occur in the handling of the inequalities.
A typical SQP algorithm might be dedicated to solving inequality constrained
quadratic problems at each iterate, incorporating different approaches, such as
inner point methods. By contrast, the step calculation of the LRAMBO-solver
which is going to be presented here, is just based on repeatingly solving the
KKT-system (8) for different choices of the working set, cf. section 3.3.

3.2.1 Hessian Approximations

As suggested above, the approximation of the reduced Hessian of the Lagrangian
∇xxL(x, λ) shall satisfy the Hessian secant condition (HSC) which now reads

B+s = w (11)

where {
s = x+ − x = αd

w := ∇xL(x+, λ)−∇xL(x, λ).

Of course, symmetry as well as positive definiteness on the null space of the
Jacobian of the constraints have to be maintained.

Symmetric rank-one (SR1) updates. The SR1-update formula is given by

B+ = B +
(w −Bs)(w −Bs)>

(w −Bs)>s
. (12)

14
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It can easily be verified, that the SR1-update is the only symmetric rank-one
update fulfilling the secant condition (11).

Problems will occur when the denominator in (12) approaches zero. Therefore,
one distinguishes the following cases:

(i) (w −Bs)>s 6= 0: SR1-update viable.

(ii) w = Bs: Set B+ = B, which already satisfies the succeeding secant
condition.

(iii) (w 6= Bs) ∧ (w − Bs)>s = 0: In this case practice shows that simply
skipping the update is a reasonable strategy.

Numerically, the first condition is often verified by checking |s>(w − Bs)| ≥
r‖s‖‖w − Bs‖ for r ≈ 0. Otherwise one can assume that B already correctly
approximates the curvature along s .

In the case where SR1 approximates the Hessian of a quadratic function, the
exact Hessian will be obtained after n steps, provided the latter are linearly
independent and the SR1-approximations are well-defined. This follows from the
fact that SR1 fulfills the secant condition along all previous directions (heredity):

Bksj = wj ∀ j ≤ k − 1.

This holds only in the quadratic case.

Although SR1 often produces good approximations to the exact Hessian (see
[20]), it does not retain positive definiteness of the full Hessian approximation
or its projection onto the nullspace of the constraints. (Thus being able to
reflect possible indefiniteness of the exact Hessian.) One of the most common
techniques to overcome this drawback is damping the update by a suitable ε > 0:

B+ = B + ε
(w −Bs)(w −Bs)>

(w −Bs)>s
. (13)

However the choice of ε has to be optimized at each iterate and might be quite
difficult. Since this thesis is mainly concerned with the study of the large-scale
case, limited memory versions of B will be contemplated. How their structure
can be exploited to ensure positive definiteness will be shown in section 7.

BFGS. Another famous Hessian update is given by the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) formula

B+ = B − Bss>B

s>Bs
+
ww>

w>s
, (14)

which preserves symmetry of B. The inverse BFGS-update B−1
+ can be char-

acterized as the minimizer of B̃ 7→ ‖B̃ −B−1‖W (where ‖.‖W denotes a special
weighted Frobenius norm, see [20]) amongst all symmetric matrices B̃ ∈ Rn×n
fulfilling the inverse secant condition B̃w = s. The BFGS-update thus belongs
to the class of least-change secant updates. In contrast to the SR1-update, BFGS
always ensures positive definiteness of B+, provided B itself is positive definite
and the curvature condition w>s > 0 is fulfilled. Restrictions on the line search,
such as the Wolfe conditions, may enforce positive curvature.

15



3 FROM QUASI-NEWTON TO LRAMBO

3.2.2 Jacobian Approximations

Unlike the Hessian case, secant updating of generally non-symmetric Jacobians
is not that common and does not even occur in recent textbooks such as [20].
Besides reducing the cost of solving the KKT-system (8), the main goal consists
of designing a secant update of the constraint Jacobian which is invariant with
respect to linear transformations in order to simplify scaling or preconditioning
of the given problem. To obtain suitable design criteria for efficient low-rank
updating one imposes a ‘total’ Quasi-Newton secant condition, which means
requiring the secant condition to hold for the entire nonlinear system defined
by F (cf. Theorem 3.1 and (5)):[

B+ A>+
A+ 0

] [
s
σ

]
=
[
∇xL(x+, λ+)−∇xL(x, λ)

cA(x+)− cA(x)

]
.

From the lower equation, one immediately derives the direct secant condition

A+s = y = cA(x+)− cA(x). (15)

Considering the first equation and employing the secant condition (for the re-
duced Hessian) B+s = w, we obtain the adjoint secant condition

σ>A+ = µ> (16)

where µ> := σ>c′A(x+). Note that µ can be calculated rather economically via
g, i.e.

µ = g(x+, λ+)− g(x+, λ).

Nevertheless, the two conditions on the Jacobian approximation are not exactly
consistent, unless the constraint function c is affine. The idea of taking the
adjoint condition into account has been set forth by Griewank and Walther [13]
and has led to the so-called ‘two-sided-rank-one’ update (TR1), which has been
proposed at first in [13].

TR1. The TR1-update represents a generalization of the SR1-update and is
defined as follows:

A+ = A+
(y −As)(µ> − σ>A)

µ>s− σ>As
. (17)

This is the direct version of the TR1-update formula, which obviously fulfills
the direct secant condition (15) exactly and the adjoint secant equation up to
a term of order O(‖σk‖‖sk‖). Replacing µ>s in the denominator by σ>y, one
obtains the adjoint TR1-update

A+ = A+
(y −As)(µ> − σ>A)

σ>y − σ>As
.

Analogously, the adjoint TR1-update fulfills the adjoint secant condition (16)
and the direct secant condition up to order O(‖σk‖‖sk‖). In the case where c is
affine, the two updates are equal. In general it can be shown under the Lipschitz-
continuity of ∇c, that the discrepancy in the choice of the denominator term is
only of order O(‖σk‖‖sk‖2).

16
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Instabilities. The drawback of the TR1-update lies in the instabilities caused by
relatively small δ. In the framework of [15], a determinant control technique is
proposed which aims at damping the exact δ from the TR1 formula by imposing

det(A+A
>
+)

det(AA>)
∈
[
ν2,

1
ν2

]
for ν ∈ (0, 1). Alternatively, one might impose a ‘not-too-small’ condition for
δ: δ ≥ c‖σ‖‖y − As‖ for c ≈ 0. The development of the TR2 update, which
will not be further explained in this thesis, constitutes a possible remedy for the
instabilities caused by minuscule d. For further details, see [17].

Properties. As a generalization of SR1, TR1 shares certain properties of SR1
updating, for example there does not seem to exist a suitable norm for which the
TR1-update (17) gains a least change characterization. Most notably, invariance
with regard to linear transformation on the range and domain space of the
problem is one of the major advantages of TR1. Affine invariance is especially
useful when appropriate preconditioners or scaling is desired, which is often
the case in the course of an optimization process. Another important property
which has also been broached in [13] is the heredity property, which basically
means that TR1 satisfies the corresponding secant conditions along all previous
steps, provided the constraints are affine. An immediate consequence is that
after p := min(m,n) linearly independent steps and well-defined TR1-updates
on an initial approximation A0, one obtains the exact Jacobian Ap = A∗.

Adjoint Broyden. Alternatively one may apply a rank-one update of the follow-
ing type:

A+ = A− vv>D

‖v‖2
,

where D is the residual matrix defined by

D := A− c′(x+).

Jacobian updates of this type are referred to as Adjoint Broyden updates. In-
dependent of the choice of v, the adjoint tangent condition

v>A+ = v>c′(x+)

always holds. Choosing the tangent version, i.e. v := Ds, we further obtain an
approximate direct secant condition

A+s = c′(x+)s ≈ y.

Singularities of the form ‖v‖ ≈ 0 are easy to detect and can be avoided by
skipping the update. In contrast to TR1, updates of the Adjoint Broyden class
gain a least change characterization with regard to the Frobenius norm. They
further display the desirable heredity property for affine-linear constraints, cf.
[14].
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3.3 Limited Memory Methods

If the number of variables n is comparatively large, the cost of storing and ma-
nipulating the full Hessian approximation B ∈ Rn×n is prohibitively high. Even
if the true Hessian contains a sparsity pattern, the BFGS or SR1 iterates nor-
mally are dense. However, both SR1 and BFGS iterates are only depending on
their initial approximation and the secant pairs (s, w). For further investigation,
consider the following useful compact representation result for SR1, which was
proved by Byrd et al. [7]:

Theorem 3.4 (Compact representation of SR1 approximations).
Suppose the symmetric matrix B0 := γI, γ > 0, is updated by means of k well-
defined SR1-updates (12) using (sj , wj)j=0,...,k−1, i.e. (wj −Bjsj)>sj 6= 0 ∀ j ∈
{0, ..., k− 1}, with corresponding intermediate approximations (Bj)j=0..k. Then
det(P − γS>S) 6= 0 and B := Bk satisfies

B = γI + (W − γS)︸ ︷︷ ︸
U :=

(P − γS>S)︸ ︷︷ ︸
M :=

−1
(W − γS)>

= γI + UM−1U>,

where 
S := [s0, ..., sk−1] ∈ Rn×k,
W := [w0, ..., wk−1] ∈ Rn×k,
Pij = Pji := sTi−1wj−1 (i ≥ j), P ∈ Rk×k.

Proof. See Byrd et al. [7].

The basic idea in limited memory Quasi-Newton approaches consists now of
keeping only l update pairs (si, wi) in memory, which induces narrower matrices
S ∈ Rn×l and W ∈ Rn×l. Usually the most recent pairs are stored, such that
S = [sk−l, ..., sk−1] and W = [wk−l, ..., wk−1]. For notational convenience, we
write S = [s0, ..., sl−1] and W = [w0, ..., wl−1]. Accordingly, P reduces to an
l× l symmetric matrix. Since we will always assume

√
n� l, the overall storage

requirement for B reduces considerably from O(n2) to O(nl). Moreover, the
cost of factorizing the middle matrix M is negligibly low and the matrix B
is invariant to simultaneous scaling of wj and sj . We thus have derived the
Limited-Memory-SR1 -method (L-SR1) for constrained optimization.

An application of the Sherman-Morrison-Woodbury formula (A.3) to the limited
memory version of B, yields a similar representation for the inverse of B:

B−1 = γ−1I + (S − γ−1W )︸ ︷︷ ︸
Ũ :=

(Q− γ−1W>W )︸ ︷︷ ︸
N :=

−1
(S − γ−1W )> (18)

= γ−1I + ŨN−1Ũ>,

18
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where Q ∈ Rl×l is defined by

Qij = Qji := s>j−1wi−1 (i ≥ j).

Matrix-vector products of the form Bv or B−1v can be computed at a cost of
order O(nl + l3), either by exploiting the compact representation or by ‘un-
rolling’ the l updates via scalar products from right to left ([21]). This means a
considerable gain in efficiency, in particular if we consider the large-scale case,
where

√
n� l.

Making further use of the special structure of the compact representation yields
a reasonable strategy for the choice of γ > 0 to enforce nonsingularity of the mid-
dle matrices without needing to check the stability conditions (wj−Bjsj)>sj 6=
0 ∀ j ∈ {0, ..., l − 1}. Moreover, positive definiteness of the full SR1-Hessian
approximation can be ensured, see section 7.

Similar results hold true for the BFGS-method and its limited memory version
L-BFGS :

Theorem 3.5 (Compact representation of BFGS approximations).
Suppose the symmetric matrix B0 := γI, γ > 0, is updated by means of k
well-defined BFGS-updates (14) using (sj , wj)j=0,...,k−1, i.e. s>j wj > 0 ∀ j ∈
{0, ..., k− 1}, with corresponding intermediate approximations (Bj)j=0..k. Then
B := Bk satisfies

B = γI −
[
γS W

] [γS>S G
G> −D

]−1 [
γS W

]>

where


D := diag(s>0 w0, . . . , s

>
k−1wk−1),

Eij :=

{
s>i−1wj−1 , if i > j

0 , otherwise.
(E ∈ Rk×k)

Proof. See Byrd et al. [7].
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3.4 The LRAMBO Algorithm

LRAMBO is an acronym for Low-Rank Approximation Modification Based
Optimizer. It is a total Quasi-Newton method whose main goals comprise con-
siderable reduction in the per-iteration-cost of order O(mn2) of a standard SQP
method to a ‘bilinear’ operations count, invariance under affine transformations
on the variable space as well as invariance to positive diagonal scaling of the
constraints. The main idea to achieve these goals is maintaining the factorized
representations of Hessian and Jacobian-related approximations subject to low-
rank updates without requiring rather costly derivative matrices. Instead, we
employ AD whenever exact ‘cheap’ derivative-related objects are desired. Most
importantly, existing factorizations are updated at quadratic cost3, instead of
being recomputed from scratch at each iteration at cubic cost. First details on
maintaining factorized representations in the optimization context can be found
in [17].

