

Stochastic Optimization Methods in Scheduling

Rolf H. Möhring Technische Universität Berlin Combinatorial Optimization and Graph Algorithms

More expensive and longer ...

Eurotunnel

- Unexpected loss of \pounds 400,000,000 in first half of 1995
- Delays in project start and excecution

More expensive and longer ...

July 7, 1999

Government & parliament buildings in Berlin

- Not ready for move of the government & parliament
- Expected to be (much) more expensive

Kommissionsvorsitzende Kansy.

We are deeply disappointed and even somewhat depressed

Planning assumes certainty about project details

- deterministic models
- Project excecution is subject to many influences that are beyond control
 - machine breakdowns, weather, illness, ...
- \Rightarrow leads to underestimation of expected makespan and cost Fulkerson 1962

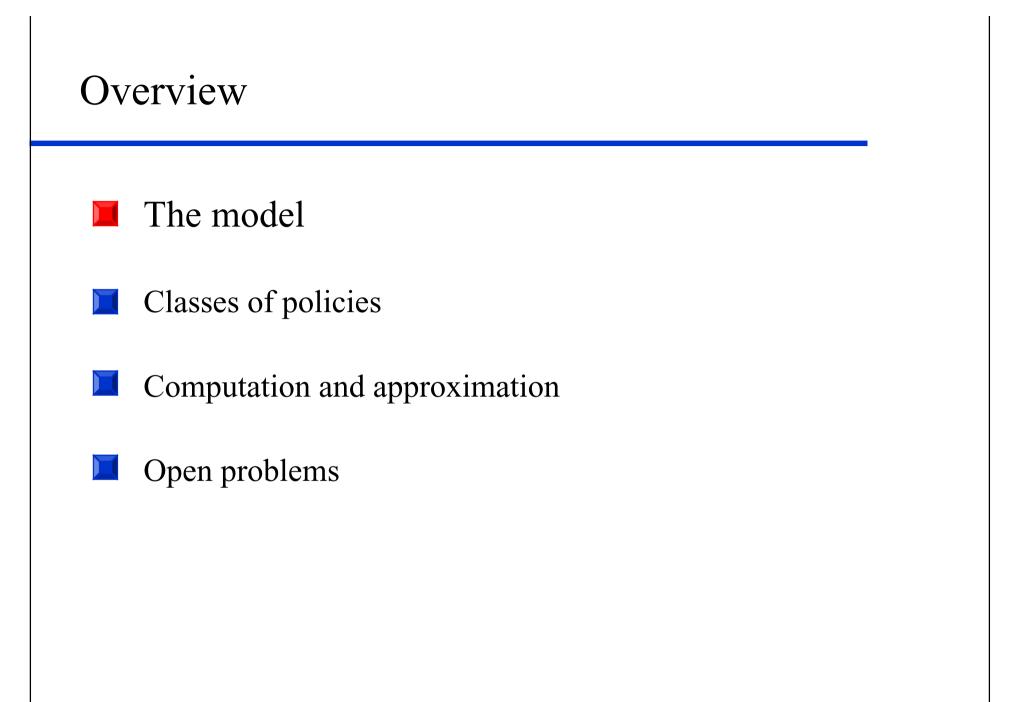
Therefore

□ Need models and techniques to cope with uncertainty

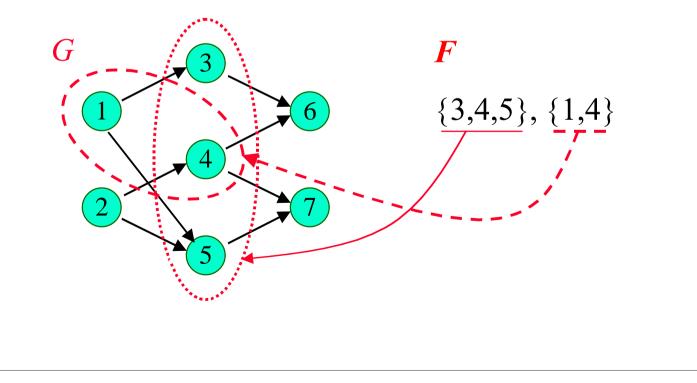
Coworkers

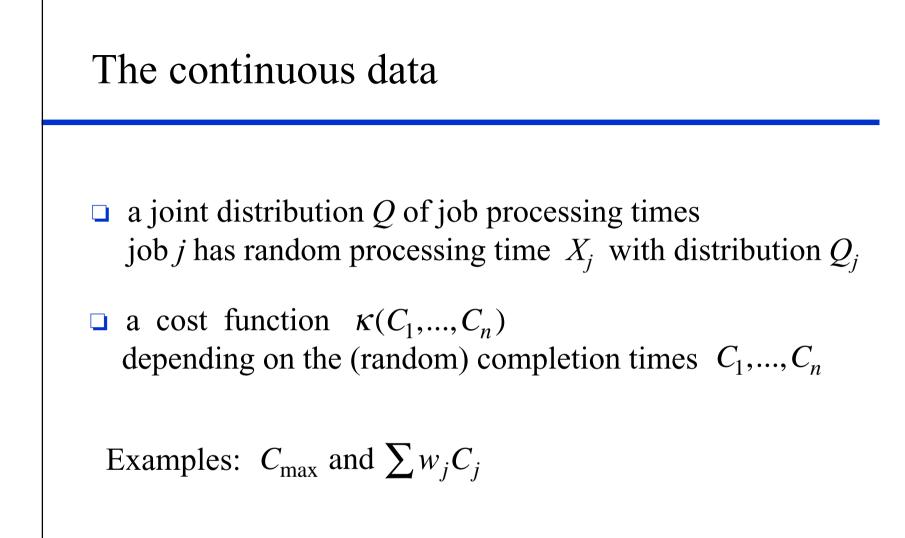
□ M. & Frederik Stork

- DFG Project "Scheduling Problems with Varying Processing Times"
- M., Andreas Schulz, Martin Skutella & Marc Uetz
 Esther Frostig & Gideon Weiss
 - GIF Project "Polyhedral Methods in Stochastic Scheduling"
- Background
 - M., Radermacher & Weiss 1982-1986



- \Box a set *V* of *n* jobs j = 1, ..., n (no preemption)
- \Box a graph (partial order) *G* of *precedence constraints*
- □ a system **F** of forbidden sets (*resource constraints*)

