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Chapter 1

Modeling uncertain outcomes

1.1 The three M’s of decision making under uncertainty

Economic activities produce outcomes which are not completely known
in advance. Uncertainty is inherent in most business plans, investment
decisions, credit contracts or valuations for future liabilities. For correct
decision making, uncertainty and risk has to be quantified by using proba-
bility models. This is the first step in the decision making process, which
is composed of the three M’s: Modeling, Measuring and Managing Risk.

Modeling consists in finding appropriate probability distributions for
all uncertainty factors, which may affect the consequences of the decision.
The modeling step is crucial. A wrong model selection jeopardizes the
quality of the final decisions. When dealing with decision making under
uncertainty, we distinguish between the ambiguity problem and the uncer-
tainty problem:

• The ambiguity problem refers to the problem of correct model selec-
tion. It is mainly a problem of statistics. The model error, i.e. the
error caused by the model ambiguity, has to be taken into account
in the overall assessment of the final decision process.

• The uncertainty problem refers to the problem of making correct
decisions, if the model has been selected. In solving the uncertainty
problem it is assumed that the random distributions of all risk
factors are known, only their outcomes are unknown.

Typically there are three different sources of information for establishing
a probability model for the risk factors:
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2 Modeling, Measuring and Managing Risk

• historical data,
• theoretical considerations and
• expert opinion.

Based on historical data one may construct a probability distribution,
which assigns to every observed historic value equal probability. This distri-
bution is called empirical distribution. This simple way of modeling is done
by many risk managers, however, it does not take into account possible
trends and long-term changes.

Expert opinion is methodologically simple. Experts may be asked about
giving lists of possible scenarios and possible degrees of plausibility, ex-
pressed in terms of probabilities. Opinions of several experts may be joined
by averaging or weighting.

Theoretical models are based on classes of random variables or random
processes developed in probability theory. Such classes are for instance
stochastic differential and difference equations, vector autoregressive mod-
els, ARMA models, GARCH models and so on. Methods of statistics are
used to identify these models and to define idealized scenario sets for them.

Model selection and the ambiguity problem are outside the scope of
this book. It is assumed that the basic model for risk factors is already
established and all further considerations about risks are based on this
model.

Measuring risk comes next. There is a plethora of risk measures which
have been proposed in literature. In Chapter 2, many of these risk mea-
sures are reviewed and their properties are presented. The choice of the
appropriate measure of risk is crucial for the subsequent decision making
step.

As an example, suppose a decision is to be made about whether to buy
a car for a direct deposit of EUR 22.660 (variant A) or in three equal yearly
installments of EUR 8.000 each (variant B). In a deterministic world, all
what is needed is to know the market interest rates, r1 for the first year
and r2 for the second year. Then the net present value (NPV) for variant
A is 22.660, whereas the NPV for variant B is calculated according to the
discounting formula

NPV = 8000 · [1 + (1 + r1)−1(1 + (1 + r2)−1)] (1.1)
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scenario number s 1 2 3 4 5 6
probability 0.18 0.17 0.16 0.16 0.16 0.17
rate value r2(s) 5.0% 5.5% 6.0% 6.5% 7.0% 7.5%

Table 1.1.

scenario number s 1 2 3 4 5 6
probability 0.18 0.17 0.16 0.16 0.16 0.17
NPV of variant B 22.735 22.701 22.667 22.634 22.601 22.568

Table 1.2.

If, for instance, r1 = r2 = 6%, then the NPV for variant B is 22.667. Thus
the right decision would be to go for variant A.

However, the interest rates for the second year are not known. The
interest rates may go up or down according to the general business climate.
The assumption that there is more than one possible future situation leads
to the notion of scenarios. A scenario is a possible situation of the parame-
ters which influence the outcome of the decision. Under a discrete scenario
model we understand a list of possible scenarios together with the corre-
sponding probabilities of occurrence. For instance, a scenario model for the
interest rates in the second year is given in Table 1.1.

Based on this scenario list, the NPV of variant B becomes a random
variable. Its values, shown in Table 1.2, are calculated using the discounting
formula (1.1).

The expected NPV of variant B is (22.735 ·0.18+22.701 ·0.17+22.667 ·
0.16+22.634 ·0.16+22.601 ·0.16+22.568 ·0.17) = 22.652. If the expectation
is the only criterion, variant B seems better than A. However, there is
a risk in choosing it, since with probability larger than a half (precisely
0.18+0.17+0.16 = 0.51), the decision maker is better off with variant A.
To make a final decision one has to quantify the amount of risk in variant
B in an appropriate way and to see whether this risk is acceptable.