The following table illustrates LRAMBO’s essential functioning in pseudocode.
Some available options are given in brackets and will be further described in
section 8.

Algorithm 2 (LRAMBO - main routine).

initialize k = 0, x0, λ0, ε, A0, B0

while stopping criterion not fulfilled
do

solve KKT-system (8) [QR, ZID] → [dk, σk]
if descent w.r.t. merit function [AUGMLAGR, L1] break
update Jacobian [ADJBR, TR1] if possible
adjust working set if necessary

while no descent direction found and change in working set
compute αk by line search [ShaZ, Backtracking] on merit function
update xk+1 = xk + αkdk, λk+1 = λk + σk
adjust working set if necessary
update Jacobian [ADJBR, TR1]
update Hessian [SR1, BFGS, L-SR1]
set k → k + 1

end

ADJBR: Adjoint Broyden update
QR: QR-factorization of A with full Hessian approximation B
ZID: ZEDISDEAD approach
AUGMLAGR: Augmented Lagrangian function
L1: L1-merit function

3i.e. the operations count is a quadratic function of the corresponding dimension
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The linear algebra routine, which governs all objects (or updates) and subrou-
tines involved in solving the KKT-system (8) is basically split into a ‘normal’ and
a limited memory version. The current standard way to solve the resulting KKT-
systems contains a Null Space Method with the ‘ZEDISDEAD’ implementation
(see section 4.1) as the currently most efficient limited memory version. Hereby
the Jacobian approximation A is represented by its QR-factors. By contrast,
this thesis aims at developing another efficient limited memory version by means
of a semi-normal approach in conjunction with a Limited Memory SR1-Hessian
approximation. The resulting options will eventually be added to the current
LRAMBO package. So far, the inner loop, enclosed by the ‘do ... while’
statement, should be run at most min(m,n) -times per iteration, as the hered-
ity property of the available Jacobian update options guarantees exactness after
min(m,n) updates. Of course, we aspire to find a descent direction with as less
inner loop iterations as possible.

Once a descent direction is found, an appropriate step size with regard to a pre-
ferred merit function has to be determined. To this end, LRAMBO additionally
features the rather new line search method Shift and Zoom (ShaZ), offering im-
proved robustness in particular on problems with negative curvature, cf. section
8.1.

21





4 SOLVING THE KKT-SYSTEM

4 Solving the KKT-System

In the already mentioned paper by Vavasis [26] (or again [20]) one can find a
good overview of the conventional methods to solve the KKT-system[

B A>

A 0

] [
d
σ

]
= −

[
g(x, λ)
cA(x)

]
,

whose matrix structure occurs in a lot of other mathematical fields as well.
Contemporary solution techniques usually incorporate three different alterna-
tives, namely symmetric indefinite factorization, the null space method and the
range space method, where the latter is rather seldomly broached in litera-
ture. The first alternative means factorizing the entire (in general indefinite)
(n + m) × (n + m) KKT-system, neglecting its special structure, which is in-
ordinately expensive in our large-scale case. The two latter methods usually
procede by replacing A by an LU or QR-factorization and further factoriza-
tions of the resulting mixed Jacobian-Hessian objects, cf. section 4.1. Using
the null space method to solve (8) in combination with low-rank secant updat-
ing of Hessians and Jacobians has been proposed and developed by Griewank
and Walther [13]. Further contributions to this total Quasi-Newton method
have been made by Griewank, Walter, and Korzec [15],[17], especially concern-
ing maintenance of factorized representations. The large-scale case, which is of
major interest in this thesis, leads to further exploitation of the special struc-
ture of B given by the compact representation in Theorem 3.4. In the recent
master’s theses by Schloßhauer [21] and Bosse [5], the theory of the null space
method in combination with limited memory Hessians has been set forth. Our
current implementation of the null space method will be briefly summarized in
the subsequent section, followed by a description of the range space approach
which finally leads to the idea of a semi-normal Jacobian approximation.

Assumption. From now on, we assume that the LICQ is fulfilled, i.e.

rank(c′A(x)) = m,

for all x sufficiently close to a stationary point x∗. We further require that the
Jacobian approximation A ∈ Rm×n mirrors this property in that rank(A) = m.
In view of the desirable SOSC, cf. (3), and the assumptions of Theorem 3.3, we
further assume that Z>BZ is positive definite.

4.1 Null Space Method

The basis of the null space method is an extended QR-factorization of A>:

A> =
[
Y Z

]︸ ︷︷ ︸
=:Q∈Rn×n

[
L>

0

]
∈ Rn×m,

where L ∈ R
m×m is lower triangular and Y ∈ R

n×m and Z ∈ R
n×(n−m) are

matrices whose columns form orthonormal bases for R(A>) and N (A), respec-
tively.
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Multiplying the KKT-system (8) by the orthogonal matrix

Θ> :=
[
Q> 0
0 Im

]
and introducing a ‘smart identity’ ΘΘ> = I(n+m)

4 yieldsY >BY Y >BZ L>

Z>BY Z>BZ 0
L 0 0

Y >dZ>d
σ

 = −

Y >g(x, λ)
Z>g(x, λ)
cA(x)

 . (19)

Defining
E := Y >BY ∈ Rm×m

C := Y >BZ ∈ Rm×(n−m)

RR> := Z>BZ ∈ R(n−m)×(n−m),

R ∈ R(n−m)×(n−m) upper triangular,

the solution (d, σ)> to (19) finally reads{
d = −Y L−1cA(x)− ZR−>R−1(Z>g(x, λ) + C>L−1cA(x))
σ = −L−>(Y >g(x, λ) + EY >d+ CZ>d).

(20)

As suggested above, Z>BZ is forced to stay positive definite. This can be
achieved by a determinant control technique; for details see [15]. Consequently,
the flipped Cholesky factor R can be determined. Naturally, none of the matrix
inverses occurring in (20) are being computed. Instead, we use backward and
forward substitution as well as consecutive matrix-vector multiplication from
right to left to obtain the desired solution (d, σ).

Limited Memory. In the limited memory version without damping, we make
use of the compact representation formula (3.4) for B to find (cf. [21]):

E = γIm + Y >UM−1(Y >U)>

C = Y >UM−1(Z>U)>

Z>BZ = γI(n−m) + Z>UM−1(Z>U)>.

The major drawback of this approach is the need to save the large QR-factors
Z ∈ Rn×(n−m) and Y ∈ Rn×m. Thus, the required memory space at this stage
is at least of order O(n2), which was supposed to be avoided in the first place.
Just recently, Bosse [5] has demonstrated how the null space method with a lim-
ited memory Hessian can be realized without the comparatively large matrix Z,
which may appear paradox. The reason is, that while solving the KKT-system
with the approach above, Z only appears in the form of ZZ>, which can be
substituted by I − Y Y >. This idea has led to the new ‘ZEDISDEAD’ imple-
mentation within the LRAMBO package, bringing a massive relieve in required
memory space. The main result is summarized in the following theorem.

4please note QQ> = Y Y > + ZZ> = In
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Theorem 4.1 (ZEDISDEAD).
For a partial limited memory approach on a total Quasi-Newton method with
nullspace factorization, the needed memory size and computational complexity
per iteration are both of order O(n ·max(m, l) + l3).

Proof. See [5].

Nevertheless, ZEDISDEAD expects Y ∈ R
n×m to be in storage, which may

be quite costly in the large-scale case combined with a large number of active
constraints, m . n.

However the striving for even more efficiency can be continued. This will be
realized by a semi-normal approach, presented in section 4.3, which enables
considerable alleviation of the n · m product in the complexity and storage
order. As the idea of a semi-normal approach arose from a limited memory
range space method, the latter will be broached in the following section.

4.2 Range Space Method

In the following, the basic technique of the range space approach to solve (8)
will be outlined. It is based on a thin QR-factorization of A>:

A> = Y L>,

where {
L ∈ Rm×m lower triangular,
Y ∈ Rn×m column-orthonormal.

The upper equality in (8) yields the step direction

d = −B−1g(x, λ)−B−1A>σ (21)
= −B−1(g(x, λ) + Y L>σ).

Using the expression for d in (21), we obtain

(AB−1A>)σ = cA(x)− LY >B−1g(x, λ).

At this point, step computation in the case of storing the full Hessian approx-
imation B requires a suitable factorization of the symmetric (and, depending
on B, probably also positive definite) matrix AB−1A> ∈ Rm×m. However, we
do not further persue this approach in favor of the large-scale case employing a
limited memory strategy.

Limited memory. In the limited memory case we are able to improve efficiency
in the step calculation by exploiting the SR1 compact representation formula
(18) of B−1 which results in

AB−1A> = L (γ−1I + Y >ŨN−1Ũ>Y )︸ ︷︷ ︸
=:M̃∈Rm×m

L>,

25



4 SOLVING THE KKT-SYSTEM

as Y >Y = Im. Provided existence of the involved inverses is given, the Sherman-
Morrison-Woodbury formula (A.3) yields

M̃−1 = γI − γ2Y >Ũ(N + γŨ>Y Y >Ũ)−1Ũ>Y

Finally, the Lagrange multiplier step writes

σ = (L−>M̃−1L−1)(cA(x)− LY >B−1g(x, λ)). (22)

Now we could design a method which is similar to the limited memory null space
method ZEDISDEAD, in that essentially only the thin QR-factors Y and L as
well as related KKT-matrices are used to solve the KKT-system (8). Therefore
we make the following remark.

Remark 4.2 (Relation to ZEDISDEAD).
The interest in solving the KKT-system by a limited memory range space ap-
proach is rather low, as computational efficiency and required memory space
can be expected to be equivalent to the ZEDISDEAD implementation of the null
space method.

4.3 Avoiding Explicit Range Space Representation via
Semi-Normal Equation

In order to derive the semi-normal method for a limited memory Hessian imple-
mentation, we return to the mixed Quasi-Newton step calculation (cf. section
3.2) given by[

B c′A(x)>

c′A(x) 0

] [
d
σ

]
= −

[
g(x, λ)
cA(x)

]
, (23)

which incorporates the exact Jacobian of active constraints at the current iterate
x.

Analogously to (21), the upper equality in (23) yields the primal step

d = −B−1(g(x, λ) + c′A(x)>σ).

This time we do not replace c′A(x)> by a certain approximation. Instead, given
σ ∈ Rm and g(x, λ), we now maintain the exact expressions on the right hand
side. Apart from the cost of the Jacobian-transposed vector product c′A(x)>σ
which is just a small multiple of a function evaluation of c, we can reduce the
cost of determining d to order O(ln)+O(l3) by using the inverse formula given in
(18). Note again, that cubic effort in l is acceptable in our case, where l�

√
n.

Consequently, solving the KKT-system is reduced to the problem of solving

(c′A(x)B−1c′A(x)>)σ = cA(x)− c′A(x)B−1g(x, λ)

for the adjoint step σ.
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4 SOLVING THE KKT-SYSTEM

Using SR1 compact representation of B−1 (cf. (18)), we can reformulate the
left hand side according to(

c′A(x)B−1c′A(x)>
)
σ = γ−1c′A(x)c′A(x)>σ + c′A(x)ŨN−1Ũ>c′A(x)>σ.

(24)

Semi-normal equation5. Contemplating the left addend, we now make the as-
sumption that a suitable semi-normal Jacobian representation is available, i.e.
we want to determine a nonsingular, lower triangular matrix L ∈ Rm×m to fulfill
the Cholesky decomposition

c′A(x)c′A(x)> ≈ LL>, (25)

as exact as possible along the current adjoint step direction σ:[
c′A(x)c′A(x)>

]
σ ≈ LL>σ. (26)

Details on how this goal may be achieved will be given in section 6.

Using (26), we further obtain

c′A(x)B−1c′A(x)>σ ≈ (γ−1LL> + c′A(x)ŨN−1Ũ>c′A(x)>)σ
= LM̃L>σ

with

M̃ := γ−1I + L−1c′A(x)ŨN−1Ũ>c′A(x)>L−> ∈ Rm×m.

A second application of the Sherman-Morrison-Woodbury formula (A.3) to M̃
finally yields

M̃−1 = γI − γ2L−1c′A(x)ŨÑ−1Ũ>c′A(x)>L−>

with

Ñ := N + γ(L−1c′A(x)Ũ)>L−1c′A(x)Ũ .