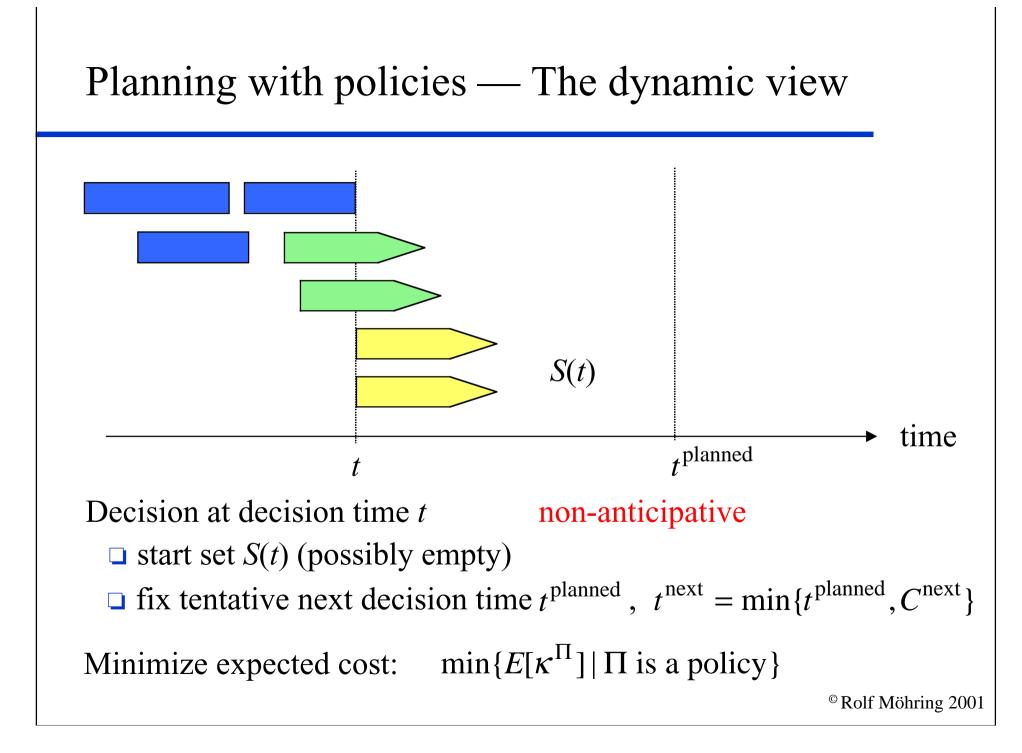




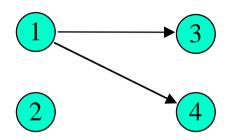
The objective

Plan jobs non-preemptively over time and ...

- □ respect the
 - precedence constraints
 - resource constraints
- minimize
 - expected cost or
 - other parameters of the cost distribution



Policies — An Example



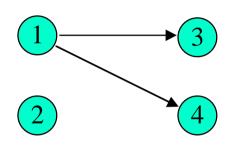
□ m = 2 machines $\Rightarrow F = \{2,3,4\}$ forbidden □ $X_j \sim \exp(a)$, independent

 \Box common due date d

 \Box penalties for lateness: v for job 2, w for jobs 3,4, v << w

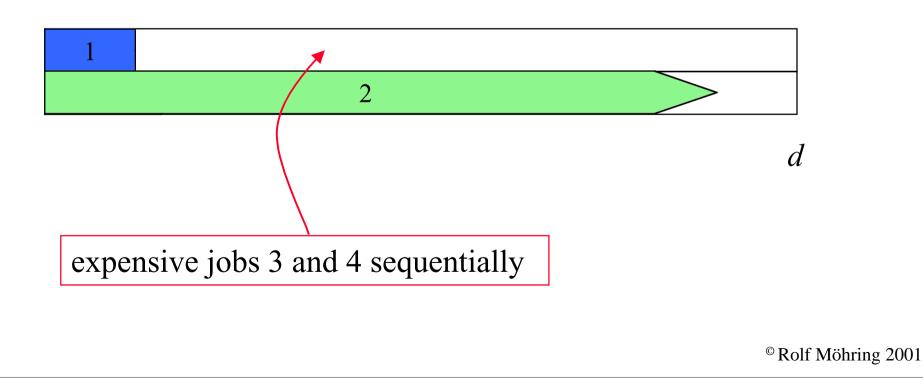
Minimize $E(\Sigma \text{ penalties })$

Example: starting job 1 and 2 early

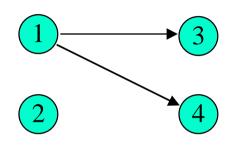


Start jobs 1 and 2 at t = 0

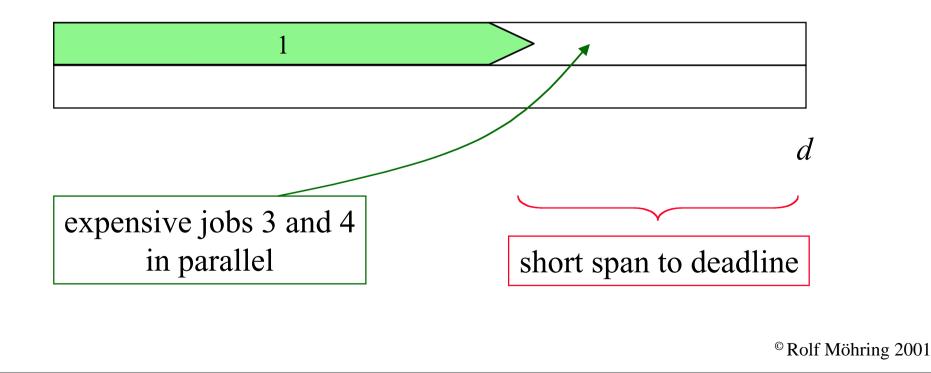
Danger: job 2 blocks machine



Example: leaving the second machine idle

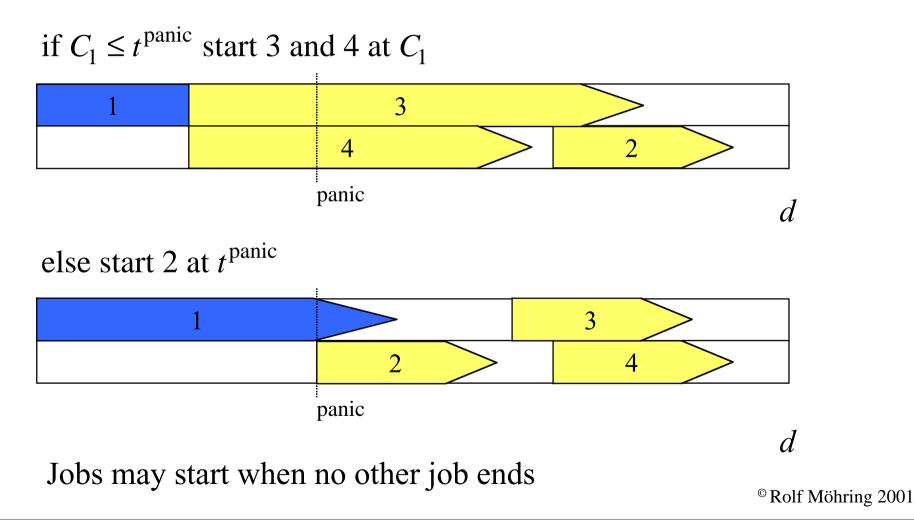


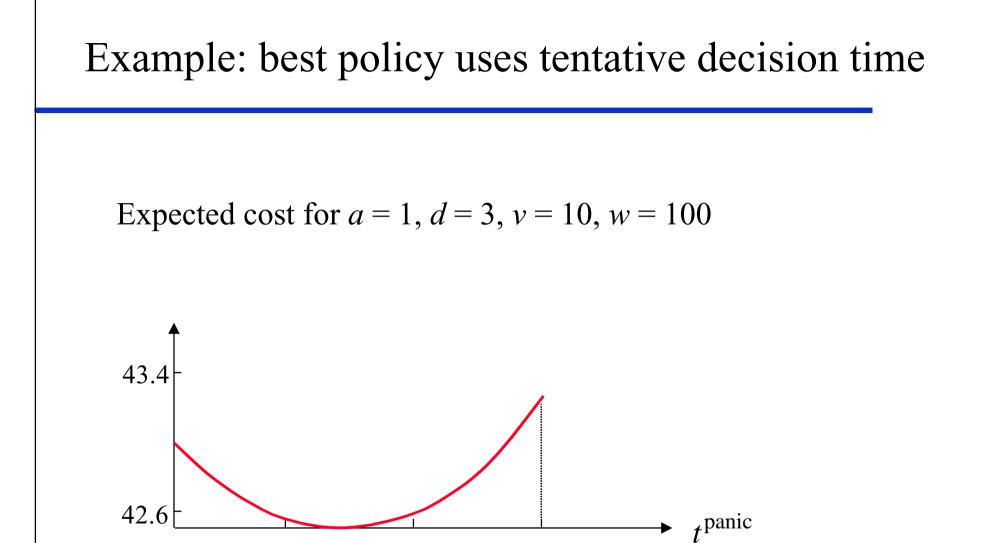
Start only job 1 and wait for its completion Danger: deadline is approaching



