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The statement of [3, Lemma B.3] is not correct, unless further conditions on
β are imposed, cf. [2]. Using the notation of the latter reference, the proof of
this Lemma fails in the case where the Lebesgue measure of the subsets

{x ∈ Kj : dist(x,Ω \Kj) < δ} (1)

does not tend to zero as δ → 0. Here, Kj = Kj(δ) ⊂ Ω denotes a compact set
such that the restriction to Kj of the approximated function uj is continuous
and λ(Ω \Kj) < δ. The existence of Kj is ensured by Lusin’s theorem. Note
that (1) fails, for example, if K̊j = ∅. In this situation, the continuous cut-off
function gj defined in the latter reference simply vanishes everywhere on Ω and
the constructed sequence does not fulfill the desired approximation property. A
corresponding counterexample is provided in [2]. However, the result remains
true for continuous obstacles [1] as well as a large class of discontinuous obstacles
(e.g., in the case of lower semicontinuity), cf. [2].

The error does not affect the other results in the reference [3].
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