However, the inner matrix Ñ requires exact determination of c′A(x)Ũ , which
would necessitate computation of l Jacobian-vector products. This consider-
able computational effort is circumvented by replacing c′A(x)Ũ = c′A(x)S −
γ−1c′A(x)W in Ñ by a suitable approximation

Ū := S̄ − γ−1W̄ ≈ c′A(x)S − γ−1c′A(x)W = c′A(x)Ũ . (27)

This approximation will be refined within the inner loop of our final Quasi-
Newton algorithm. Corresponding strategies will be discussed in section 5.4.
In the ‘outer’ part of M̃−1 we maintain the exact expressions c′A(x)Ũ and

5the name refers to the semi-normal equation (SNE) method for least-squares problems,
which is based on a similar factorization
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4 SOLVING THE KKT-SYSTEM

Ũ>c′A(x)>, as we perform a sequence of matrix-vector products from right to
left, allowing two additional Jacobian-vector products to be computed employ-
ing Algorithmic Differentiation. Eventually we simply replace M̃ by its approx-
imation M̄ which we define as follows:

M̄−1 := γI − γ2L−1c′A(x)ŨN̄−1Ũ>c′A(x)>L−>

with

N̄ := N + γ(L−1Ū)>L−1Ū ∈ Rl×l,

assuming det(N̄) 6= 0. Altogether, the step direction (d, σ) is determined ac-
cording to{

σ = (L−>M̄−1L−1)(cA(x)− c′A(x)B−1g(x, λ))
d = −B−1(g(x, λ) + c′A(x)>σ).

(28)

It has to be remarked, that nonsingularity of the involved matrices will be
ensured by a specific choice of γ. For details, see section 7.

Computational complexity. Taking into account that computing the Lagrange
multiplier step by (28) requires solving two unfactorized systems with coefficient
matrices N, N̄ ∈ Rl×l, the overall effort of computing the KKT-solution (28) is
thus given by the following relation:

OPS(eval(d, σ)) = O(ln+m2 + l3) + 12 ·OPS(eval(cA)),

disregarding the effort of determining the right hand side of (23), which is shared
by any Newton-type procedure.

We conclude the section with a proposition about the form of the system actually
solved by the semi-normal approach.

Proposition 4.3 (Reverse consideration).
The step direction (d, σ) obtained by (28) satisfies[

B c′A(x)>

c′A(x) D

] [
d
σ

]
= −

[
g(x, λ)
cA(x)

]
where D denotes the discrepancy matrix

D := c′A(x)B−1c′A(x)> − LM̄L> ∈ Rm×m.

Proof. The first equation in (28) is equivalent to

−c′A(x)B−1g(x, λ) = (LM̄L>)σ − cA(x).

Multiplying the lower equation in (28) by c′A(x) yields

−c′A(x)B−1g(x, λ) = c′A(x)d+ c′A(x)B−1c′A(x)>σ

which results in

c′A(x)d+
(
c′A(x)B−1c′A(x)> − LM̄L>

)
σ = −cA(x).

Defining D := c′A(x)B−1c′A(x)> − LM̄L> accomplishes the proof.
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4 SOLVING THE KKT-SYSTEM

Corollary 4.4.
The quality of the step determination with the semi-normal approach in con-
junction with L-SR1 is only governed by the size of the Jacobian approximation
error D along the current Lagrange multiplier step σ. The size of the discrep-
ancy is in turn characterized by the quality of the semi-normal approximation
(26) and Ū . If both are exact, the deviation from the exact SQP step depends
only on the quality of the L-SR1 Hessian approximation.

The above presented approach combining step determination by representing
first-order Jacobian information by means of a semi-normal approximation to-
gether with an L-SR1 Hessian approximation will from now on be denoted by
L-SR1-SN.
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5 Updating Hessian-Related Components

5.1 Memory Layout

In this section, we want to give an insight into the data structure which has to
be stored in order to retrieve the solution of the KKT-system (28) by means of
the semi-normal approach proposed in section 4.3. The effect of typical Hessian
modifications from a limited memory strategy will be described as well. It will
be shown, how resulting changes in the elementary objects S and W effect their
related objects and how the implementation can be organized with maximal
efficiency.

Observation. All matrices involved in solving the KKT-system are already con-
tained in the formula for the Lagrange multiplier step σ in (28). Therefore,
we need to take into account the basic limited memory Hessian components S
and W which are necessary to perform operations with B as well as the mixed
objects defining N̄ necessary to perform a multiplication with M̄−1. We obtain
the following classification of the stored data structure which will be proven to
ensure minimal computational effort when determining (d, σ):

Hessian-related objects:

S,W ∈ Rn×l; S>W, S>S, W>W ∈ Rl×l; γ ∈ R
Jacobian-related objects:

L ∈ Rm×m

Mixed objects:

L−1S̄, L−1W̄ ∈ Rm×l;
S̄>(LL>)−1S̄, S̄>(LL>)−1W̄ , W̄>(LL>)−1W̄ ∈ Rl×l

Table 1: KKT-related matrices for the semi-normal method L-SR1-SN

In the setting of our total Quasi-Newton algorithm, these matrices are subject to
certain low-rank updates, originating from Jacobian updates (including changes
in the working set) and Hessian updates. Mixed objects are those who are
effected by both. Additionally we may also design suitable ‘mixed updates’, i.e.
separate updates for the mixed objects. For each of these updates, their effect
on our data structure has to be set forth.

To summarize, the main goal is to effect stable and efficient updates on the
given data structure. The major advantage consists of the avoidance of storing
objects of size m ·n, as it is for instance the case in the ZEDISDEAD approach
[5] which requires the large matrix Y ∈ R

n×m. Instead, the only necessary
Jacobian information in memory is contained in the semi-normal factor L and
the corresponding mixed objects L−1S̄ and L−1W̄ .

γ-dependend objects. Through changes in γ, the derived objects needed for the
computation of σ will be obtained by means of corresponding changes in their
constituents. For instance we compute N+ using the relation

N+ = Q+ − γ+(W>W )+,
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5 UPDATING HESSIAN-RELATED COMPONENTS

where Q+ is uniquely determined by the right upper triangular part of (S>W )+.
The issue of efficient adaptation of the initialization factor γ will be addressed
in section 7.

5.2 Limited Memory Hessian Updates

Depending on the preferred limited memory strategy, basic operations on the
matrices S = [s0, ..., sl−1] and W = [w0, ..., wl−1] may incorporate

� removing a given update pair (si, wi), i ∈ {0, ..., l − 1},

� adding a new pair (sl, wl),

� replacing a given update pair (si, wi), i ∈ {0, ..., l−1}, by a new pair (sl, wl).

Of course, a couple of other elaborate strategies including merging, variation of l,
‘backing-up’ and restarting are conceivable. For a remarkable variety of several
algorithms associated with the management of the limited memory components,
see for example the PHD thesis by Kolda [16] which offers interesting testing
results in conjunction with L-BFGS. It should be remarked, that it is sometimes
recommended to choose the sequence of update vectors (si, wi) forming S and
W , such that the correct chronology of the step-taking is preserved, cf. the
comments on the L-BFGS algorithm by Liu and Nocedal [19]. Therefore possible
replacement operations are usually followed by permutations of the columns of
S and W .

5.3 Efficient Adjustment of the KKT-Matrices

Adjustment of the Hessian-related KKT-matrices in the semi-normal approach
resembles the procedures investigated for the ZEDISDEAD method, cf. [5].
Therefore, we only emphasize the differences induced by an extended usage of
Algorithmic Differentiation which replaces the effort of several matrix vector-
products involving Y .

Deletion. Discarding a vector pair (si, wi) from the basic matrices S,W does
not cause any difficulty. To obtain (S>W )+ we simply need to delete the i-th
line and column. Causing negligible effort, the same procedure can be applied
to the other Hessian-related objects and the effected mixed objects.

Extension. Appending a given vector pair (sl, wl) to S and W requires several
matrix-vector products involving W>sl, S>wl, S>sl and W>wl as well as the
scalar products s>l sl, s

>
l wl and w

>
l wl to obtain the Hessian-related objects. For

the mixed objects, consider

L−1S̄+ = L−1
[
S̄ s̄l

]
≈ L−1c′A(x)

[
S sl

]
.

Thus it is plausible to compute

s̄l = c′A(x)sl (29)
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5 UPDATING HESSIAN-RELATED COMPONENTS

with the forward mode of Algorithmic Differentiation and to determine

L−1S̄+ = [L−1S̄ L−1c′A(x)sl],

using forward substitution. Now consider S̄>(LL>)−1S̄. Updating S yields

S̄+
>(LL>)−1S̄+ =

[
S̄>

s̄l
>

]
(LL>)−1

[
S̄ s̄l

]
=

[
S̄>(LL>)−1S̄ (L−1S̄)>L−1s̄l
s̄l
>L−>(L−1S̄) s̄l

>(LL>)−1s̄l

]
.

Replacement. Having chosen a vector pair (si, wi) to be surrogated by a new
pair (sl, wl), we just have to recalculate the i-th line and/or column of the
corresponding object. For example, write

S+ =
[
SL sl SR

]
to retrieve

S̄+
>(LL>)−1S̄+

=

S̄>Ls̄l
S̄>R

 (LL>)−1
[
S̄L s̄l S̄R

]

=

S̄L
>(LL>)−1S̄L (L−1S̄L)>L−1s̄l S̄L

>(LL>)−1S̄R
s̄l
>L−>L−1S̄L s̄l

>(LL>)−1s̄l s̄l
>L−>L−1S̄R

S̄R
>(LL>)−1S̄L (L−1S̄R)>L−1s̄l S>R (LL>)−1S̄R

 .
Note that the blocks in the corners are equal to the corresponding blocks in
S̄>(LL>)S̄, whereas the i-th line needs to be redetermined by computing L−1s̄l
using Algorithmic Differentiation and forward substitution as well as a matrix-
vector product of order O(lm) with the stored matrix

L−1S̄+ =
[
L−1S̄L L−1s̄l L−1S̄R

]
.

L−1W̄+, W̄>+ (LL>)−1W̄+ and S̄>+ (LL>)−1W̄+ can be updated analogously,
thereby necessitating evaluation of L−1c′A(x)wl.

We conclude this section with a proposition describing the necessary computa-
tional effort due to Hessian updating.

Proposition 5.1 (Hessian update).
The computational effort for any of the proposed updates on the Hessian-related
objects in L-SR1-SN is bounded by the order

O(ln+m2) + 5 ·OPS(eval(cA)).

Proof. The left addend is directly derived by the proposed updating routines.
The product l ·m vanishes, for LICQ ensures max(m,n) = n. Moreover, there is
a maximal amount of two Jacobian-vector products to be computed. Making use
of the vector mode of AD, cf. Theorem 2.7, yields linearly bounded complexity
with an upper bound of five constraint evaluations.

33



5 UPDATING HESSIAN-RELATED COMPONENTS

Naturally, the mentioned Hessian updates can be written as low-rank changes.
This will be exploited in Section 7 where the Cholesky factors of Q and S>S
have to be maintained subject to low-rank updates in order to determine suitable
shifts in the initialization factor γ.

5.4 Mixed Updates

In this section, we propose two update strategies for the mixed objects, which are
part of the definition of N̄ . More precisely, we want to consider implicit updates
on the non-stored objects S̄ ≈ c′A(x)S and W̄ ≈ c′A(x)W which will be trans-
formed into corresponding updates on the stored mixed objects L−1S̄, L−1W̄ ,
S̄>(LL>)−1S̄, S̄>(LL>)−1W̄ , W̄>(LL>)−1W̄ .

To begin with, we make the following remark dedicated to the case of affine-
linear constraints.

Remark 5.2 (Exactness in affine case).
In case of affine-linear constraints ci, i ∈ A(x), the approximations L−1S̄ and
L−1W̄ are already exact, i.e. S̄ = c′A(x)S and W̄ = c′A(x)W .

Proof. The assertion follows directly from the Hessian extension procedure, cf.
(29).

In the presence of nonlinear constraints, the approximations originating from
consecutive Hessian updating are not exact. Therefore we suggest the following
implicit mixed updates to improve their accuracy.

Alternative 1: Secant updates. Since the approximation

S̄ ≈ c′A(x)S

implicitly defines a Jacobian approximation JS ∈ Rm×n via{
JSS = S̄

JS := S̄(S>S)−1S> = L(L−1S̄)(S>S)−1S>,
(30)

it is conceivable to implicitly define a low-rank secant update on JS without
actually storing the Jacobian approximation JS ∈ R

m×n, as JS is implicitly
given by (30). The component matrices are stored and of small dimension, such
that the cost of matrix-vector products involving JS is of order O(ln + m2), if
a Cholesky factorization of S>S ∈ Rl×l is available. Therefore we can perform
typical Jacobian updates like the direct TR1 or the tangent version of Adjoint
Broyden on JS with an acceptable computational effort. In the latter case, we
modify JS as follows:

(JS)+ = JS −
Dss>D>D

‖Ds‖2
, (31)

where

D := JS − c′(x+).
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By virtue of the heredity property of TR1 or Adjoint Broyden, it suffices to
update JS l times at a fixed iterate x using the stored steps s0, . . . , sl−1, to
obtain the exact matrix c′A(x)S = (JS)+S = S̄+. This can be exploited in the
inner loop of LRAMBO.