Managing risks is the third of the three M’s and the final step in the
decision making process. Optimal decisions can be found on the basis of
the quantified risks and the decision objectives by stochastic optimization.
The choice of risk measures (risk functionals) determines the structure of
the optimization problem (as linear, convex, combinatorial etc.). Consid-
erations about the mathematical properties of the decision problem are
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typically one important determinant in the problem of choosing the right
quantification of risk. This aspect will be treated in detail in Chapters 4, 5
and 6. While Chapter 4 deals with single-stage decisions, Chapters 5 and
6 present some typical multi-stage problems in specific application areas.

1.2 Probability models and scenario distributions

Modeling random quantities as random variables requires the notion of
probability spaces. A probability space is a triplet (Ω,F ,P), where Ω is the
scenario set, F is a σ-algebra (σ-field) and P is a probability measure. We
assume throughout the book that the probability space is non-atomic, even
if all considered random variables take only finitely many values. Equiv-
alently, one could say that we assume that the probability space is the
standard space, i.e. the unit interval [0,1], endowed with Lebesgue mea-
sure.

For a short introduction into probability spaces, σ-algebras, measurabil-
ity and the atomless property, see section A of the Appendix. Random vari-
ables Y are real valued functions defined on a probability space Y : Ω 7→ R.
Random variables are characterized by their distribution function

G(u) = P{Y ≤ u}.
The random variable Y is discrete, if its distribution function is a step
function. For instance, the distribution function of the discrete random net
present values of Table 1.2 is shown in Figure 1.1.

Idealized models for random variables have typically continuous distri-
bution functions, which possess densities: g is the density of G, if

G(u) =
∫ u

−∞
g(v) dv.

Examples of continuous distributions are the normal distribution, the log-
normal distribution, the Gamma distribution, the Beta distribution etc.
Figure 1.2 shows a continuous distribution (the Gamma distribution with
parameters a = 4 and b = 1/4) and its density g(u) = 42.66 u3 exp(−4u).

Many risk models contain several random quantities, called the risk
factors. For instance, financial models may contain returns for different
asset categories or exchange rates for different currencies. Such models are
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Fig. 1.1 The discrete distribution function of the data in Table 1.2.
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Fig. 1.2 The continuous Gamma(4, 0.25) distribution function (left) and its density
(right).

called multivariate models and the collection of several random variables is
called a random vector. Random vectors are measurable mappings from Ω
to RM . The multivariate distribution of a random vector

Y = (Y (1), . . . , Y (M))

is given by the multivariate distribution function

G(u1, . . . , uM ) = P{Y (1) ≤ u1, . . . , Y
(M) ≤ uM}.

Risk models may also include several decision or observation periods. These
models are called multi-period models. For such models the index t denotes
time. Typically in this book the time index is an integer ranging from
t = 0 (now) to t = T (the end of the decision/observation period or the
maturity time). The random variables in a multi-period model are denoted
by Y1, . . . , YT , if the model is also multivariate by

Y
(1)
1 , . . . , Y

(1)
T , . . . , Y

(M)
1 , . . . , Y

(M)
T .
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Multivariate models are easy generalizations of univariate models and do
not cause additional problems besides the problem of modeling correctly the
joint distribution of all random quantities. In contrast, multi-period mod-
els are much more complicated in what concerns risk quantification. The
reason is that risk is related to predictability and therefore risk functionals
for multi-period models have to incorporate information and predictability.
Measuring risk for multi-period models is treated in detail in Chapter 3.

1.2.1 Distribution functions and quantile functions

Recall that if Y is a random variable defined on some probability space
(Ω,F ,P), its distribution function G is

G(u) = P{Y ≤ u}.
G is continuous from the right, i.e. G(un) ↓ G(u), if un ↓ u for all u. If
un ↑ u implies that G(un) ↑ G(u), then u is called a continuity point of G.
If u is not a continuity point, we denote by

G(u−) = lim
v↑u

G(v) (1.2)

the left-sided limit of G at u.