Example: use tentative decision times

Start 1 at time 0. Fix tentative decision time t^{panic}





d = 3

2

Comparison with Stochastic Programming

2-stage stochastic program:

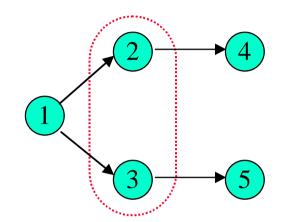
min E[
$$f(\boldsymbol{\xi}, x_1, x_2(\boldsymbol{\xi}))$$
]
s.t. $x_1 \in C_1$
 $x_2 \in C_2(\boldsymbol{\xi}, x_1)$

- ξ observation
- x_1 first stage decision
- x_2 second stage decision

 ξ independent from x_1 in this model but not in stochastic scheduling!

Stability of poli	cies	
Data deficiencies, us require stability cond		proximate methods (simulation)
\tilde{Q} approximates Q $\tilde{\kappa}$ approximates κ		$OPT(\tilde{Q}, \tilde{\kappa})$ approximates $OPT(Q, \kappa)$

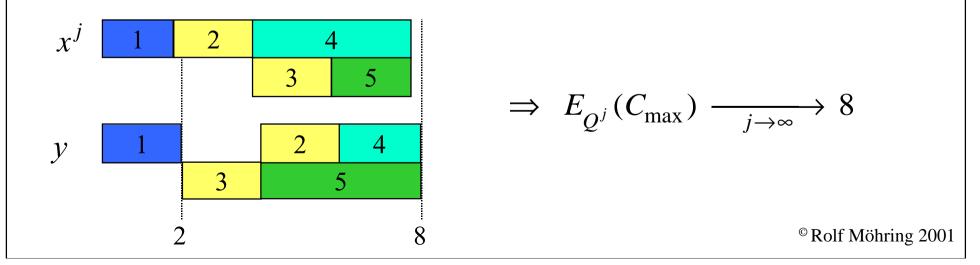
Excessive information yields instability



min
$$E(C_{\text{max}})$$

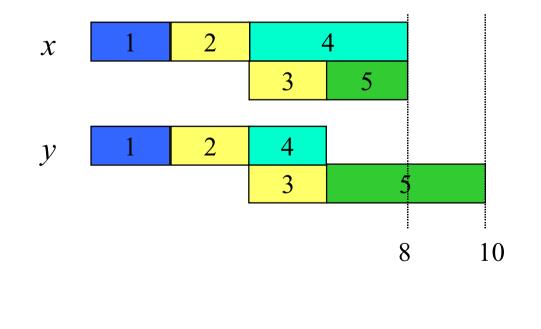
 $Q^{j}:\begin{cases} x^{j} = (2 - \frac{1}{j}, 2, 2, 4, 2) \text{ with probability } \frac{1}{2} \\ y = (2, 2, 2, 2, 4) \text{ with probability } \frac{1}{2} \end{cases}$

Exploit info when 1 completes



$$Q^{j} \xrightarrow{j \to \infty} Q : \begin{cases} x = (2,2,2,4,2) \text{ with probability } \frac{1}{2} \\ y = (2,2,2,2,4) \text{ with probability } \frac{1}{2} \end{cases}$$