The above rank-one update can be rewritten as a rank-one update on S̄:

S̄+ := (JS)+S

= JSS −
Dss>D>DS

‖Ds‖2

= S̄ + δrρ>,

with 
δ := − 1

‖Ds‖2

r := Ds

ρ := (r>D)S.

Below, we show how an implicitly defined rank-one update on S̄ can be in-
corporated into our given data structure. Obviously, a similar strategy can be
persued if W̄ shall be updated.

Alternative 2: Columnwise recomputation. Suppose we do not perform a corre-
sponding secant update on S̄ or W̄ . Owing to the Hessian extension procedure
presented in the previous section, we have

L−1S̄ = L−1
[
c′A(x1)s0, . . . , c

′
A(xi)si−1

]
after the i-th (w.l.o.g. i < l) Hessian update without replacements, deletions or
skips. As we want to approximate

L−1c′A(x)S = L−1
[
c′A(xi)s0, . . . , c

′
A(xi)si−1

]
,

we suggest to simply ‘refresh’ the columns (s̄j) of S̄ by replacing the least up-to-
date column, (normally the first) by substituting L−1c′A(x1)s0 by L−1c′A(xi)s0.
This simple updating strategy can be easily added to the inner loop by memo-
rizing the updating order. Alternatively, one may consider the error measured
in terms of the ‖.‖1-norm:

err1 = ‖L−1c′A(x)S − L−1S̄‖1
≤ ‖L−1‖1 max

j∈{1,...,i−1}
‖(c′A(xi)− c′A(xj))sj−1‖1

≤ ‖L−1‖1 max
j∈{1,...,i−1}

(
‖c′A(xi)− c′A(xj)‖1‖sj−1‖1

)
.

If c′ fulfills the Lipschitz property, one may expect the left factor to grow with
the distance pj := ‖xi − xj‖. Thus, a promising heuristic consists of choosing
j as a compromise between the largest distance pj and the largest step sj−1,
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j ∈ {1, ..., i − 1}. Again, either of the two choices can be reformulated as a
rank-one update on S̄, using the update vectors

r := (c′A(xi)sj − s̄j) ∈ Rm

ρ := ej ∈ Rl

δ := 1,

for refreshing the j-th column. W̄ may be modified in analogous fashion.

Efficient adjustment of the KKT-matrices. As shown above, each of the pro-
posed updates can be reformulated as a low-rank update on S̄ (and W̄ ). The
resulting changes on the data structure can be easily incorporated, as the fol-
lowing example with S̄ shows:

L−1S̄+ = L−1S̄ + δ(L−1r)(ρ>) (32)
S̄>+ (LL>)−1S̄+ = (S̄> + δρr>)(LL>)−1(S̄ + δrρ>)

= S̄>(LL>)−1S̄ + δ(L−1S̄)>(L−1r)ρ>

+δρ(L−1r)>(L−1S̄) + δ2
(
(L−1r)>(L−1r)

)
ρρ> (33)

Bearing in mind that L−1S̄ and S̄>(LL>)−1S̄ is kept in storage, mixed updates
via columnwise recomputation comprises a couple of matrix-vector products and
forward substitutions in addition to two Jacobian-vector products involving an
old secant pair (sj , wj), j ∈ {0, . . . , l− 2}. For the time being, we will prefer the
second alternative, since the first alternative additionally requires two reverse
mode calls for the update vectors of S̄ and W̄ . The following conclusion can be
drawn.

Proposition 5.3 (Computational complexity).
The computational effort for the adjustment of the data structure due to mixed
updates on S̄ and W̄ via Alternative 2 (columnwise recomputation) can be
bounded by the order

O(m ·max(m, l)) + 5 ·OPS(eval(cA)).

Proof. Analogous to Proposition 5.1.
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6 Updating the Semi-Normal Factor

In the following section, Jacobian modifications in form of a semi-normal update
will be suggested and analyzed.

6.1 Secant Condition and BFGS-Update

In order to derive an appropriate secant condition for the update of the semi-
normal factor L, consider approximation (26)[

c′A(x)c′A(x)>
]
σ ≈ LL>σ.

We thus require the semi-normal secant condition

L+L
>
+σ = c′A(x+)c′A(x+)>σ, (34)

where L+L
>
+ shall preserve symmetry and positive definiteness owing to the

corresponding properties of c′A(x+)c′A(x+)>.

Therefore, we propose the following BFGS-update on LL>:

L+L
>
+ = LL> − LL>σσ>LL>

‖L>σ‖2
+
c′A(x+)c′A(x+)>σσ>c′A(x+)c′A(x+)>

‖c′A(x+)>σ‖2

(35)

Consequently, L+L
>
+ stays symmetric and fulfills the semi-normal secant condi-

tion (34). Positive definiteness is also preserved, since (cf. section 3.2.1)

σ>c′A(x+)c′A(x+)>σ > 0

is satisfied in virtue of LICQ and as long as σ 6= 0. Considering the denomina-
tors in (35), stability of the given BFGS-update is theoretically ensured by the
properties of L and c′A.

Orthogonality. In order to find an appropriate criterion governing the updating
decision, consider the case where L satisfies the semi-normal equation (25) ex-
actly. In this case, the matrix c′A(x)>L−> has orthonormal columns spanning
R
(
c′A(x)>

)
. Furthermore we must have

‖σ‖22 = ‖c′A(x)>L−>σ‖22.

Numerically, we suggest to impose updating on LL>, whenever the approximate
orthogonality condition

‖c′A(x)>L−>σ‖2
‖σ‖2

∈ (1− tol, 1 + tol), where tol ≈ 0, (36)

is violated.

Computational complexity. The total amount of operations to compute the up-
date vectors defining (35) is bounded by the order O(m2) + 6 · eval(cA) incorpo-
rating forward and backward substitution for the downdate and one AD-forward
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and reverse mode respectively for the update. Hence, determination of the up-
dating quantities defining the semi-normal BFGS-update is even cheaper as a
typical Jacobian update such as Adjoint-Broyden or TR1. The latter case com-
prises one forward and one reverse sweep as well as two matrix-vector products
of order O(mn) to calculate primal and adjoint residuals.

To conclude, we remark, that the proposed BFGS-update is not hereditary such
that the exact Jacobian cannot be expected to be obtained after a finite number
of secant updates as it is the case for example with TR1. However, we can
assume an improvement of the semi-normal approximation by consecutive BFGS
updating at a fixed iterate within the inner loop. Consequently an adaptation
of the break criterion for the inner loop is necessary.

6.2 Changes in the Working Set

In this section, we assume that the active set A at the solution x∗ still has to
be determined. Consequently, the working set W ⊂ {1, ...,M}, E ⊂ W, which
constitutes our guess for A, might underly various modifications. Resulting
modifications on the semi-normal factor L and the mixed objects will be dis-
cussed subsequently.

Activation. Suppose, constraint I ∈ I \ W needs to be activated. Let A :=
c′W(x) denote the Jacobian of constraints contained in the working set W and
assume the gradient of the activation candidate a := ∇cI(x), ∇cI(x) 6= 0 is
available. In order to be consistent with the semi-normal approach, we write

A+ :=
[
A
a>

]
,

L+ :=
[
L 0
l> q

]
, where l ∈ Rm, q ∈ R,

and stipulate

A+A
>
+ = L+L

>
+.

Suppose the semi-normal equation, LL> = AA>, holds exactly. Then equating
the corresponding expressions gives

[
L 0
l> q

] [
L> l
0 q

]
=

[
LL> Ll
l>L> ‖l‖22 + q2

]
=

[
AA> Aa
a>A> a>a

]

and thus yields the conditions{
l = L−1Aa

q =
√
a>a− ‖l‖22.
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6 UPDATING THE SEMI-NORMAL FACTOR

The term underneath the square root can be reformulated as follows

a>a− ‖l‖22 = a>a− a>A>(LL>)−1Aa

= a>
[
I −A>(AA>)−1A

]
a.

Note that the middle matrix I − A>(AA>)−1A represents the orthogonal pro-
jection onto (R(AT ))⊥ = N (A). Consequently, the term underneath the square
root remains positive, if a /∈ N (A)⊥ = R(A>). This condition should never
be violated throughout the Quasi-Newton algorithm, as it must be fulfilled in a
vicinity of a potential solution (LICQ).

However, it may well occur that the semi-normal approximation is not suffi-
ciently accurate to ensure positivity of the radicand. In this case, we propose
the following intermediate update on L as a remedy.

Space Dilation6. Assume the corresponding radicand is negative, i.e.

a>a < ‖l‖22.

Define H := LL> and v := Aa. In order to retrieve a positive radicand, we
propose to perform the following rank-one update

H−1
0 := H−1 + β

H−1vv>H−1

v>H−1v
, β ∈ R

= L−>
(
I + β

ll>

l>l

)
︸ ︷︷ ︸

space dilation operator

L−1 (37)

with damping factor β, such that

v>H−1
0 v = α · (a>a), α ∈ (0; 1),

holds for the intermediate semi-normal approximation H0 := L0L
>
0 . This can

be achieved by choosing β = α a>a
v>H−1v

− 1 ∈ (0;−1). It should be remarked,
that this particular choice of β does retain positive definiteness of H0 since (cf.
the Interlacing Eigenvalue Theorem A.4)

detH−1
0 = det

(
L−1

)2
(1 + β) > 0. (38)

From the update formula (37) we obtain

H0 = L

(
I − β

(1 + β)l>l
ll>
)
L>

= LL> − β

(1 + β)l>l
vv>, (39)

6an operator Rδ, δ > 0 of the form Rα(v) = I + (δ − 1)vv> for v ∈ R
n : ‖v‖ = 1, is

occasionally called ‘space dilation’, see Shor [22]
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6 UPDATING THE SEMI-NORMAL FACTOR

by applying the Sherman-Morrison-Woodbury formula. Again we may find a
Cholesky factor L0 of H0 using the techniques presented in the subsequent
section 6.3.

Now we are able to successfully apply the former procedure to enlarge L0. To
accomplish the activation routine, we still need to consider the necessary changes
in the mixed objects. Owing to a constraint activation, L−1 gains a new column
and line:

L−1
+ =

[
L−1 0

− 1
q l
>L−1 1

q

]
,

whereas S̄ is only enlarged by one additional line defined by c′I(x)S:

S̄+ =
[
S̄
a>S

]
.

The resulting update on the mixed object is thus given by

(L−1S̄)+ = L−1
+ S̄+ =

[
L−1S̄
y>

]
,where y> := −1

q
(l>L−1S̄ − a>S).

Finally, we derive

(S̄>(LL>)−1S̄)+ = (L−1S̄)>+(L−1S̄)+

=
[
(L−1S̄)> y

] [(L−1S̄)
y>

]
= S̄>(LL>)−1S̄ + yy>.

Permutations. Suppose we want to exchange two active constraints π(j) and
π(k), with j, k ∈ W, j 6= k. Let P = P> ∈ R

m×m denote the corresponding
permutation matrix. Consequently the semi-normal approximation is demanded
to satisfy

L+L
>
+ = PLL>P (≈ PA(A>P )),

where the approximate equation at the right mirrors the semi-normal property
of LL>. Using the definitions{

r := ej − ek ∈ Rm,
ρ := lk − lj ∈ Rm, where l>i := i-th line of L

we can reformulate the desired permutation as a rank-two update on the semi-
normal approximation:

L+L
>
+ = PLL>P

= (L+ rρ>)(L+ rρ>)>

= LL> + (Lρ)r> + r(Lρ)> + (ρ>ρ)rr>. (40)
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6 UPDATING THE SEMI-NORMAL FACTOR

Again, we may apply one of the low-rank Cholesky updating techniques from
the forthcoming section 6.3 to obtain the triangular factor L+.

Yet, implicit modifications on S̄ and W̄ still need to be discussed. Therefore
suppose L = L+ and contemplate necessary changes on L−1S̄ through changes
in S̄. S̄ is supposed to approximate c′W(x)S, so it is reasonable to permute lines
j and k of S̄. Written as a rank-one update on S̄, we find

S̄+ = S̄ + rρ>,

where r and ρ are defined analogously to the permutation update on L:{
r := ej − ek ∈ Rm,
ρ := s̄k − s̄j ∈ Rl, where s̄>i := i-th line of S̄.

Since we do not want to store S̄ itself, we simply exploit the relation:

L(L−1S̄) = S̄,

to obtain the j-th line of S̄ according to s̄j = l>j L
−1S̄. Finally we apply (32)

and (33) to obtain L−1S̄+ and S̄>+ (LL>)−1S̄+

Deactivation. Suppose we would like to remove constraint I ∈ I ∩ W from
the current working set W. With the help of the permutation routine, we can
assume w.l.o.g. I = π(m), i.e. the ‘last’ constraint cπ(m) is deactivated. The
resulting semi-normal update simply comprises removal of the m-th column and
line of L, such that L+ ∈ R(m−1)×(m−1). In a similar fashion, we obtain S̄+ by
discarding the last line (denoted by y>) from S̄ and

(
S̄>(LL>)−1S̄

)
+

can be
easily obtained by a downdate on S̄>(LL>)−1S̄ using(

S̄>(LL>)−1S̄
)

+
= S̄>LL>S̄ − yy>.

