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COLLABORATORS: PARTNERSI

Today’s talk is based on work 
individuals, especially my long
league Julia Higle (AZ). Also:
Michael Casey (AZ)
Guglielmo Lulli (Italy and AZ)
Lewis Ntaimo (AZ)
Brenda Rayco (Belgium and 
Yijia Xu (AZ)
Lihua Yu (AZ)
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This Presentation: Transitions
tinuous to Discrete

1. Lessons from successful alg
•  Convexity and Decompositio
•  Special structure
•  Sampling
•  Inexact “solves”
2. “Informal” exploration of cha
multi-stage problems
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• Scenario trees, stopping crite
mates of solution quality

• Real-time Algorithms
• Multi-granularity multi-stage m
3. “Less Informal” exploration i
chastic IP

•  Literature
• Two Stage SIP: Stochastic Po
Combinatorics

•  Multi-stage SIP
4. Conclusions
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1. Lessons from Successful 
(for Continuous Proble

1.1 Convexity and Decomposit

• Benders’ Decomposition (L-s
Method), and its extensions to
Stochastic and Interior Point 
vide resource directive decom
coordination approaches.
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Work of Birge, Dantzig, Gassm
Higle, Ruszczynski, Sen, Vial
others.

Convexity of the value functio
the justification

• Scenario Aggregation/Decom
vides a certain price directive
Lagrangian-type) approach.
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Work of Rockafellar, Ruszczy
and others.

Duality and hence convexity a
the basis

1.2 Special structure: Stochas
gramming

Polyhedral structure of the va
of LPs  help streamline comp



ms with
y scenarios),
ite. This is
position (see

 show that
imal solution
 with finite
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It is well known that for proble
finite support (i.e. finitely man
Benders’ decomposition is fin
also true for regularized decom
work of Kiwiel, Ruszczynski)

Homem de Mello and Shapiro
sampling also leads to an opt
in finitely many steps (for SLP
support).
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Work with Higle shows how th
Decomposition method by-pa
“solves” by a matrix update fo
recourse problems

1.3 Sampling:  Large number o

Min
x X∈

f x( ) := E h x ω̃,( )[
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inistic selec-

cenarios

x( )
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• Since  is difficult to evalua
mic schemes replace by
is an iteration counter.

• For deterministic algorithms
obtained by the same determ

tion of scenarios:

For stochastic algorithms
 are obtained by sampling s

f x( )
f x( ) f k

f k

ωt{ }
t 1=
N

f k
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• Stochastic-Quasi Gradients
Ermoliev, Gaivoronski, Ury

• Successive Sample Mean O
(Stochastic Counterpart/Sa
Approximation, “Retrospec
zation” in Simulation).

• The approach: create one s
function, optimize it; create
sample mean function (wit
ple size), optimize that, an

     This is really a “meta”-con



tion is a SP
erated in one

.
approximates
by one “cut”
“cut” progres-
ple mean
easing the

 reduce vari-
pdates.
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- each sample mean optimiza
- does not use information gen
iteration for subsequent ones
• Stochastic Decomposition 

the sample mean function 
in each iteration and each 
sively approximates a sam
function resulting from incr
sample size.

• Common random numbers
ance, and allow recursive u



blems:  By
 use a sto-
ithm (a la
SSD, will be
 Rayco’s
rvation
iques can
aster dramti-
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• Sampling in Multi-stage Pro
solving adual SLP, one can
chastic cutting plane algor
SD). This algorithm, called
discussed in detail inBrenda
presentation.  A brief obse
though ...aggregation techn
reduce the growth of the m
cally.



onlinear Pro-
mming
ion method
lementations
ature.
D provides
14

 1.4 Inexact “solves”

• Not as common in SP as in N
gramming and Integer Progra

• In SP, the Scenario Aggregat
allows inexact solves, but imp
have typically not used this fe

• The “argmax” procedure in S
“inexact solves”
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• A recent version of Benders’ 
tion, known as Abridged Bend
position (Work of Birge and h
allows inexact solves in subp