No info when 1 completes. So start 2 after 1

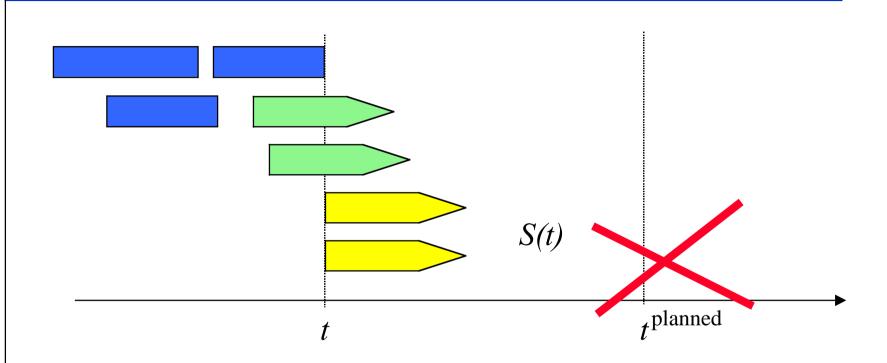


$$\Rightarrow E_Q(C_{\max}) = 9$$

$$\neq \lim_j E_{O^j}(C_{\max}) =$$

8

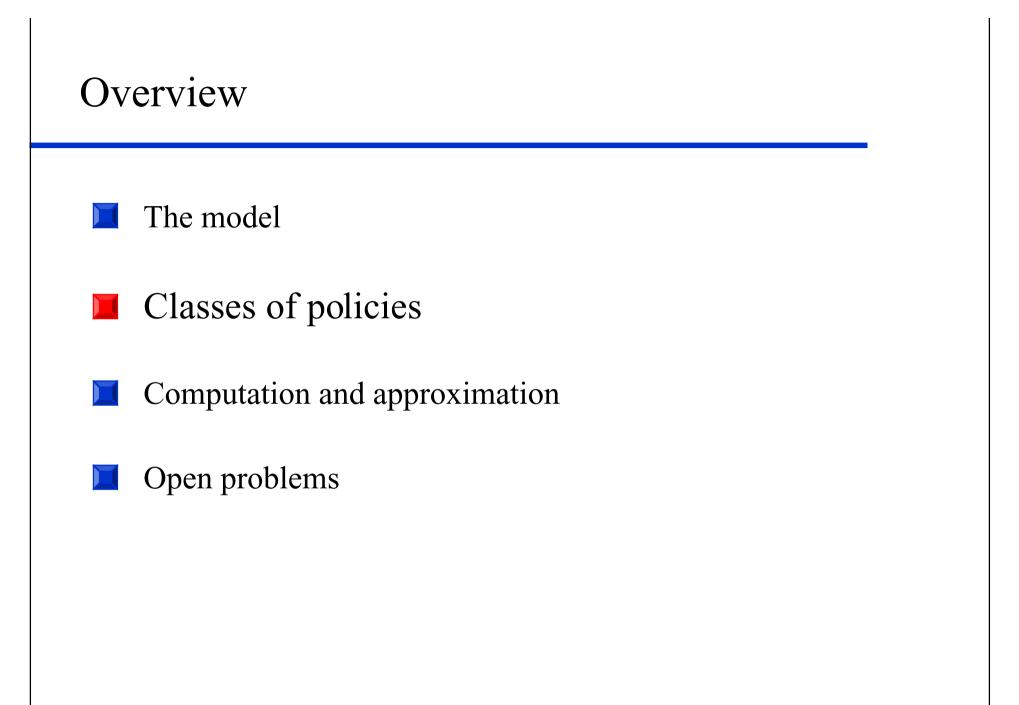
Robust information and decisions



Robust information at time *t*

- \Box which jobs have completed by *t*
- \Box which jobs are running at *t*

Start jobs only at completions of other jobs

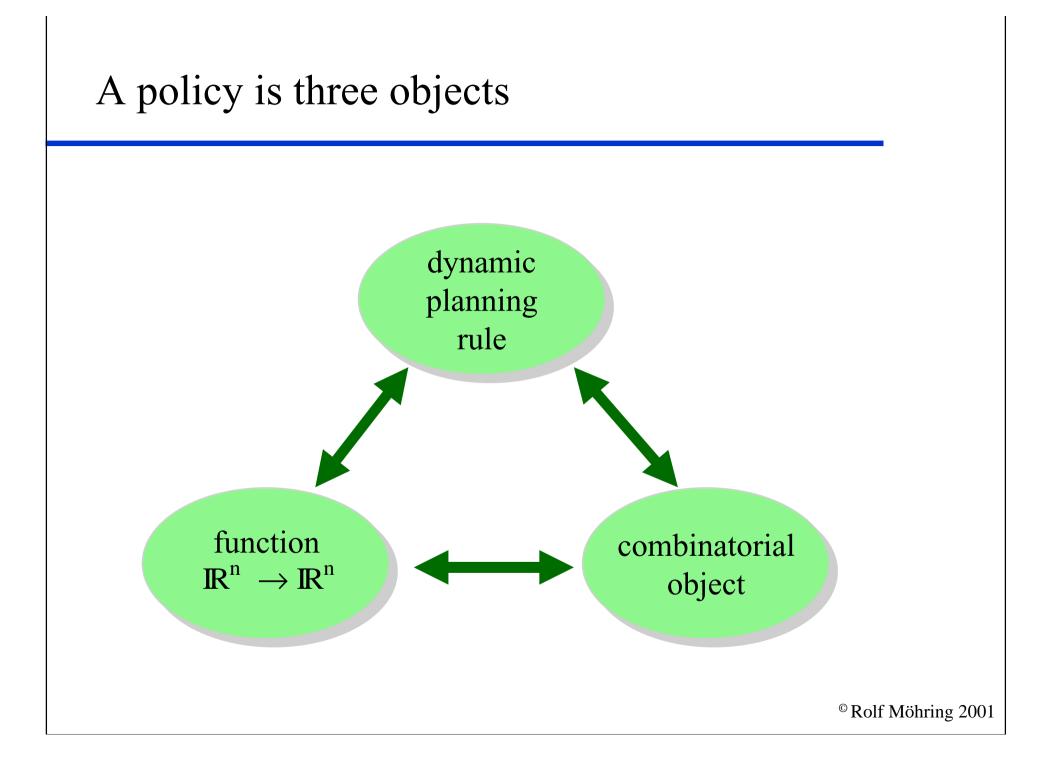


Policies — viewed as functions

 $\Pi : \mathbb{R}^{n} \to \mathbb{R}^{n}$ processing time vector $x \to$ schedule $\Pi(x)$ $(x_{1},...,x_{n}) \to (S_{1},...,S_{n})$

Discuss properties of policies like being

- continuous
- □ convex
- □ monotone
- …



Cla	sses of policies
-	 priority policies preselective policies earliest start policies (<i>ES</i>-policies) linear preselective policies
dis [.]	tinct conflict solving strategies on forbidden sets a general class of robust policies
	a general class of robust policies

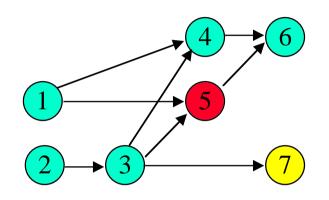
D '	• ,		1 •	•
Pr ₁	ority	1 DO	l1C	1es
	J			

Solve resource conflicts by priorities

At every decision time *t*, use a priority list $L_t : j_1 < j_2 < ... < j_k$ Start as many jobs as possible in the order of *L*

Greedy use of scarce resources

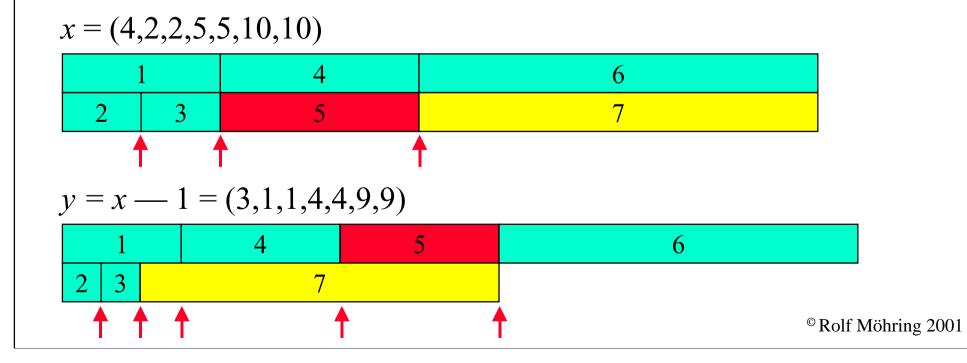
Priority policies are neither continuous nor monotone (Graham anomalies)



2 identical machines

min C_{max}

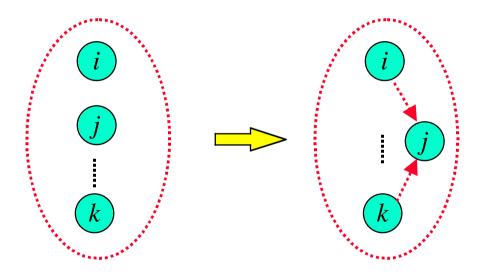
L = 1 < 2 < ... < 7



Classes	of policies
🔲 priori	y policies
📕 prese	elective policies
	earliest start policies (<i>ES</i> -policies) linear preselective policies
distinct c	onflict solving strategies on forbidden sets
🔲 a gen	eral class of robust policies

Preselective policies

Solve resource conflicts by pre-selecting a waiting job

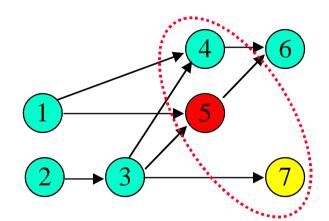


for every forbidden set *F*, select waiting job *j* from *F*, *j* must wait for at least one job from *F*