The quantile function is the inverse distribution function

G−1(p) = inf{u : G(u) ≥ p}, for 0 < p ≤ 1. (1.3)

Since G is continuous from the right, the infimum in (1.3) is in fact a
minimum, for 0 < p < 1. Notice that G−1 is continuous from the left. The
following properties for distribution functions and quantile functions are
well known and stated without proof.

1.1 Proposition: Properties of the quantile function.

(i) For all 0 < p < 1

G(G−1(p)) ≥ p; (1.4)

equality holds here, if p is in the range of G, or equivalently if
G−1(p) is a continuity point of G.

(ii) For all u ∈ R
G−1(G(u)) ≤ u; (1.5)

equality holds here, if u is in the range of G−1, or equivalently if
G(u) is a continuity point of G−1.
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(iii)
G−1(p) ≤ u if and only if p ≤ G(u). (1.6)

(iv) Suppose that Y has distribution function G and quantile function
G−1. The following table shows distribution functions and quantile
functions of related random variables.

Y G G−1

λY G(u/λ) λG−1(p)
Y + a G(u− a) G−1(p) + a

−Y 1−G(−u−) −G−1((1− p)+)

Here G−1(p+) = limq↓p G−1(q).

1.2 Proposition: The quantile transform. Let the random vari-
able Y have distribution function G. If U is a uniform [0,1] random variable,
then G−1(U) has the same distribution as Y .

Proof. This follows from
P{G−1(U) ≤ v} = P{U ≤ G(v)} = G(v)

which is a consequence of Proposition 1.1 (iii). ¤
A converse assertion does not hold: If G has jumps, then G(Y ) is not

uniformly distributed. In general, G(Y ) is stochastically larger and G(Y−)
is stochastically smaller than a uniform [0,1] distribution. To correct for
this, the generalized quantile transform must be used.

1.3 Proposition: The generalized quantile transform. Let U

be a uniform [0,1] variable, which is independent of Y . Then
F (Y, U) := (1− U) ·G(Y−) + U ·G(Y ) (1.7)

is uniformly [0,1] distributed and G−1(F (Y, U)) = Y a.s.

Proof. For every p ∈ (0, 1), let yp satisfy G(yp−) ≤ p ≤ G(yp). yp

needs not be unique. Then

P{F (Y, U) ≤ p|Y } =





1 if Y < yp
p−G(yp−)

G(yp)−G(yp−) if Y = yp

0 if Y > yp

and consequently

P{F (Y, U) ≤ p} = G(yp−) + [G(yp)−G(yp−)]
p−G(yp−)

G(yp)−G(yp−)
= p.

(see also [Ferguson (1967)]). To prove the second assertion, notice that
conditional on Y = u, F (Y, U) lies in the interval [G(u−), G(u)] and with
probability 1 in the half-open interval (G(u−), G(u)]. However in the latter
interval, G−1 equals u. ¤
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1.2.2 Joint distributions and couplings

For two random variables Y (1) and Y (2), the joint distribution function G12

is defined by

G12(u, v) = P{Y (1) ≤ u, Y (2) ≤ v}.
The two marginal distributions are

G1(u) = P{Y (1) ≤ u} = G12(u,∞) and

G2(u) = P{Y (2) ≤ v} = G12(∞, v).

The knowledge of the marginal distributions is not sufficient for determining
the joint distribution. The additional information needed is the copula.

1.4 Definition: Copula function. Suppose that Y (1) and Y (2) are
two random variables, with distribution functions G1 and G2, respectively.
We say that Y (1) and Y (2) have the copula function C, if

P(Y (1) ≤ u, Y (2) ≤ v) = C(G1(u), G2(v)). (1.8)

The copula function C(s, t) is defined as a distribution function on
[0, 1] × [0, 1] with uniform marginals (that is C(1, t) = t, C(s, 1) = s)
satisfying (1.8). For continuous marginals G1, G2, the copula is uniquely
determined (Sklar’s Theorem, see [Nelson (2006)]). Since for any sets A,
B,

max(P(A) + P(B)− 1, 0) ≤ P(A ∩B) ≤ min(P(A),P(B)),

any copula function lies between the two Fréchet bounds

max(s + t− 1, 0) ≤ C(s, t) ≤ min(s, t)

which implies for the distribution functions that

max(G1(u) + G2(v)− 1, 0) ≤ G12(u, v) ≤ min(G1(u), G2(v)). (1.9)

Special cases for the copula are:

(i) The independent case: C(s, t) = s · t, i.e.