In either case, activation (including space dilation) or deactivation, mixed ob-
jects involving the matrix W̄ can be updated analogously.

Computational complexity. Excluding the computational effort for the rank-one
or rank-two update of the semi-normal approximation resulting from a space
dilation or permutation, we can bound the effort for the maintenance of the
data structure subject to working set changes by the order O(ln + m2) + 3 ·
OPS(eval(cW))). If no space dilation is necessary to derive L+, the latter
addend vanishes completely.

6.3 Low-Rank Cholesky Updating

In the previous sections, we have excluded the problem of a low-rank update
of the semi-normal approximation LL> arising from a BFGS-update (35), a
space dilation (39) or a constraint permutation (40). We will now discuss two
different strategies for an update of a Cholesky factorization subject to a low-
rank modification since we do not want to recompute the decomposition from
scratch which would require cubic effort! Moreover, existence of the Cholesky
factorization is guaranteed, if the update is a priori known to be positive definite.
In the subsequent section, we will directly apply the results in order to arrive
at a highly efficient way to adjust our data structure.
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6 UPDATING THE SEMI-NORMAL FACTOR

6.3.1 Cholesky Update via Rotations

Let T ∈ Rm×m be symmetric positive definite with Cholesky factor L ∈ Rm×m

T = LL>,

which is uniquely determined up by to sign changes in the columns. Further
suppose T undergoes the following symmetric rank-two perturbation, i.e.

T+ = T + δvr> + δrv> + γδ2rr> (γ, δ ∈ R)
= LL> + δvr> + δrv> + γδ2rr> (41)
= LL> +XCX>,

where

X :=

r v

 ∈ Rm×2, C :=

[
γδ2 δ

δ 0

]
∈ R2×2.

The idea consists of first updating L in the framework of a Cholesky rank-2
perturbation using the strategy presented in [24]. After some rather technical
but straightforward manipulations, we obtain

L+L
>
+ = L[I + δṽr̃>]

[
I +

δ2(γ − ‖ṽ‖2)
(1 + δṽ>r̃)2

r̃r̃>
]

[I + δṽr̃>]>L>, (42)

where the following definitions have been included:{
ṽ := L−1v and
r̃ := L−1r.

Provided the middle matrix is positive definiteness, there exists a nonsingular
square root[

I +
δ2(γ − ‖ṽ‖2)
(1 + δṽ>r̃)2

r̃r̃>
] 1

2

.

In the general case, we have to find a sufficiently small δ which ensures this
property. However, we have already shown that our semi-normal updates origi-
nating from the modifications (35), (39) and (40) ensure positive definiteness of
L+L

>
+, such that the middle matrix in (42) is necessarily positive definite. In

the latter case, the new Cholesky factor can be written as follows:

L+ = (L+ rw>)G>1 G
>
2 , (43)

where w can be determined as a linear combination of r̃ and ṽ, and G1 and G2

denote two particular sequences of Givens rotations. The first sequence G1 is
supposed to rotate w into a multiple of the first unit vector, i.e. G1w = αe1, α ∈
R, only employing Givens rotations on adjacent components such that

(L+ rw>)G>1 = LG>1 + αve>1
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6 UPDATING THE SEMI-NORMAL FACTOR

is a lower Hessenberg matrix. G2 is thus determined by the Givens sequence
reconverting the factor (L+ rw>)G>1 into lower triangular form

L+ = (L+ rw>)G>1 G
>
2 ,

for details see [24]. Naturally, neither of the Givens matrices forming G1 and
G2 are computed explicitly, we rather directly rotate the left side. The com-
putational cost of determining and applying the above sequence of 2 · (m − 1)
Givens rotations to a column vector of dimension m is bounded by order O(m)
such that the total complexity for the update of L is of order O(m2). Hence
it will be assumed that L+ is already available and we will now focus on the
update of the mixed objects.

Efficient adjustment of the KKT-matrices. Applying (43), we obtain

L−1
+ S̄ =

[
(L+ rw>)G>1 G

>
2

]−1
S̄

= G2G1

(
L+ rw>

)−1︸ ︷︷ ︸
(I+r̃w>)−1L−1

S̄

= G2G1(I − δ̃−1r̃w>)L−1S̄, with δ̃ := 1 + r̃>w

= G2G1L
−1S̄ − δ̃−1r̃w>L−1S̄.

Note that we have stored L−1S̄ ∈ R
m×l (as well as w, r̃). Hence the cost of

computing the left addend is bounded by O(lm). Again, the update of L−1W̄
can be performed likewise.

For the derivation of S̄>(L+L
>
+)−1S̄, we apply the Sherman-Morrison-Woodbury

formula (A.3) to obtain

S̄>(L+L
>
+)−1S̄ = S̄>

(
LL> +XCX>

)−1
S̄

= S̄>L−> (I + X̃CX̃>)−1︸ ︷︷ ︸
=I−X̃C̃−1X̃>

L−1S̄

= S̄>(LL>)−1S̄ − S̄>L−>X̃C̃−1X̃>L−1S̄, (44)

with {
X̃ := L−1X ∈ Rm×2

C̃ := C−1 + X̃>X̃ ∈ R2×2.

Note that nonsingularity of L+L
>
+ ensures existence of the involved matrices.

Analogous procedures can be applied to mixed objects involving W̄ .

The upper approach is applicable if a permutation or a space dilation shall be
performed. By contrast, the BFGS update (35) does not admit the form (41).
Instead, we obtain two symmetric rank-one modifications7. In this case, we
may apply a simpler procedure based on a similar application of two Givens
sequences, cf. [17].

7i.e. the matrix C is diagonal
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6 UPDATING THE SEMI-NORMAL FACTOR

6.3.2 Bennett’s Algorithm

Owing to the continuity argument explained in [15], this paragraph contains an
application of the classical method by Bennett [2] to update the Cholesky factor
L that does not require rotations. Having obtained the update L+, we will be
able to show that the corresponding mixed objects can be updated with the
same minimal effort as in the previous section, but without utilizing any Givens
matrices.

Bennett’s algorithm. Bennett’s algorithm, first introduced in [2], represents a
fast (i.e. quadratic complexity in the problem dimension) method to update a
general triangular decomposition

T = LDM>

subject to a low-rank modification. Stange et al. [25] have specified this method
for the rank-one case.

In the following, Bennett’s algorithm will be specified for the symmetric case
where a matrix T = LDL> ∈ Rm×m undergoes a symmetric rank-k modifica-
tion:

T+ = T +XCX>, (45)

where X ∈ Rn×k, C = C> ∈ Rk×k. The aim is to obtain the new factorization

T+ = L+D+L
>
+

at minimal cost. The main step consists of demonstrating how the problem can
be reduced to dimension (m− 1)× (m− 1). Therefore, partition L,X and D as
follows:

L =
[
L11 0
L21 L22

]
, X =

[
X>1
X>2

]
, D =

[
d1 0
0 Dm−1

]
withX1 ∈ Rk, X>2 ∈ R(m−1)×k, L11, d1 ∈ R andDm−1 ∈ R(m−1)×(m−1) diagonal.
Furthermore, write

T =
[

1 0
L21 L22

] [
d1 0
0 Dm−1

] [
1 L>21

0 L>22

]
=

[
d1 d1L

>
21

d1L21 d1L21L
>
21 + T̃

]
. (46)

Hereby, T̃ := L22Dn−1L
>
22 denotes the Schur complement of T . Now, by making

the ansatz

T+ =
[

1 0
L+

21 Im−1

] [
d+

1 0
0 T̃+

] [
1 L+

21

>

0 Im−1

]
and equating this expression to T+ from (45), where T has been replaced by
(46), one obtains the following conditions:

d+
1 = d1 +X>1 CX1

L+
21 = 1

d+1
(d1L21 +X>2 CX1)

T̃+ = T̃ + d1L21L
>
21 +X>2 CX2 − d+

1 L
+
21L

+
21

>
.

(47)
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6 UPDATING THE SEMI-NORMAL FACTOR

Lemma 6.1.
The Schur complement T̃+ ∈ R(m−1)×(m−1) of T+ can be represented as a sym-
metric rank-k update on T̃ , i.e.

T̃+ = T̃ +X+C+X+>

for certain C+ ∈ Rk×k and X+ ∈ R(m−1)×k.

Proof.

T̃+ = T̃ + d1L21L
>
21 +X>2 CX2 − d+

1 L
+
21L

+
21

>

= T̃ +
(
d1 − d21

d+1

)
L21L

>
21 +X>2 CX2

− d1
d+1
bL>21 − d1

d+1
L21b

> − 1
d+1
bb>

with b := X>2 CX1. With the definitions

X+ := −L21X
>
1 +X>2 and C+ := C − 1

d+1
CX1X

>
1 C (48)

we obtain the desired result after some straightforward but rather tedious ma-
nipulations.

Thus we are able to repeat the upper procedure by decomposing

T̃+ = L22Dn−1L
>
22 +X+C+X+> ∈ R(m−1)×(m−1),

in an analogous way, such that we obtain a recursive procedure to determine
the LDLT -decomposition of T+ at a computational cost of order O(m2), given
that k stays comparatively low. (normally, we have k = 1 or k = 2)

Stability. In order to maintain stability, the situation in which the algorithm
encounters a zero pivot di needs to be excluded. For this purpose, positive
definiteness of T+ (such is the case in our applications) is sufficient.

Application. In our case (k = 2), one might be tempted to define T as T := LL>.
This leads to the problem that the update of L−1S̄ will not be performed with
minimal effort, albeit L+ is obtained in O(m2) floating point operations. How-
ever, computation of L−1

+ S̄ would require solving l triangular systems leading
to a complexity of order O(l ·m2). In the sequel, it will be demonstrated how
one can reduce the cost of updating the mixed object L−1S̄ to order O(lm).

First of all, the application of Bennett’s algorithm will be reduced to the case
where T = I:

L+L
>
+ = LL> +

r v

C [ r>

v>

]

= L

I + L−1

r v

C
L−1

r v

>
L>

= L(I +XCX>)L>, (49)
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6 UPDATING THE SEMI-NORMAL FACTOR

where the new X is given by

X :=

r̃ ṽ

 := L−1

r v

 ∈ Rm×2.

Then, one attempts to find the LDL>-factorization of the middle matrix (=:
L̄D̄L̄>), which constitutes a rank-two perturbation of the identity:

I +XCX> = L̄D̄L̄>.

By virtue of (49) and nonsingularity of L, the middle matrix is positive defi-
nite, provided that L+L

>
+ is positive definite. Consequently, the occurrence of

nonpositive pivots d̄i is theoretically excluded. If we encounter a nonpositive
pivot, we can conclude, that the semi-normal modification has led to a Jacobian
approximation which does not fulfill the full rank requirement.

The main benefit in this approach lies in the fact that we can directly derive
a low-rank representation for L̄, when using Bennett’s algorithm. In order to
justify this claim, let l̄i ∈ R

m−i denote the subdiagonal elements of the i-th
column of L̄. Evidently, the main diagonal consists of ones:

L̄ =



1
. . . 0

1

l̄1 · · · l̄i
. . .

1


Using (47) and (48), one obtains at the i-th step the intermediate quantities for
i = 1, ..,m:

Xi
1
> =

[
r̃i ṽi

]
∈ R2

Xi
2
> =


r̃i+1 ṽi+1

...
...

r̃m ṽm

 ∈ R(m−i)×2

d̄i = 1 +Xi
1
>
CiXi

1 ∈ R,

where Ci ∈ R2×2 is given by the following iterative definition:{
C1 = C,

Ci+1 = Ci − 1
d̄i

(CiXi
1)(CiXi

1)>, (i = 1, . . . ,m− 1).
(50)

Note that the only changes effected on Xi, are the continuous removal of the
first line and the border move down by one line between Xi

1
> and Xi

2
>. Now,

writing[
αi
βi

]
:= 1

d̄i
CiXi

1 ∈ R2,
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6 UPDATING THE SEMI-NORMAL FACTOR

for i = 1, . . . ,m , we reformulate (50) according to
C1 = C,

Ci+1 = Ci − d̄i

[
α2
i αiβi

αiβi β2
i

]
.

and obtain the subdiagonal columns l̄i of L̄ following (47) as

l̄i =

αir̃i+1 + βiṽi+1

...
αir̃m + βiṽm

 ∈ Rm−i.
Finally, we are to able to derive an important low-rank representation for the
intermediate triangular factor:

L̄ = I +
[
r̃α> + ṽβ>

]
i>j

.