Start every job as early as possible w.r.t. to G + waiting conditions

delaying alternative waiting condition

A preselective policy for Graham s example



2 identical machines

$$\Rightarrow F = \{4, 5, 7\} \text{ is only forbidden set}$$

$$x = (4, 2, 2, 5, 5, 10, 10)$$

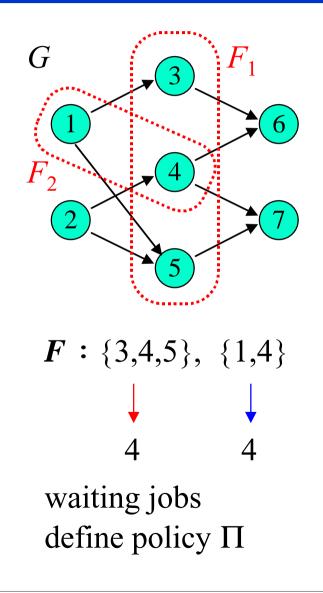
	1	4	6
2	3	5	7

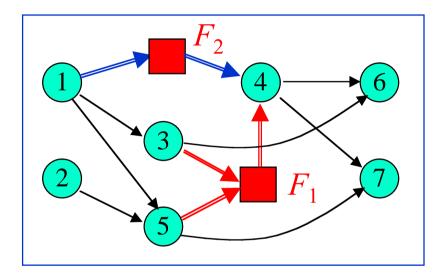
$$y = x - 1 = (3, 1, 1, 4, 4, 9, 9)$$

$$1 \quad 4 \quad 6$$

$$2 \quad 3 \quad 5 \quad 7$$

Preselective policies and AND/OR networks





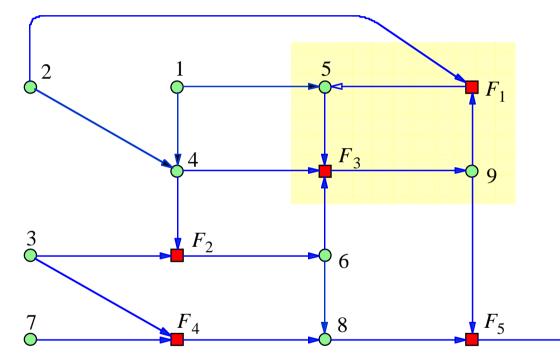
AND/OR network representing Π

start in Π

- = min of longest paths lengths
- = min of max of sums of processing times
- $\Rightarrow \Pi$ is monotone and continuous

© Rolf Möhring 2001

Problems related to AND/OR networks



may contain cycles

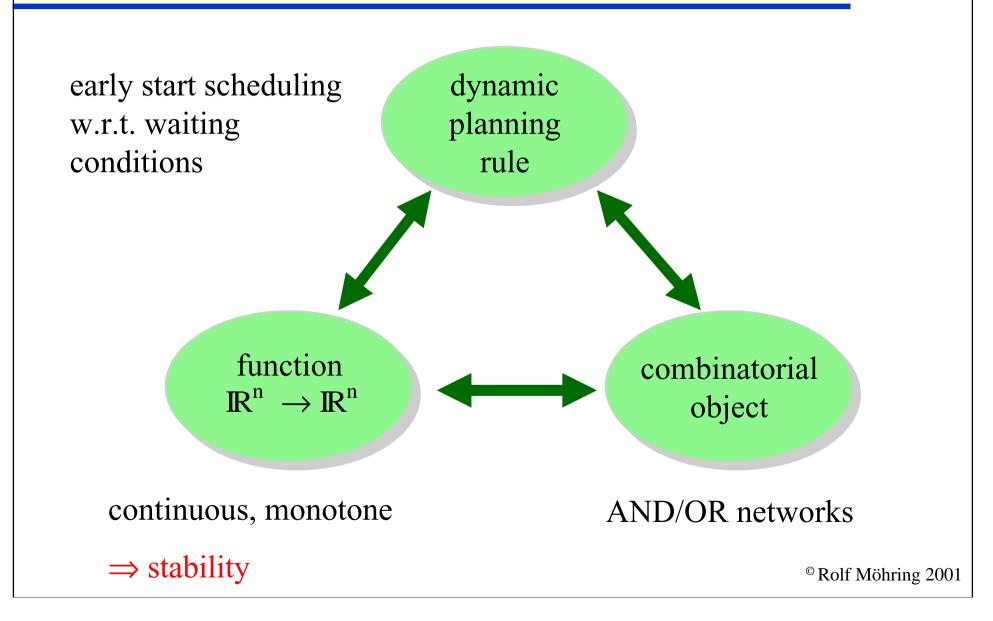
Tasks

10

- □ test feasibility
- detect forced waiting conditions (transitivity)
- compute earliest start

Fast algorithms available

3 views on preselective policies



Classes	of robust p	olicies
	or recase p	

priority policies

preselective policies

earliest start policies (*ES*-policies)

■ linear preselective policies

distinct conflict solving strategies on forbidden sets

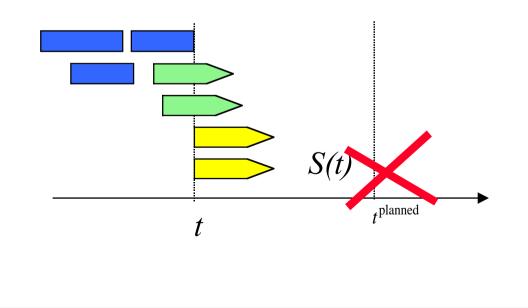
a general class of robust policies

Set policies: A general class of robust policies

Only exploitable information at time *t*

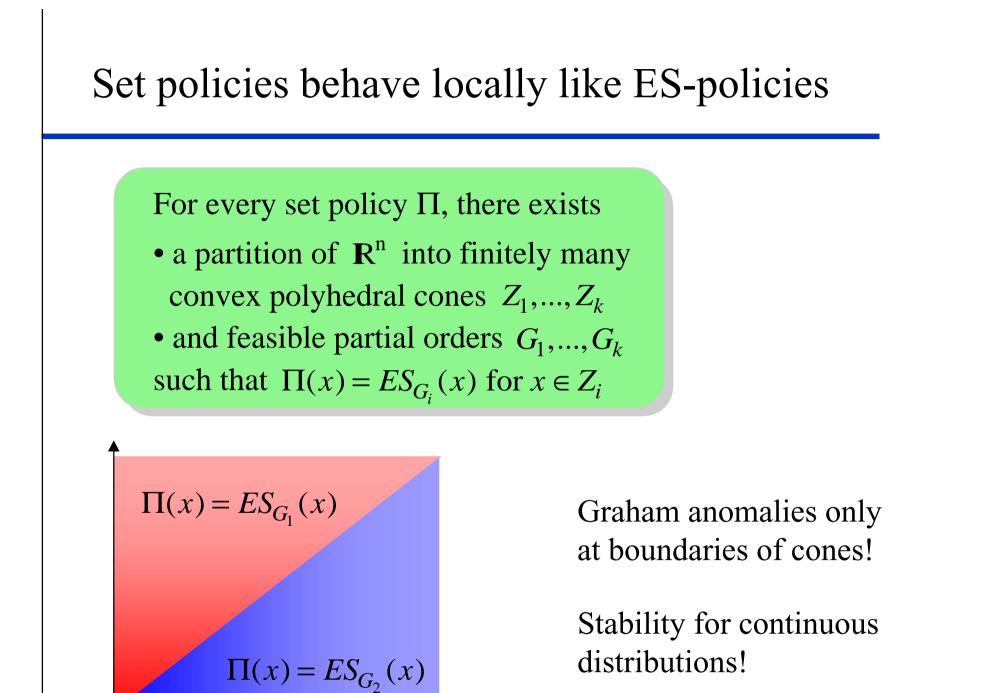
- □ set of completed jobs
- □ set of busy jobs