This feature is extremely impo
algorithms since the subproble
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2. “Informal” Exploration of Ch
for Multi-stage SP

ωt 1–

xt 1–

Data

xt
xt

   Decision

 
for 1,...,t-1
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•  For t = 2,...,T, define functions

Assuming , the decisi

f t xt 1– ωt 1–,( ) Min ct xt xt 1–,(
E f t 1+ xt ω̃t,([

s.t. xt Xt xt 1–(∈
+

=

f T 1+ 0=

Min c1 x1( ) E f 2 x1 ω̃1,( )[
x1 X1∈

+
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2.1 Scenario Trees
• Current approaches seek a d
mation (of a given size) which
properties associated with the
process. (The work of Consig
Dupacova, Hoyland, Mulvey, 

• Pflug develops a nonlinear op
problem which seeks the “nea
tree of a specified size which
best approximation.
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• How could one develop a seq
(of the stochastic process) wh
solutions with certain guarant
dorfer’s Barycentric method  p
partial answer.

• Approximations using probab
(for problems with finite supp
to be promising (Dupacova, G
Romisch)
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Suppose one approximates th
using some discrete approxim
the quality of the resulting first
tion?... Ouput Analysis



lems.”
ime problems
nts of compu-

e “simple-
ajectory plan-
ntinuous ran-
d at future
ide.
21

2.2 Real-time Algorithms
• “Nested simple recourse prob
- Recourse decisions in real-t
must be made within constrai
tational time.
- Models consist of  multi-stag
recourse decisions.” Such “tr
ning models” may warrant co
dom variables (e.g. wind spee
locations)  on the right-hand s
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ted with the
e path plan-
age real-time

imilar appli-
wegt et al.
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• Real-time decision and contro
- Example:  a collection of mo
tons know their own location,
know approximate locations o
- Location information is upda
passage of time.  Collision-fre
ning problems lead to multi-st
scheduling problems.
- In AZ with Ntaimo and Xu. S
cations by W. Powell, A. Kley
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2.3 Multi-granularity Multi-stag

Schedulin Maint.

Dispatch

  Utility

Markets

Gen.

Dis



s operations

nt.  In our
eed to in
in month

n-aids that
e quite well.
isions may be
ment) plan-
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• Decisions of one group affect
of another.

• Modeling time-lags is importa
example, power contracts agr
montht, will affect production 
t+s.

• Each group may have decisio
capture a particular time-scal
For instance, dispatching dec
daily, generation (unit commit



ek, power
y ahead” to

ch decisions?

power com-
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ning may happen week-by-we
contracts may range from “da
“six-months” ahead.

How should we coordinate su

(Work with Lulli, Yu, and an AZ
pany)
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3. “Less Informal” Exploration
The Transition to Discrete P

• Our view is based on success
ous problems ... successful a
SIP problems will ultimately u
- Convexity and Decompositio
- Special structure
- Inexact “solves”
- Sampling for Large Scale P
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3.1 Literature

• Two stage simple integer reco
Series of papers by Klein-Han
Stougie and van der Vlerk (w

• Two stage 0-1 Problems
Laporte and Louveaux

• Two stage General Integer Pr
Schultz, Stougie and van der
Hemmeke and Schultz (SPEP



roblems

is (SPEPS)

 Sen, Higle,
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• Cutting planes for two stage p
Caroe (dissertation)
Caroe and Tind
Ahmed, Tawarmalani, Sahinid
Sen and Higle (SPEPS)
Sherali and Fraticelli

• Multi-stage Problems
Birge and Dempster (see also
and Birge)
Lokketangen and Woodruff
Caroe and Schultz
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3.1 Two Stage Problems: Stoc
dral Combinatorics

What role does polyhedral com
play in deterministic IP?
-  Reduces size of the search t

One should expect the stochas
cuts) to play the same role
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Consider the following 2-stage

Min c
T

x Σs psgs
T

ys

s.t Ax b

Tsx W ys ωs for

x Z+

n1
ys Z+

n2∈,∈

≥+

≥

+
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• Caroe’s  approach:
a) Solve SLP relaxation of SI
b) If solution is integer, stop;
c) Else, develop a “cut” for ea
ger pair .
d) Update the SIP by adding 
- Repeat from a)

• Observations:
- Note the close connection w
istic IP

x ys,( )
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- Various different cuts are pe
(Gomory, “Lift-and-Project” et

• Each cut involves only . Th
shaped structure of SIP is ma
the SLP relaxation can be so
shaped method.