It is worth remarking, that the solution of systems involving L̄ requires only
O(m) floating point operations using forward substitution. The following prac-
tical algorithm can be formulated, to solve systems of the form L̄x = b:

Algorithm 3 (Solve L̄x = b).

set σα, σβ = 0, x1 = b1
for i = 2, ..,m

σα ← σα + αi−1xi−1

σβ ← σβ + βi−1xi−1

xi = bi − σαr̃i − σβ ṽi
end

We remark that a similar algorithm of the same complexity class can be formu-
lated for the product L̄x.
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6 UPDATING THE SEMI-NORMAL FACTOR

Efficient adjustment of the KKT-matrices. In order to pick up on the issue of
updating the mixed objects, we seize on equation (49) to retrieve

LL> +

r v

C [ r>

v>

]
= L(I +XCX>)L>

= LL̄D̄L̄>L>

= L+L
>
+, with L+ := LL̄D̄

1
2 .

Note that we have now determined a triangular factor L+ at order O(m2).
Furthermore, we obtain the desired modification on the mixed objects according
to

L−1
+ S̄ = D̄−

1
2 L̄−1

(
L−1S̄

)
.

This involves solving l linear systems in L̄ which does not require more than
O(lm) floating point operations, cf. Algorithm 3, without using any rotations!
For the update of S̄>(L+L

>
+)−1S̄, we can simply use the approach (44) suggested

in the previous section.

The following summarizing proposition has thus been shown.

Proposition 6.2 (Low-rank semi-normal modification).
The computational complexity for an update of the data structure resulting from
a rank-two modification of the semi-normal approximation can be bounded by the
order O(m ·max(m, l)). There exists a rotation-free updating procedure, which
fulfills this complexity bound.
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6.4 Main Result

The subsequent central theorem reflects the main result and concludes the sec-
tion by giving a total operations count for L-SR1-SN which should comprise
all operations necessary to retrieve the matrices involved in solving the KKT-
system: step computation, Hessian update, updating the semi-normal approxi-
mation, mixed updates and working set changes. Being compulsory for any line
search-based Newton-type optimizer, the cost of computing the right side of the
KKT-system (23) and the cost of the step size determination is not specific to
L-SR1-SN and is thus not accounted for. Otherwise, a couple of objective and
constraint function evaluations have to be added to the operations count given
below.

Theorem 6.3 (L-SR1-SN - total cost-per-KKT-solution).
The computational cost-per-iteration for solving the KKT-system with L-SR1-
SN can be restricted to an operations count of order

O(ln+m ·max(m, l) + l3) + t ·OPS(eval(c)),

where N 3 t = O(1), t ≤ 31, is a fixed constant. The entire updating procedure
can be effected without rotations or reflections.

Proof. The left addend is an immediate consequence of the complexity results
of the corresponding updates, provided m ≤ n (LICQ). However, the number
of constraint function evaluations can be further diminished by reorganizing
derivative calculations in the inner loop as follows:
First, we consecutively compute the two Jacobian-vector and Jacobian-transpos-
ed vector products needed for the step calculation (28). W.l.o.g., suppose a
descent direction has been found. (Otherwise, the inner loop would be repeated
and Hessian updates would not have to be accounted for.) Secondly, after
moving to the next iterate x+, we simultaneously propagate the two directions
c′A(x+)>σ, c′A(x+)>L−>σ from the BFGS-update and the orthogonality condi-
tion by employing the vector mode of AD, cf. Theorem 2.7. Thirdly, we may
perform the four tangent propagations from the Hessian and mixed updates (Al-
ternative 2) as well as the remaining expression c′A(x+)v, v := c′A(x+)>σ from
the BFGS-update (35) simultaneously. Adding up the corresponding evaluation
multipliers yields t = 28. Finally, we have to account for a possible space dila-
tion which comprises computation of another Jacobian-vector product, leading
to a maximum of t = 31.

Corollary 6.4 (Total cost-per-iteration).
Suppose ι > 1 inner loop iterations are necessary to find a descent direction.
Then the complexity bound of one outer loop iteration roughly equals ι times the
upper complexity bound.

Theorem 6.5 (Semi-normal method - memory space requirement).
L-SR1-SN can be applied with a memory space of maximal dimension

m2 +O(nl).
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Proof. The assertion follows directly from the fact that the data structure given
in Table 1 suffices to retrieve the KKT-solution according to (28).

We immediately underscore the distinct reduction in required memory as L-SR1-
SN does not require any objects of size O(m · n) in comparison to conventional
Quasi-Newton methods or even the latest ZEDISDEAD implementation! The
computational effort of order O(m · n) from ZEDISDEAD is replaced by an ex-
tended usage of algorithmic differentiation incorporating the Jacobian of active
constraints, thus necessitating a slight overhead with regard to the number of
constraint evaluations per iteration.
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7 Maintaining Positive Definiteness
of the L-SR1 Hessian

By virtue of the second order sufficiency criterion, Theorem 3, and Theorem
3.3, the Hessian of the Lagrangian should be positive definite on the null space
of the Jacobian of active constraints. It is highly desirable to maintain this
property for the Hessian approximation B. Since the (L-)SR1-method does
not preserve positive definiteness of Z>BZ in the first place, this section is
dedicated to finding restrictions on the initialization scalar γ which guarantee
positive definiteness of the L-SR1 approximation B = B(γ).

To this end, we recall the definitions of the middle matrices needed for B(γ)
and B(γ)−1, respectively:{

M = M(γ) = P − γS>S ∈ Rl×l

N = N(γ) = Q− γ−1W>W ∈ Rl×l.

We begin with an algebraic lemma describing the influence of γ on the inertia
of B(γ).

Lemma 7.1 (Index functions).
If Q is positive definite, then the following assertions hold true:

(i) There exists a Γ > 0, such that ∀ γ > Γ it holds: B(γ) is positive definite.

(ii) If additionally S>S is positive definite, the two index functions defined by{
(0,∞) 3 γ 7→ index(−M(γ)) ∈ {0, . . . , l} and
(0,∞) 3 γ 7→ index(N(γ)) ∈ {0, . . . , l},

are monotonically decreasing.

Proof. (i): Positive definiteness of Q implies the existence of a Γ, such that
N = Q − (1/γ)W>W is positive definite ∀ γ > Γ. Since N is the middle
matrix in the compact representation of B(γ)−1, cf. (18), we also obtain positive
definiteness of B(γ)−1 and thus of B(γ).
(ii): Let CQ denote a Cholesky factor of Q, i.e. Q = CQC

>
Q . Sylvester’s law of

inertia (A.2) ensures that N and γI − C−1
Q W>WC−>Q share the same inertia.

Since spec(γI − C−1
Q W>WC−>Q ) = γ · (1, . . . , 1) − spec(C−1

Q W>WC−>Q ), the
assertion is proven. The analogous reasoning can be applied to −M .

In any case, we want to ensure that Q, which equals S>∇2
xxf(x)S(� 0)8 in

quadratic programming, and S>S remain positive definite throughout the al-
gorithm. On one hand, this assumption is related to Lemma 7.1, on the other
hand we want to prevent linear dependency among the primal steps stored in
S. Iterates which destroy this important property will be discarded or replaced.

8provided the steps are linearly independent and the objective function f is strictly convex
quadratic
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7 POSITIVE DEFINITENESS OF THE L-SR1 HESSIAN

One way to efficiently check positive definiteness is to update an existing LDL>
factorization (which will be shown to require negligible effort of order O(l2))
and to verify that all main diagonal entries forming D+ are strictly positive.

Positive definiteness of Q. For simplicity, write S = [s0, . . . , sl−1] and W =
[w0, . . . , wl−1]. Q, cf. (18), is defined by Q = D +G+G> where

D = diag(s>0 w0, . . . , s
>
l−1wl−1)

Gij =

{
s>i−1wj−1 , if i < j

0 , else.
(G ∈ Rl×l)

To investigate possible changes in the definiteness of Q, suppose that Q is posi-
tive definite and a suitable LDL>-factorization is available, i.e. Q = LQDQL

>
Q.

Further consider the potential Hessian updates mentioned in section 5 and their
effects on Q.

Removal. Suppose the oldest secant pair (s0, w0) is removed from S and W ,
respectively. Consequently, Q+ is obtained from Q by erasing the first column
and line. The LDL>-factorization of Q+ can be obtained as follows:

Q =:
[
1 0
l L̃

]
︸ ︷︷ ︸

:=LQ

[
d 0
0 D̃

]
︸ ︷︷ ︸

:=DQ

[
1 l>

0 L̃>

]

=
[
d dl>

dl dll> + L̃D̃L̃>

]
Equating the (2, 2)-blocks yields a rank-one Cholesky modification:

Q+ = L̃D̃L̃> + dll>,

The new factorization Q+ = L+
QD

+
Q(L+

Q)> can be found with complexity O(l2)
using one of the algorithms introduced in section 6.3. Note that Q+ always
stays positive definite, since

Q+ = XQX> for X :=
[
0l−1 Il−1

]
.

Extension. Suppose a secant pair (sl, wl) is added to the limited memory ma-
trices S and W . Consequently, Q gains a new line and column via q = S>wl
and β = s>l wl.

Q+ =
[
Q q
q> β

]
=

[
LQ 0
l>+ 1

]
︸ ︷︷ ︸

=:L+
Q

[
DQ 0
0 d+

]
︸ ︷︷ ︸

=:D+
Q

[
L>Q l+
0 1

]

Equating the corresponding entries yields{
l+ = D−1

Q L−1
Q q

d+ = β − l>+DQl+
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7 POSITIVE DEFINITENESS OF THE L-SR1 HESSIAN

and finally we have to verify that d+ is strictly positive. Note that this is
impossible, whenever the curvature β = s>l wl is not positive!

Replacement. Assume a given secant pair (sj , wj) shall be substituted by a new
pair (s′j , w

′
j). The corresponding rank-two update on Q is given by

Q+ = Q+ ve>j + ejv
> − vjeje>j ,

where ej denotes the j-th cartesian unit vector and v ∈ Rl is defined by

vi :=


(S>w′j)i −Qij , if i < j

s′>j w
′
j −Qjj , if i = j

(W>s′j)i −Qij , if i > j.

(i = 1, ..., l)

Again, we can apply the Cholesky low-rank updating methods from section 6.3
to obtain Q+.

The same procedures can obviously be conducted to ensure that S continues
having full column rank. If either S>S or Q loses its positive definiteness due
to an arbitrary Hessian update, one might consider skipping the update. To
summarize, we make the following

Remark 7.2 (Computational Complexity).
The operations count for any of the Cholesky updates on Q and S>S resulting
from a typical Hessian modification, is bounded by the order O(l2). As a con-
sequence, we have to add the rather small matrices LS>S , DS>S , LQ, DQ ∈ Rl×l
to our data structure in memory.

A different strategy is proposed in [21]: Here a damping parameter, see (13),
for the L-SR1-update is introduced and a compact representation formula with
damping is derived. Appropriate conditions on the damping parameter ensure
positive definiteness of Q.

γ-adjustment. As arbitrary updates on S and W may cause the loss of positive
definiteness of B(γ), we somehow need to restrict the initialization factor γ to
retain this property. In [21], a sufficient augmentation of γ (i.e. γ > Γ) is sug-
gested, thereby enforcing positive definiteness of B(γ) according to Lemma 7.1,
part (i). In view of the KKT-formulae (28) for (d, σ) however, it is desirable to
keep variations in the scaling of B(γ) as small as possible. Continuous augmen-
tation of γ may for instance lead to numerical instabilities like blow-up in the
Lagrange-multiplier λ. Additionally it is worth remarking, that choosing γ > Γ
leads to positive definiteness of the middle matrix N , which is not indispensable
for positive definiteness of B(γ). In order to obtain a less volatile adjustment
criterion for γ, we state the following lemma.

Lemma 7.3 (Lehmann’s criterion).
B(γ) is positive definite if and only if −M(γ) and N(γ) have the same inertia.

Proof. See [21].
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Conclusion. Assuming positive definiteness of

Q = CQC
>
Q , CQ = LQD

1
2
Q and

S>S = CS>SC
>
S>S , CS>S = LS>SD

1
2
S>S

,

we can enforce positive definiteness of B(γ) by the following γ-adjustment strat-
egy:

(i) Determine the spectrum of the γ-invariant l× l matrices C−1
S>S

PC−>
S>S

and
C−1
Q W>WC−>Q by an appropriate symmetric eigenvalue solver.

(ii) Determine the interval I = (γ0, γ1) ⊂ R
+, γ0 > 0, γ1 ∈ (γ0,∞], ensuring{

index(−M(γ′)) = index(N(γ′)),
detM(γ′) 6= 0 6= det(N(γ′))

∀ γ′ ∈ (γ0, γ1), (51)

which is closest to the current initialization scalar γ.