Jobs start only at completions of other jobs



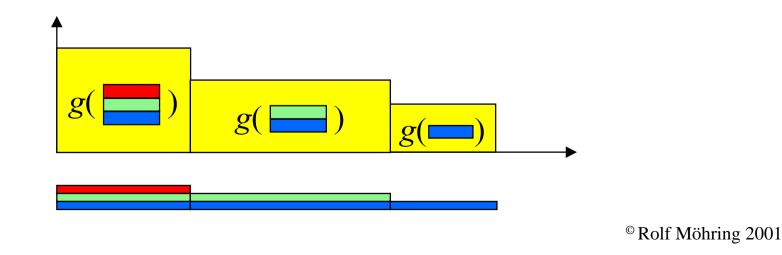
Special cases

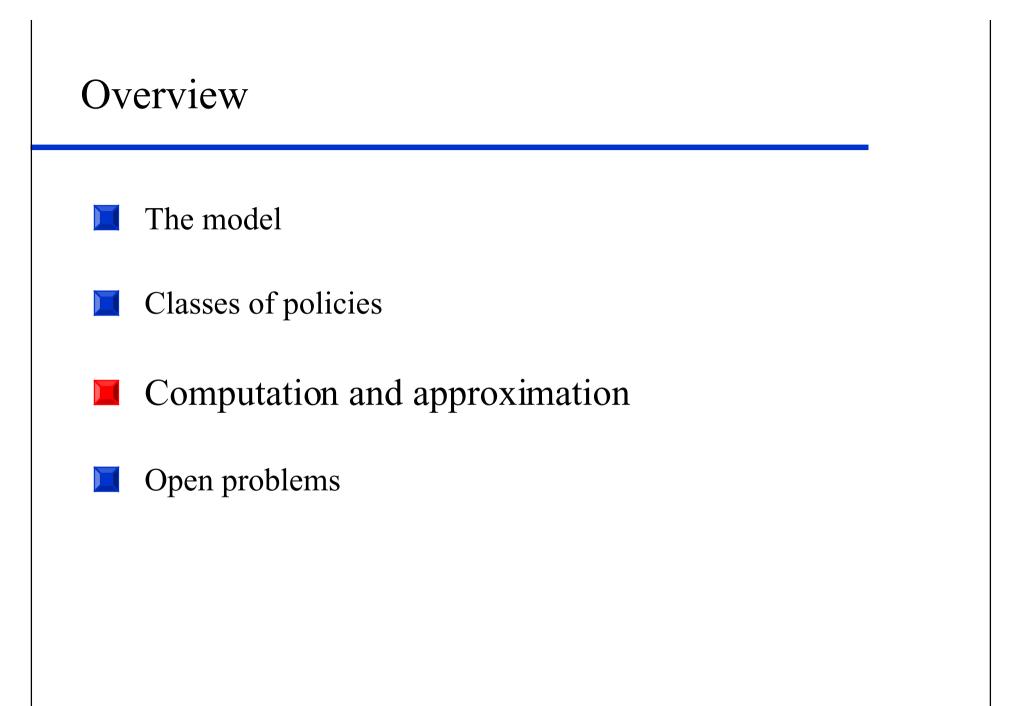
- priority policies
- preselective policies

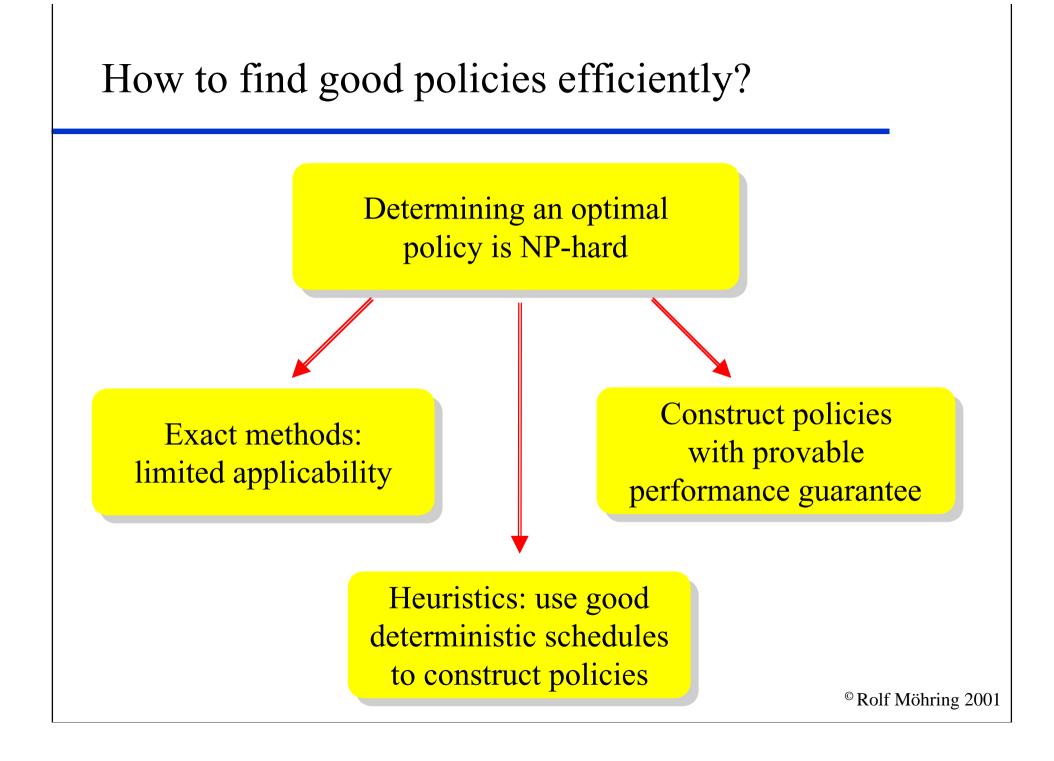


Optimality of set policies If • all jobs are exponentially distributed and independent • the cost function κ is *additive*then there is an optimal set policy Π (among all policies).

 κ is *additive* if there is a set function $g: 2^V \to \mathbb{R}$ (the *cost rate*) with $\kappa(C_1, ..., C_n) = \int g(U(t))dt$ U(t) = set of uncompleted jobs at t