• Caroe suggests “lift-and-proje
binary problems.

x ys,( )
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P relaxation
ch second
ecessary. If

essary, stop.
approxima-

 repeat.
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• Disjunctive Decomposition (D2)
Algorithm (with Higle):

• Decompose the problem into two
a) Given a first stagex, solve an L
of the second, andstrengthen ea
stage convexification whenever n
no further strengthening is nec
b) Convexify the value function 
tion of each second stage IP.
c) Update the master program;
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oefficients(C3

urse LP

P method for
ministic sce-
P decompo-
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• Observations:Special structur 
inequalities, fixed recourse) a

narios to share common cut-c
Theorem).

• Cut generation is simple reco

• Does not reduce to a known I
problems with only one deter
nario, that is, this is also anew I
sition method.
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 extreme

l variables”
one with
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Convergence for 0-1 Stochasti
Assumptions
• Complete recourse
• All second stage integer varia
• First stage feasibility requires
points ofX as in 0-1 problems

• Maintain all cuts in
• If there are multiple “fractiona
to form a disjunction, choose 

W
k
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ation

 method
m.

d-Cut and
s are currently
d Sherali)
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smallest index, and recall the
the most recent iteration at w
variable was used for cut form

Under these assumptions, the
results in a convergent algorith

Extensions to allow Branch-an
continuous first stage decision
underway.  (Work with Higle an

D
2
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3.2 Multi-stage SIP

Even more important to use sp
for realistic problems
For examples of the use of spe
see papers by Takriti, Birge an
Nowak and Romisch.

Very few general algorithms av
this class of problems to date.
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tion
 Kiwiel’s

for 2-stage
opment is
.

 ...
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• Caroe and Schultz propose a
Bound method in which boun
lated using Lagrangian relaxa
- Dual iterates generated with
NDO algorithm
- Computations are reported 
problems, although the devel
valid for multi-stage problems

• Several important advantages
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- Two stage and multi-stage p
dled with equal ease
- It is possible to take advanta
structure
- Transition from deterministic
model is easy



ork with

tages associ-
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tage SIP
l structure

ware (mature)
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•  Branch and Price for MSIP (W
Lulli)

Motivation
• Has many of the same advan
ated with Lagrangian Relaxat
- Handles 2-stage and Multi-s
- Allows exploitation of specia

• Makes greater use of LP soft
- Warm starts are easy to han
- Sensitivity analysis is routin
- Greater availability of reliabl



er a two-
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For notational simplicity consid
stage problem

Min c
T

x Σs psgs
T

ys

s.t Ax b

Tsx Wsys ωs for

x Z+

n1
ys Z+

n2∈,∈

≥+

≥

+



pure integer
e.  Solving
problems add
lexity ... only

idea is to have
anticipativity,
rministic multi-
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We have chosen a two stage, 
problem only for notational eas
multi-stage, and mixed integer
no additional conceptual comp
greater computational work.