(iii) Choose γ+ ∈ (γ0, γ1).

One can observe, that index jumps can only occur if the positive eigenvalues
of the matrices C−1

S>S
PC−>

S>S
and C−1

Q W>WC−>Q are ‘exceeded’ by continuous
augmentation of γ starting from γ = 0. Consequently, we avoid testing equality
of the indices within an interval where both indices remain constant. These
intervals can be found easily by concatenating the two sets of eigenvalues in one
vector. Afterwards they are sorted by ascending absolute value (cf. definition of
‘v’ in Algorithm 4). This is the basis for the following γ-adjustment Algorithm
which computes an efficient shift in γ inducing positive definiteness of B(γ+).
We write in short form for v ∈ Rn : ng(v) := |{i ∈ {1, ..., n} : vi < 0}|.
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Algorithm 4 (γ-adjustment ).

set quot ∈ (0, 1), k = 1
compute T1 := C−1

S>S
PC−>

S>S
, T2 := C−1

Q W>WC−>Q
compute spec(T1), spec(T2)
set v1 = − spec(T1) + γ1l, v2 = − spec(T2) + γ1l
sort v = [|v1|, |v2|] ∈ R2l by ascending absolute value
for (k = 2 . . . (2l + 1))

if (k = 2l + 1)
choose suitable 4γ > v(2l)
if (4γ < γ)

set 4γ = −4γ
break

set gap = v(k)− v(k − 1)
set 4γ = v(k − 1) + gap ∗ quot
if (4γ < γ)

if (ng(v1 −4γ1l) = ng(v2 −4γ1l))
set 4γ = −4γ
break

if (ng(v1 +4γ1l) = ng(v2 +4γ1l)
break

end
set γ+ = γ +4γ

Practical application has shown, that choosing quot = 0.5 yields the most stable
updates, as closeness to singularity should be avoided. Note that we prefer
negative shifts 4γ in order to prevent γ from blowing up. The computational
effort for this algorithm is basically governed by the determination of the two
spectra by an appropriate symmetric eigenvalue solver, which can be assumed
to be bounded by the order O(l3).
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Example. Figure 7 illustrates a typical application provoked by non-equal indices
resulting from a non-suitable γ. The example is taken from the application of L-
SR1-SN with l = 6 to problem LUKVLI13 from the CUTEr test set [3]. At the
seventh iteration, we are confronted with the following situation, which requires
adjustment of γ:

spec(−C−1
STSPC

−>
STS) ≈

[−3.81E+02,−2.63E+01,−2.51E+01,−6.07E+00,−2.48E+00, 8.14E+01]

spec(−C−1
Q W>WC−>Q ) ≈

[−8.15E+02,−2.86E+02,−3.03E+01,−2.63E+01,−1.47E+01,−4.96E+00]

γ = 39.8.

Figure 1: Example: non-equal indices

As one can easily observe, there are two possible intervals for the choice of
γ. The γ-augmentation approach from [21] would result in choosing γ+(> Γ)
belonging to the interval at the right margin. In this case however, a smaller
and thus more efficient modification of γ is absolutely sufficient:

Figure 2: γ-Adjustment for LUKVLI13, l = 6, two feasible intervals
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8 The LRAMBO Algorithm featuring L-SR1-SN

8.1 Merit Function and Line Search Strategy

The following table roughly sketches how L-SR1-SN can be embedded in the
LRAMBO package employing the most successful combination of available op-
tions. Note the new features with regard to Algorithm 2.

Algorithm 5 (LRAMBO with L-SR1-SN).

initialize k = 0, x0, λ0, ε, L0 = Im, B0 = γIn
while stopping criterion not fulfilled

do
solve KKT-system (23) using (28) → [dk, σk]
if descent w.r.t. merit function [AUGMLAGR] break
update semi-normal factor L [SNBFGS]
update mixed objects [CR]
adjust working set if necessary

while no descent direction found and change in working set
compute αk by line search [ShaZ] on merit function [AUGMLAGR]
update xk+1 = xk + αkdk, λk+1 = λk + σk
adjust working set if necessary
update semi-normal factor L [SNBFGS]
update mixed objects [CR]
update Hessian [L-SR1], use Algorithm 4 to adjust

initialization scalar γ, if necessary
set k → k + 1

end

CR: columnwise recomputation
SNBFGS: BFGS-update of the semi-normal Jacobian approximation

Step size determination. In our total Quasi-Newton framework, merit func-
tions serve as guidelines for efficient step multipliers combining reduction in the
objective function with feasibility. The main goal is to globalize the total Quasi-
Newton algorithm, in that convergence from arbitrarily remote starting points
can be achieved. For the simplified case of a known active set A, we mention
the most common representatives:
The classical non-differentiable L1-penalty function

L1(x;µ) := f(x) +
µ

2

∑
i∈A
|ci(x)|,

the differentiable Augmented Lagrangian function,

LA(x, λ;µ) := f(x) +
∑
i∈A

λici(x) +
µ

2
‖cA(x)‖22, (52)

57



8 THE LRAMBO ALGORITHM FEATURING L-SR1-SN

and the Primal-Dual Augmented Lagrangian function

LPD(x, λ;µ1, µ2) := L(x, λ) +
µ1

2
‖∇xL(x, λ)‖2 +

µ2

2
‖cA(x)‖2,

with strictly positive penalty parameters µ,µ1 and µ2. As the Augmented La-
grangian function displays the best numerical results in conjuction with L-SR1-
SN, we briefly summarize some theoretical properties of this well-known merit
function. Provided the set of Lagrange multipliers {λk} is bounded, the iter-
ates xk can be forced to tend to feasibility by sufficiently increasing µ in LA.
To contrast the dichotomy between exactness and differentiability of ordinary
penalty functions of the form

pµ(x) = f(x) + µl(x), where

l(x) fulfills

{
l(x) = 0 , if cA(x) = 0,
l(x) > 0 , else,

we state the following proposition dealing with the desirable exactness property
of the Augmented Lagrangian function:

Proposition 8.1 (Exactness of LA).
Let x∗ be a local solution to (4) where LICQ and SOSC are fulfilled at the
KKT-point (x∗, λ∗) ∈ Rn×m. Then there is a µ̄ > 0, such that ∀µ ≥ µ̄ it holds:

x∗ is a strict local minimizer of LA( . , λ∗;µ) .

Proof. See [20].

The major improvement in comparison to the L1-penalty function is thus the
possibility to obtain the solution of the constrained problem by solving a dif-
ferentiable unconstrained problem without necessarily letting the parameter µ
tend to infinity, given that the Lagrange multiplier estimate is sufficiently ac-
curate. Indefinite augmentation of µ, which is likely to cause severe numerical
instabilities due to a deteriorating condition of the reduced Hessian, can thus be
circumvented. Under similar conditions, Proposition 8.1 can be further relaxed
to fitting the more common case where we do not dispose of the adjoint solu-
tion λ∗, see again the text book by Nocedal and Wright [20]. In the presence of
inequalities, the Augmented Lagrangian can locally be restricted to the equality-
constrained case by a correct guess of the active set, otherwise we have to work
with the current working set. Further extensions like inclusion of slack variables
replacing the inequalities are possible. Another issue concerns the adaptation
of the penalty parameters. In view of Theorem A.8, one may try to change µ,
whenever the angle between the KKT-based direction (d, σ) and the steepest
descent direction (−∇xLA(x, λ;µ),−cA(x)) tends towards orthogonality. Basic
properties as well as further enhancement to the inequality constrained case of
the Primal-Dual Augmented Lagrangian can be found in [10] and [5].

To link step computation in L-SR1-SN to the Augmented Lagrangian, consider
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Proposition 8.2 (Descent property of L-SR1-SN).
Suppose (d, σ) is obtained by (28). Then it holds that, d is a descent direction of
LA(., λ+;µ) at x, provided the Jacobian approximation is sufficiently accurate.

Proof. The lower equation in (28) induces

∇xLA(x, λ+;µ)>d = ∇xL(x, λ+)>d+ µcA(x)>∇cA(x)>d
= g(x, λ)>d+ σ>∇cA(x)>d+ µcA(x)>∇cA(x)>d

=
[
−Bd− c′A(x)>σ

]>
d+ σ>∇cA(x)>d

+ µcA(x)>∇cA(x)>d
= −d>Bd+ µcA(x)>∇cA(x)>d.

Taking account of Proposition 4.3, we retrieve

c′A(x)d = −cA(x)−Dσ

inducing

∇LA(x, λ+;µ)>d = −d>Bd− µ‖cA(x)‖2 − µ cA(x)>Dσ︸ ︷︷ ︸
≈0

≈ −d>Bd︸ ︷︷ ︸
<0

−µ‖cA(x)‖2 < 0,

for a sufficiently small Jacobian approximation error D. This proves the asser-
tion.

Line search. Given a suitable merit function Φ (here: Augmented Lagrangian)
and descent direction d ∈ Rn, we still need to specify our line-search strategy
for the determination of a step size α at a fixed iterate (x, λ) ∈ Rn × Rm, i.e.

α ≈ arg min
α>0

Φ(x+ αd), where Φ( . ) := LA( . , λ;µ). (53)

Our method of choice to tackle problem (53) is the rather new ShaZ (‘Shift
and Zoom’) line search which is based on a cubic Hermite interpolation of the
objective function Φ( . ) : R → R using function values as well as slopes at the
current search interval borders αl and αr. Usually, we choose αl = 0 and αr = 1
as our initial search interval. Prior to the line search, we need to fix an upper
bound αup on α (αup > 0) and on the number of right shifts. In a typical
iteration, the actual reduction

ared := Φ(αl)− Φ(αr)

is compared to the predicted reduction

pred := Φ(αl)− Φ(αmin),

where αmin denotes the minimizer of the cubic interpolation polynomial. For
Φ ∈ C1(R) and a given ‘nondegenerate’ search interval [αl, αr], i.e. αl < αr and
αup > αr as well as parameter q ∈ (0, 1), we summarize the basic functioning
of a typical ShaZ iteration in the following table.
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Algorithm 6 (A ShaZ iteration).

determine cubic estimate P (α) by Hermite interpolation using
points αl, αr and slopes Φ′(αl) and Φ′(αr)

if P (α) has a minimum
set αmin = arg minP (α)

else
set αmin = −∞

determine ared, pred
if (Φ(αr) > Φ(αl))

set αup ← αr, i.e. reduce upper bound

if αmin /∈ (αl;αup) and Φ′(αr) < 0
SHIFT RIGHT

if (ared < q · pred) and (αmin ∈ (αl;αr))
ZOOM

if (ared < q · pred) and (αmin > αr) and (Φ′(αr) < 0)
SHIFT RIGHT

if (ared ≥ q · pred) and (Φ′(αr) ≤ Φ′(αl)) and (αr < αup)
and (Φ′(αr) < 0)

SHIFT RIGHT
else

set α = αr, i.e. step size found
break

end

For further details such as the exact determination of the shifts, we refer to [18].
In case we do not face a degenerate case, we should have come up with a step
size α fulfilling{

ared ≥ q · pred and
Φ′(αr) ≥ Φ′(αl).