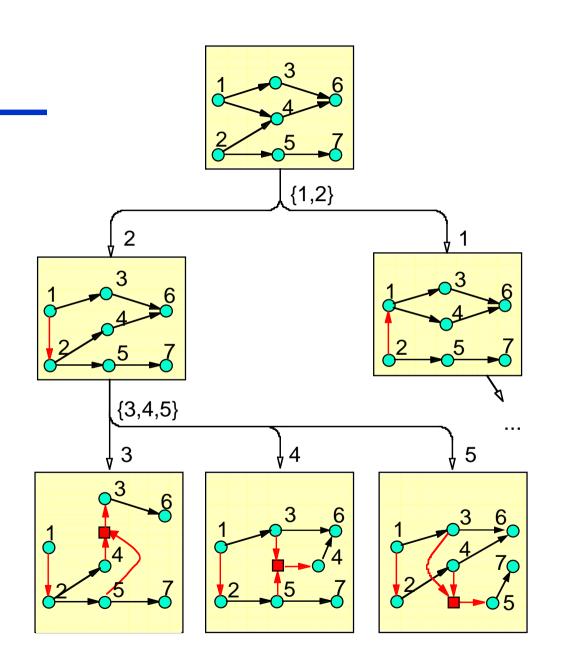
Algorithms

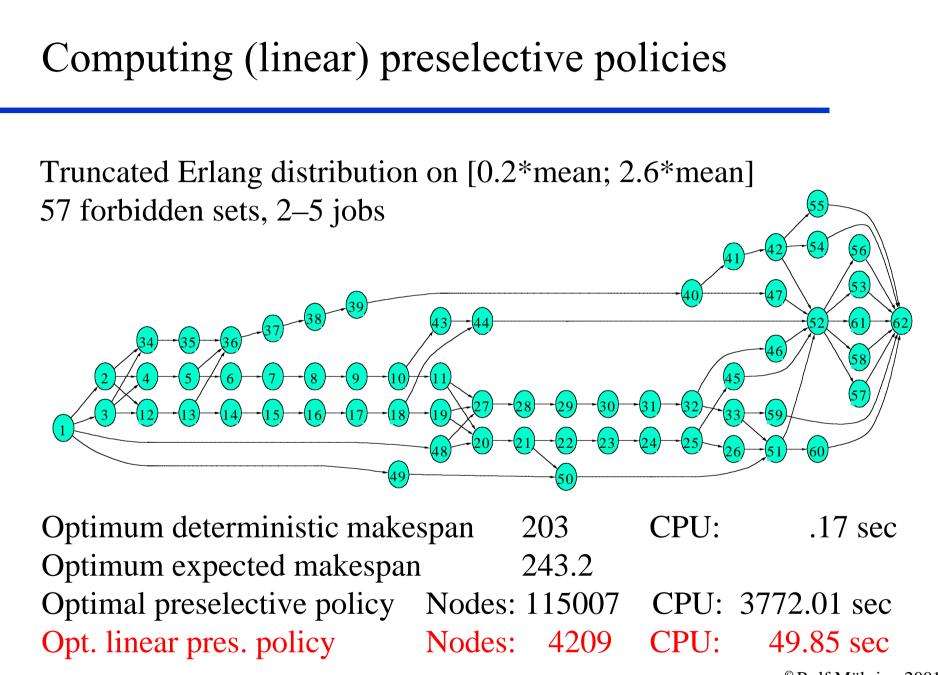
Heuristics

Extract good policies
 from several
 deterministic
 schedules

Exact methods

Branch & Bound and exterior sampling





How good are simple policies?

Simple = priority or linear preselective or ??

A simple setting:

 \Box *m* identical machines

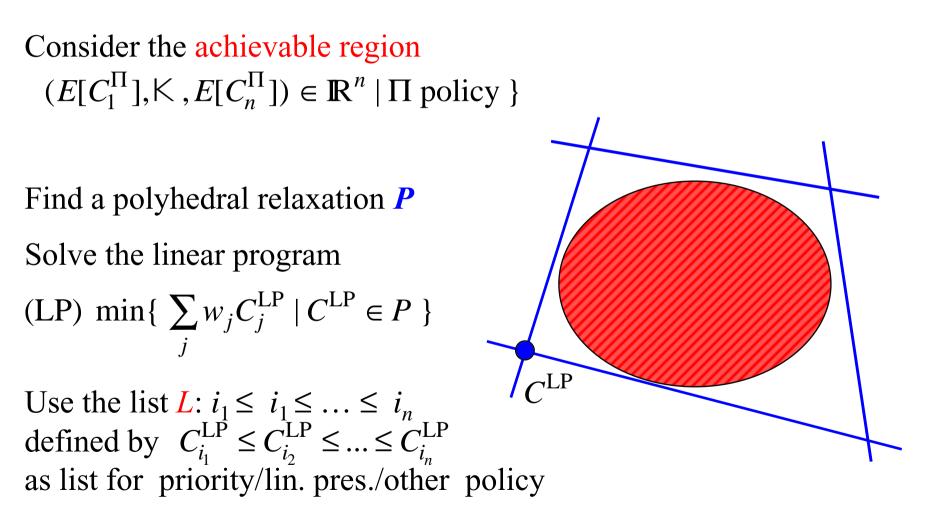
 $\square \ \kappa = \sum w_j C_j$

Use ideas from the deterministic case

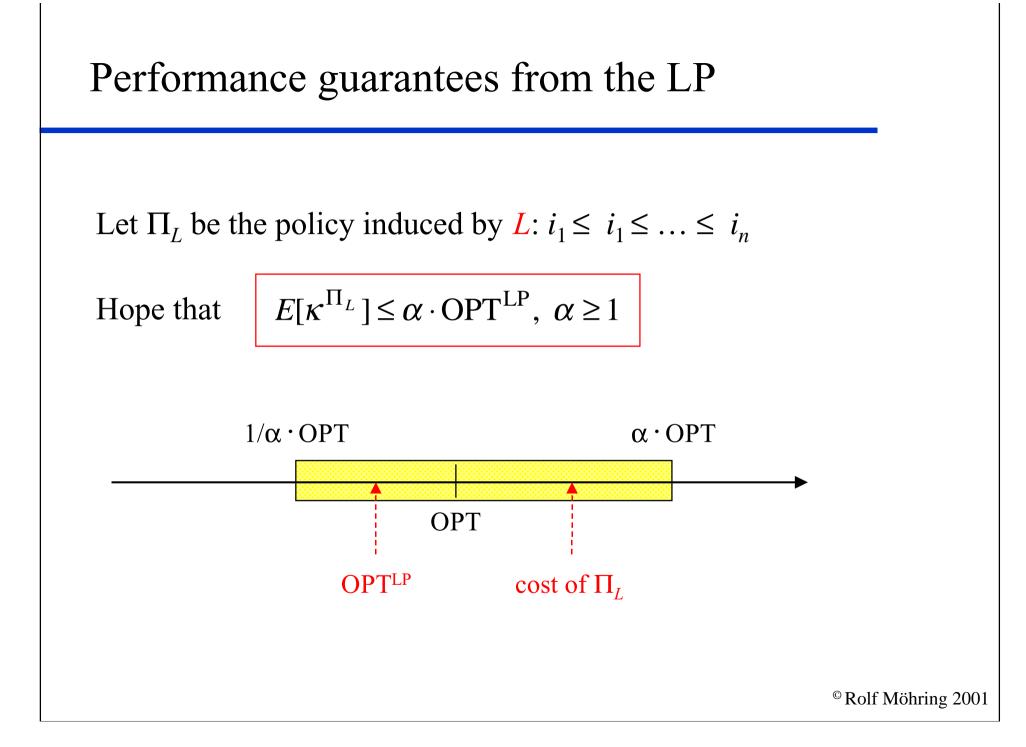
□ LP-relaxation

□ LP-guided construction of a list *L* defining the policy

The LP-based approach



© Rolf Möhring 2001



The case without precedence constraints

Generalize valid inequalities from deterministic scheduling Hall, Shmoys, Schulz & Wein 97

$$\sum_{k \in A} E[X_k] E[C_k^{\Pi}] \ge \frac{1}{2m} \left(\sum_{k \in A} E[X_k] \right)^2 + \frac{1}{2} \sum_{k \in A} E[X_k]^2$$
$$-\frac{m-1}{2m} \sum_{k \in A} Var[X_k]$$