The general Branch-and-Price
a master IP that enforces non-
and the subproblems are dete
stage  problems.
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Both master and sub-problems
ger restrictions

For each scenario “s”, subpro
ate integer points , w
index associated with an inte

• As in “column generation” sch
of these points will be associa
“column” in the master progra

xs r, ys r,,( )

f s r, c
T

xs r, gs
T

ys r,+=



m will consist
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hing
hing
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• The rows in the master progra
of
- First stage constraints (optio
- Non-anticipativity constraint
- Convexity constraint
- Bounds on x’s used in branc
- Bounds on y’s used in branc



B node is:

 y branches
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The master problem at any B&

Max
x α,

ΣsΣr p
s

f s r, α
s r,

s.t Ax b

x ΣsΣr psxs r, αs r,–

≤

0

Σr αs r, 1 for all s

l j x j u j ,  j among   x  branches,

Ls i, Σr ys r i, , αs r, Us i, ,  i among≤≤

≤ ≤

,

=

=
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en this vari-
ing.
, the value
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The Basic Scheme
• For any nodeq of the B&B tree
nodal problem using column 

• If  is the value of variablexj f
and, this value is fractional, th
able is a candidate for branch

• Similarly, if for some scenarios

xj
q

Σr ys r i, , αs r,
q



 this to gener-
tree.
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is fractional, then we may use
ate two new nodes of a B&B 

Master Program B&B Tree

       Branching on x’s

Branching on y’s
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• The pricing problem for scena
form

• Note that this problem maintai
structure that may be associa

Min ĉs
T

x ĝs
T

ys

s.t Tsx Wsys ω

x Z+

n1
ys Z+

n2∈,∈

≥+

+
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re the same as
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nario problem.  Thus, if we’re
solving Stochastic Dynamic L
Problems, each pricing proble
Dynamic Deterministic Lot Si

• Also, each pricing problem ca
parallel. (These advantages a
in Lagrangian Relaxation)
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holding costs.

robabilistic
h sizing model
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3.3 Computations for Multi-stag
with G. Lulli)
Branch-and-Price concepts we
batch sizing problem ... an ext
dynamic lot sizing problems.  I
lems, one studies trade-offs be
tion/setup costs with inventory

Assuming no backlogging, or p
constraints, the stochastic batc
is written as follows



t sizing
on quantities

t I ts

ts

}
ve
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“Pretty much” the same as lo
model,except ....that producti
are in increments ofb

Min Σs ps Σt ctxts f tyts h
s.t. I ts

+ +
I t 1 s,– bxts d

xts Mtyts
xts I ts,( ) 0 t

xts integer, yts 0 1,{
xts yts Non-anticipati,

∈
∀≥

≤
–+=



blems

PLEX

odes

722
69
626
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Illustrative Computations

These are 5 stage pro

Table 1:

Prob B&P
time

B&P
nodes

CPLEX

Time
C

N

16a 1.13 0 1.80 1
16b 1.15 0 0.71 5
16c 11.6 8 1.8 1
16d 16.3 11 6.3 5
16e 13.3 8 0.9 7



blems
enarios also

PLEX

odes

106

106

106

106

106
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These are 6 stage pro
7 stage problems with 64 sc

Prob B&P
time

B&P
nodes

CPLEX

Time
C

N

32a 156 0 >T >
32b 2945 0 >T >
32c 91 8 1110 >
32d 1064 11 >T >
32e 403 8 2800 >
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Conclusions

I should reiterate that
• Convexity and Decomposition r
cal

• Special structure, inexact solv
startsetc. remain critical.

• Sampling is new to SIP, but wi
we solve larger problems
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Important Trends which should

• Algorithmic approach to tree g
and output analysis

• Computer implementations sh
ier interfaces with simulation/v
software
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For SP, algorithms if there is o
deserves its own slide it is ...
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Scalability

Scalability

Scalability

Scalability

Scalability
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And finally,

Two Stage and Multi-stage
Stochastic Integer Programmin
Remain One of the
Grand Challenges in Optimiza



st Welcome!
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Thank you for your interest.

Comments and Questions, Mo



mmunity ...
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In appreciation of the SP co
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Top 5 reasons to wor

Stochastic Programming P

5. Can work with “cosmic dista
out leaving home!

4. One begins to easily distingu
from mathematicians:  one com
other “decomposes”
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3. One learns that “Log-concav
ing in common with either lumb
ties!

2. One also learns that “clairvo
requires connections in very h

1. The word “non-anticipativity
appreciate what President Bus
through!
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