Properties. Under relatively mild conditions on the objective function, the ShaZ
algorithm terminates after a finite number of iterations. Similar conditions
ensure that ShaZ represents an effective line search in the sense of Definition A.7,
which is important in view of global convergence, cf. Theorem A.8. Moreover,
its efficiency, particularly on problems with negative curvature, has been verified.
For further information, see [18]. However, it has to be pointed out that the
SHaZ line search does not guarantee positive curvature for the computed step
multiplier α, i.e. s>w > 0, with w = w(α) = g(x + αd, λ) − g(x, λ), is not
enforced. As the latter is a necessary condition for positive definiteness of Q,
this may conflict with the strategy of maintaining positive definiteness of B.
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8.2 Numerical Results

Implementation details. A first implementation of the presented semi-normal
method within the L-RAMBO package following Algorithm 5 has currently been
tested. Despite the rather unconventional character of this new approach, it has
already proven quite robust on a large variety of both constrained and uncon-
strained nonlinear problems. The following table contains a diverse collection
of problems from the CUTEr test set [3] solved by L-SR1-SN embedded in
LRAMBO.9 In all tests, ‖c‖ < 10−7 and ‖g‖ < 10−7 has served as a conver-
gence criterion. The corresponding problems have been solved with an upper

AIRCRFTA AIRCRFTB AKIVA ALLINIT ALLINITC
ALLINITU ALSOTAME ARGLINA ARGLINB ARGLINC
ARWHEAD AVGASA BARD BDEXP BEALE
BIGGS3 BIGGS5 BIGGS6 BOOTH BOX2
BOX3 BROWNAL BROWNALE BROWNBS CLUSTER

CUBENE DECONVB DECONVU DEMYMALO DIPIGRI
DUALC5 EXPFIT EXTRASIM FCCU GENHS28
GOFFIN GOTTFR GULF HADAMALS HAIRY
HATFLDC HIMMELBA HIMMELBC HIMMELBE HIMMELP3
HIMMELP4 HIMMELP6 HS1 HS10 HS100

HS11 HS113 HS119 HS12 HS13
HS16 HS18 HS2 HS21 HS22
HS23 HS24 HS25 HS26 HS27
HS28 HS29 HS3 HS30 HS31
HS32 HS33 HS34 HS35 HS36
HS37 HS39 HS38 HS41 HS42
HS43 HS44 HS46 HS48 HS49
HS5 HS50 HS51 HS52 HS54
HS55 HS6 HS60 HS65 HS7
HS70 HS76 HS8 HS86 HS88
HS89 HS9 HS92 LOTSCHD LSNNODOC

MANCINO MARATOS MIFFLIN1 MIFFLIN2 MINSURF
ODFITS PORTFL1 PORTFL2 PORTFL3 PORTFL4
PORTFL6 RES ROSENBR SIMPLLPA SIMPLLPB

TFI3 ZECEVIC2 ZECEVIC3 ZECEVIC4 ZY2

Figure 3: Collection of CUTEr problems (mainly small- and medium-sized) solved with L-
SR1-SN included in the L-RAMBO package, for employed options see Algorithm 5 (colored
names indicate superlinear convergence after at most ten iterations)

bound on the number of stored limited memory update vectors of l = 4. In
general, we have observed that choosing l reasonably small, i.e. l ∈ {3, ..., 6},
has lead to the best performance in view of stability of Hessian-related objects
and moderate γ-adjustment. Additionally one can expect a better quality of the
mixed objects if l is kept small. The initialization factor was chosen according
to

γ = γest :=

{
‖∇f‖2
|f | , ‖f‖ 6= 0

1.0 , else.
or γ = 1.0

9For Algorithmic Differentiation of function code written in Fortran, as produced by de-
coding SIF files, the HSL_AD02 tool can be used from within CUTEr; for C++ code, use for
instance ADOL-C
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and the two spectra for the index comparison were determined using the adjoint
eigen solver provided by the C++ template library ‘Eigen’ [1].

The user is only demanded to provide the code which defines the problem as
well as an arbitrary starting point. The results were obtained using the options
given in the previous section, i.e. we chose Augmented Lagrangian as our pre-
ferred merit function and performed a SHaZ line search to a computed descent
direction. To illustrate a typical optimization procedure, consider the following
two-dimensional example with two constraints.

Example 8.3 (CUTEr test problem HS14 by Bracken and McCormick [6]).

min
x=(x1,x2)

f(x) = (x1 − 2)2 + (x2 − 1)2, s.t.{
x1 − 2x2 + 1 = 0
1
4x

2
1 + x2

2 − 1 ≤ 0

The following picture displays the iteration sequence, which, starting from an
infeasible x0, converges in just a few efficient steps towards the solution x∗ where
both constraints are active.

Figure 4: L-SR1-SN method on HS14: iterates, objective function and feasible set
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Large-scale optimization. The efficiency of L-SR1-SN as part of LRAMBO has
also been verified on a couple of high-dimensional problems with more than
10.000 variables. The following table illustrates the two examples LUKVLI9
(n = 10000,M = mI = 6) and COSINE (n = 10000,M = 0) from the CUTEr
test set which have been particularly successfully solved by L-SR1-SN. The per-
formance is compared to the IPOPT solver [27] and LRAMBO’s ZEDISDEAD
(ZID) implementation. The results for L-SR1-SN have been obtained using a
notebook with Intel Pentium M processor, 1.4 GHz, 1 GB RAM and a varying
amount of stored secant pairs:

NAME γ l iter c/f-evals CPU(s): L-SR1-SN (IPOPT / ZID)
LUKVLI9 1.0 3 14 472 2.74 (1.59 / 4.179)
COSINE γest 9 53 1672 7.58 (1.25 / 12.86)

Figure 5: L-SR1-SN performance: c/f-evals - total number of objective and constraint func-
tion evaluations, CPU(s) - total CPU time in seconds

Figure 6: Convergence behavior of L-SR1-SN and ZEDISDEAD on COSINE (left) and
LUKVLI9 (right)

Note that the run time of L-SR1-SN may have been slowed down by a lack of
parallelization in LRAMBO or other processes occupying the same core. More-
over, we have not yet made use of the vector mode of AD, such that gradients
and tangents have been propagated individually, thus causing an overhead of
constraint evaluations. In the unconstrained case, the method simplifies to
the L-SR1 method: the better performance on COSINE of L-SR1-SN com-
pared to ZEDISDEAD can be attributed to the new γ-adjustment strategy. On
LUKVLI9, L-SR1-SN also performs significantly better than ZEDISDEAD. As
constraint function evaluation can be assumed comparatively cheap (M = 6),
the per-iteration-cost of L-SR1-SN is ‘only’ of order O(3n) whereas ZEDIS-
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DEAD roughly requires the double effort O(6n). Moreover, the memory require-
ment is also halved, inducing a drastic reduction in the effort for memory-related
operations such as data fetches, pointer moves, etc. . However, L-SR1-SN does
not yet reach the robustness of ZEDISDEAD on the entirety of the CUTEr test
set.

Issues. Frequent skipping of the Hessian update has been identified as a major
source of bad performance10 of L-SR1-SN. This is mainly due to our skipping
rule, i.e. whenever Q loses its positive definiteness, we do not accept the update.
This seemingly is a too strong condition for many problems in particular when
using SHaZ. A promising remedy may consist of combining the strategy pro-
posed in section 7 with a damping strategy on the SR1-updates. Another issue
arising is step acceptance despite a clear violation of the orthogonality condition
(36) provoking a corrupted approximation of the SQP step and possible blow-up
in ‖λ‖ and c(x)>λ. In case of no appropriate penalty parameter adaptation,
this occasionally lead to an unintended increase in ‖c(x)‖ and ‖g(x, λ)‖ after
performing the line search on the Augmented Lagrangian. A promising strategy
to circumvent the latter problem, is performing semi-normal updates within the
inner loop of Algorithm 5 until the orthogonality condition is fulfilled up to a
certain exactness. Hence, an efficient re-organization of the updating procedure
in the inner loop is necessary. Moreover, a violation of the LICQ may cause
the algorithm to break down at certain points where information from the exact
Jacobian is taken to modify L (activation, BFGS-update of L). For these cases,
suitable remedies need to be found.

10non- or particularly slow convergence
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This work attempts to establish a theoretical basis for the application of semi-
normal Jacobian approximations to total Quasi-Newton methods by efficiently
extending usage of Algorithmic Differentiation, avoiding computation of full
derivative matrices. Since it was demonstrated how explicit storage of large
Hessian or Jacobian approximations can be avoided, the method can be imple-
mented at highest efficiency with regard to storage requirement. More precisely,
it suffices to allocate memory space with size m2 plus a small multiple of l · n
which means significant improvement in relation to current null space methods.
Moreover, the method combines favorable memory requirement with a bilinear
operations count per iteration. Accepting a small, fixed number of supple-
mentary AD calculations, computational complexity of order O(n ·m) vanishes
completely. Moreover, the γ-adjustment strategy for maintaining positive def-
initeness of the L-SR1-Hessian has been improved. By smart application of
Bennett’s algorithm, we have further shown how Cholesky-factorizations as well
as the stored data structure can be maintained rotation-free without giving up
the optimal operations count. As far as theoretical properties of L-SR1-SN are
concerned, it seems to be quite challenging to derive a general global convergence
result with regard to the rather intangible nature of the mixed objects.

L-SR1-SN as part of the LRAMBO solver thus represents an attractive alterna-
tive to existing total Quasi-Newton solvers for large-scale nonlinear programs.
A first implementation within the LRAMBO package has already displayed
quite promising results which encourages further research on additional heuris-
tics. For the purpose of improving robustness of the proposed algorithm, more
refinements and contributions need to be made. This especially concerns the
organization of the inner loop and the combination of different strategies for the
maintenance of the positive definiteness of the matrix Q as a key ingredient to
ensure the same property for the L-SR1-Hessian.

It is further conceivable to use semi-normal Jacobian approximations in con-
junction with a Limited Memory BFGS Hessian in an almost equally efficient
way using a similar data structure, cf. Theorem 3.5. This would result in a
slightly higher factorization effort as the dimension of the corresponding middle
matrices increases from l to 2l.
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A Appendix

A.1 Linear Algebra

The following basic statements from linear algebra as well as their proofs can
be found for instance in the classical text book by Golub and Van Loan [11].

Definition A.1 (Inertia, Index).
Let B ∈ Rn×n be a symmetric matrix.

(i) The index of B is defined as the number of its negative eigenvalues.

(ii) The triplet

(m, z, p) ∈ N3
0,

where m, z and p denote the number of negative, zero and positive eigen-
values of B respectively, is called inertia of B.

Theorem A.2 (Sylvester’s Law of Inertia).
If A ∈ Rn×n is symmetric and X ∈ Rn×n is nonsingular, then A and X>AX
have the same inertia.

Theorem A.3 (Sherman-Morisson-Woodbury formula).
Consider a rank-l modification of B ∈ Rn×n:

B+ = B + UCV T , with U, V ∈ Rn×l, C ∈ Rl×l.

(i) If det(B) 6= 0 6= det(C) then

det(B+) = det(B) det(C) det(C−1 + V >B−1U).

(ii) If additionally det(C−1 + V >B−1U) 6= 0, then

B−1
+ = B−1 −B−1U(C−1 + V >B−1U)−1V >B−1.

(iii) If p = 2, B = B> � 0, U = V and C = C> ∈ R2×2 (symmetric rank-two
update) with det(C) < 0, it holds

B+ is positive definite ⇐⇒ det(B+) > 0.

Theorem A.4 (Interlacing Eigenvalue Theorem).
Let B = B> ∈ Rn×n and B+ = B+δvv> ∈ Rn×n, v ∈ Rn, δ ∈ R. Let {λ1, ..., λn}
and {λ+

1 , ..., λ
+
n } denote the spectrum of B and B+, respectively, with

λ1 ≤ ... ≤ λn and λ+
1 ≤ ... ≤ λ+

n .

If δ ≥ 0, it holds

λ1 ≤ λ+
1 ≤ λ2 ≤ ... ≤ λn ≤ λ+

n .

Otherwise,

λ+
1 ≤ λ1 ≤ λ+

2 ≤ ... ≤ λ+
n ≤ λn.
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A.2 Optimization

Definition A.5 (Superlinear convergence).
A sequence (xk)k∈N in R

n converging to x∗ ∈ Rn, xk 6= x∗ ∀ k ∈ N is said to
converge (q-)superlinearly, if the quotient

qk :=
‖xk+1 − x∗‖
‖xk − x∗‖

fulfills lim
k→∞

qk = 0.

Definition A.6 (Gradient-Relatedness).
Define for a given function f : Rn → R the level set N0 := {x ∈ Rn : f(x) ≤
f(x0)} to a given start vector x0 ∈ R

n. A descent method is called gradient-
related if the search directions d = d(x), x ∈ N0, are selected such that the angle
between d and the steepest descent direction does not tend to orthogonality, i.e.

inf
x∈N0

cosϕ(x) > 0 with cos(ϕ(x)) := − ∇f(x)>d
‖∇f(x)‖‖d‖

.

Definition A.7 (Effective line search).
Let f ∈ C1(Rn,R). Assume the level set N0 is compact. A line search strategy
α = α(x; d) is called effective, if there exists a constant δ > 0 such that

f(x+ αd)− f(x) ≤ −δ‖∇f(x)‖2 cos2(ϕ(x))

holds true for all x ∈ N0 and corresponding descent directions d ∈ Rn.

Theorem A.8 (Global convergence).
Let f ∈ C1,1(Rn,R) and suppose the level set N0 is compact. Then gradient-
relatedness of the search directions and effectiveness of the line search imply
that all cluster points11 x∗ of the generated sequence {xk} ⊂ R

n are stationary,
i.e. ∇f(x∗) = 0.

Proof. The definition of an effective line search ensures

f(xk+1)− f(xk) ≤ −δ‖∇f(xk)‖2 cos2(ϕ(xk)) ∀ k ∈ N.

As N0 is compact, the sequence of negative numbers on the left hand side
must converge to zero, otherwise f would not be bounded below. Additionally,
cos2(ϕ(xk)) is bounded away from zero (gradient-relatedness), which induces
‖∇f(xk)‖ → 0 and thus ∇f(xk) → 0. Any convergent subsequence with limit
point x∗ must have the same property, such that ∇f(x∗) = 0.

11compactness of N0 ensures the existence of a cluster point
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