for all $A \subseteq \{1, ..., n\}$ and all policies Π

The term $\sum_{k} Var[X_k]$

Coefficient of variation $CV[X_j] = \frac{Var[X_j]}{(E[X_j])^2}$

 \leq 1 for all distributions that are NBUE New Better than Used in Expectation

 $E[X_j - t \mid X_j > t] \le E[X_j] \text{ for all } t > 0$

Assume $CV[X_j] \leq \Delta$

The modified polyhedral relaxation

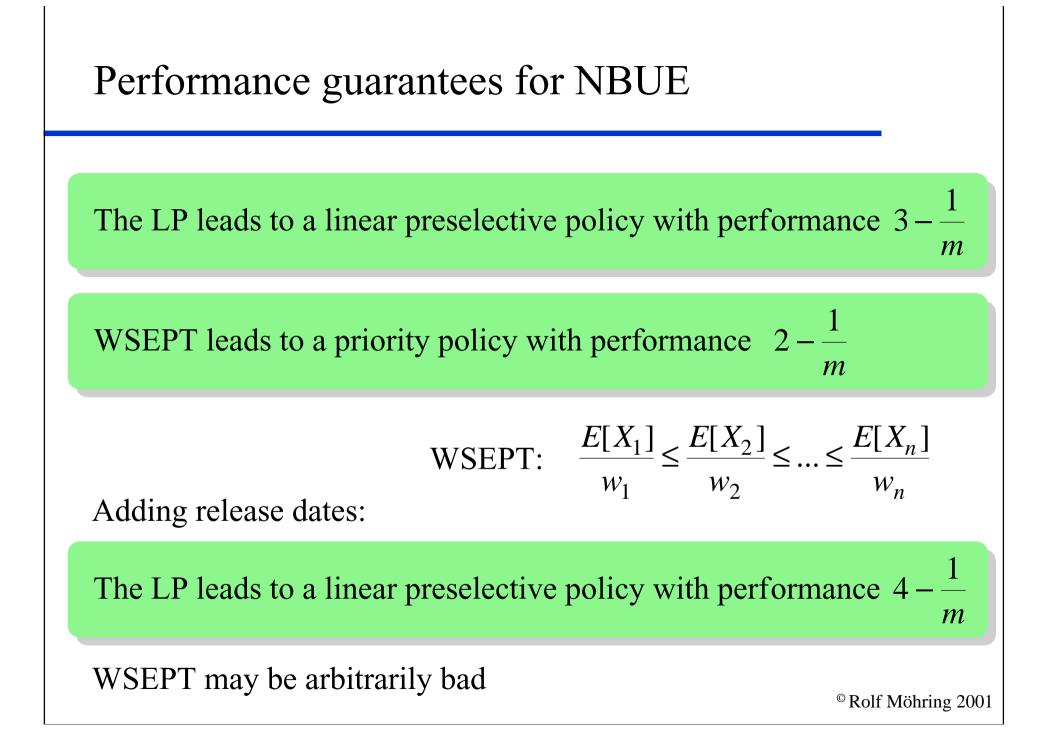
Assume $CV[X_j] \leq \Delta$

$$\sum_{k \in A} E[X_k] E[C_k^{\Pi}] \ge \frac{1}{2m} \left(\left(\sum_{k \in A} E[X_k] \right)^2 + \sum_{k \in A} E[X_k]^2 \right) - \frac{(m-1)(\Delta - 1)}{2m} \sum_{k \in A} E[X_k]^2$$

for all $A \subseteq \{1, ,n\}$ and all policies Π

RHS depends only on $E[X_j]$, LP can be solved in polynomial time

© Rolf Möhring 2001



Dealing with precedence constraints

Skutella & Uetz 00:

Combine valid inequalities for the stochastic case with delay list scheduling by Chekuri, Motwani, Natarajan & Stein 97

Use inequalities

$$\sum_{j \in A} E[X_j] E[C_j^{\Pi}] \ge \frac{1}{2m} \left(\sum_{j \in A} E[X_j] \right)^2 + \frac{1}{2} \sum_{j \in A} E[X_j]^2 - \frac{m-1}{2m} \sum_{j \in A} Var[X_j]$$

 $E[C_j] \ge E[C_i] + E[X_j] \quad \text{if} \quad i \to j$

for constructing the list L from an optimum LP-solution

- \Box Use list *L* for linear preselective policy
- □ Use tentative decision times to avoid too much idle time

Consider decision time *t*

Let i be the first unscheduled and available job in L

Let j be the first unscheduled job in L

if j is available then start j at t

charge uncharged idle time in $[r_j, t]$ to j

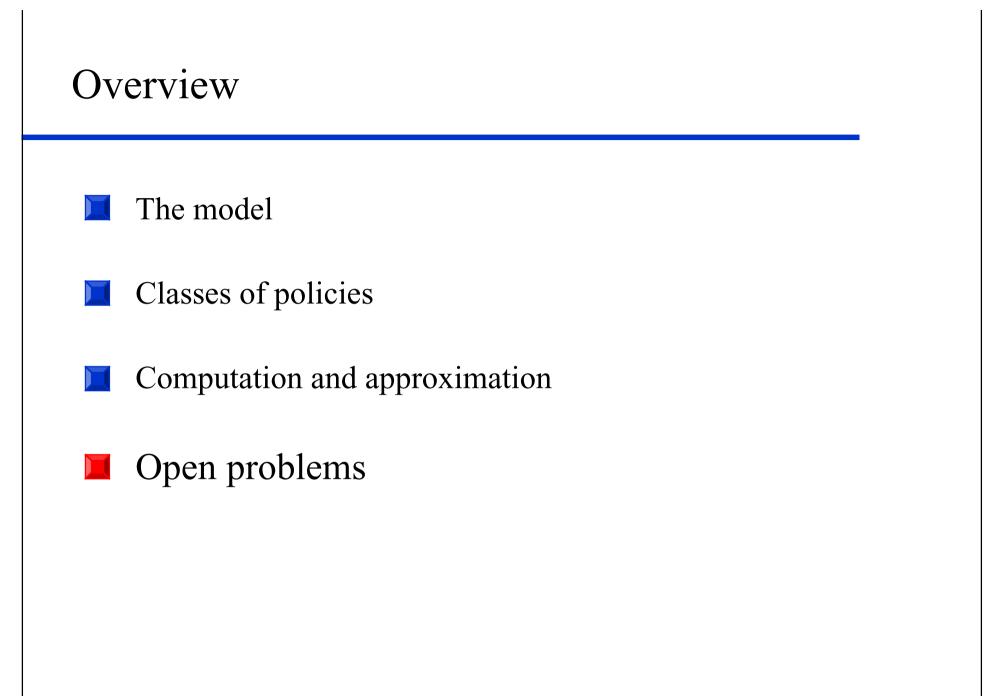
else if there is at least $\beta \cdot E[X_i]$ uncharged idle time in $[r_i, t]$

then start *i* at *t* and charge this idle time to *i*

else set next tentative decision time to $t + \beta \cdot E[X_k]$ for suitable k

Performance guarantees
LP-based delay list scheduling leads to a policy with performance
$$+\frac{m-1}{m\beta} + (1+\beta) \left(1 + \max\left\{1, \frac{m-1}{m} \cdot \max_{j} \frac{V[X_{j}]}{E[X_{j}]^{2}}\right\}\right)$$

$$\leq 5.83 \text{ for NBUE processing times}$$



Open problems

- **Better computational methods**
- □ When do tentative decision times help?
 - They help for $P \mid \mid \sum w_j C_j$. What about $P \mid \mid C_{\max}$??
- □ What are optimal policies for exponential models $P | p_i \sim \exp | \kappa$
 - LEPT/SEPT optimal for $C_{\text{max}} / \sum C_j$ [Weiss & Pinedo '80]
 - What about $\sum w_j C_j$?
- Detailed policy analysis (cost distribution function)
 - #P complete for earliest start scheduling (PERT model)
 - How to approximate?

Additional information

 Contact the speaker: Prof. Dr. Rolf Möhring TU Berlin, MA 6-1 Straße des 17. Juni 136 10623 Berlin Tel. +49 30 - 314 24594, Fax: +49 30 - 314 25191 email: moehring@math.tu-berlin.de

 Browse our web pages: http://www.math.tu-berlin.de/coga/ in particular http://www.math.tu-berlin.de/coga/research/scheduling/