P{Y (1) ≤ u, Y (2) ≤ v} = G1(u) ·G2(v). (1.10)

(ii) The comonotone case (the upper Fréchet bound): C(s, t) =
min(s, t), i.e.

P{Y (1) ≤ u, Y (2) ≤ v} = min(G1(u), G2(v)). (1.11)
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(iii) The antimonotone case (the lower Fréchet bound): C(s, t) =
max(s + t− 1, 0), i.e.

P{Y (1) ≤ u, Y (2) ≤ v} = max(G1(u) + G2(v)− 1, 0). (1.12)

If the joint distribution of two random variables Y (1) and Y (2) has copula
C, we say that the two random variables are coupled with C. Coupling is
the technique to find the joint distribution, which exhibits some desired
properties, when the marginals are fixed. Some coupling theorems will be
presented later in this section.

Monotone resp. antimonotone couplings are the extreme cases of cou-
pling and most different from independence: If Y (1) and Y (2) are inde-
pendent, then knowing Y (1) does not give any information about Y (2). In
contrast, comonotonicity (antimonotonicity) is the property that Y (1) gives
maximal information about Y (2) and vice versa.

independent


COUPLING


antimonotone
 comonotone


correlation


negative
 zero
 positive


zero


maximal


mutual information


Fig. 1.3 Coupling types

1.5 Remark. If Y (1) and Y (2) are comonotone, then their common
distribution is the same as the distribution of (G−1

1 (U), G−1
2 (U)), where U

is a Uniform[0,1] variable, since

P{G−1
1 (U) ≤ u,G−1

2 (U) ≤ v} = P{U ≤ G1(u), U ≤ G2(v)}
= min(G1(u), G2(v)).

Similarly, if Y (1) and Y (2) are antimonotone, then their common distribu-
tion is the same as the distribution of (G−1

1 (U), G−1
2 (1−U)), where U is a
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uniform [0,1] variable, since

P{G−1
1 (U) ≤ u,G−1

2 (1− U) ≤ v} = P{1−G2(u) ≤ U ≤ G1(u)}
= max(G1(u) + G2(v)− 1, 0).

1.6 Remark. If H is monotonically increasing (resp. decreasing),
then Y and H(Y ) are comonotone (resp. antimonotone). This follows for
increasing H from

P{Y ≤ u,H(Y ) ≤ v} =





P{Y ≤ u} if H(u) ≤ v, i.e.
if P{Y ≤ u} ≤ P{H(Y ) ≤ v}

P{H(Y ) ≤ v} if H(u) > v, i.e.
if P{Y ≤ u} ≥ P{H(Y ) ≤ v}.

A similar assertion holds for decreasing H. However, there is no converse:
Two random variables may be comonotone, but neither is a monotone func-
tion of the other.

1.7 Proposition. If Y (1) and Y (2) are comonotone, then the quantile
function of aY (1) + bY (2) for non-negative a, b is

aG−1
1 (p) + bG−1

2 (p).

If two random variables are comonotone, possess second moments and are
not identically zero, their correlation is positive. Likewise, if they are anti-
monotone, then their correlation is negative.

Proof. Since G−1
1 , G−1

2 are left continuous and nondecreasing,

P{aG−1
1 (U) + bG−1

2 (U) ≤ aG−1
1 (p) + bG−1

2 (p)} ≥ p

with U ∼ Uniform[0,1] and for v < aG−1
1 (p) + bG−1

2 (p)

P{aG−1
1 (U) + bG−1

2 (U) ≤ v} < p.

By the definition of the quantile function (1.3), this implies the first as-
sertion. As to the second assertion, we invoke Hoeffding’s Lemma [Hoeffd-
ing (1940)], see also [Lehmann (1966)] and Remark 2.1 in [Burgert and
Rüschendorf (2006)]). If G12 is the joint distribution of a pair of ran-
dom variables (Y (1), Y (2)) with marginals G1 and G2, then the covariance
Cov(Y (1), Y (2)) can be written as

Cov(Y (1), Y (2)) =
∫ ∫

[G12(u, v)−G1(u) ·G2(v)] du dv. (1.13)

Consequently, for comonotone Y (1), Y (2)

Cov(Y (1), Y (2)) =
∫ ∫

[max(G1(u), G2(v))−G1(u) ·G2(v)] du dv
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which is positive, if at least one of the variables is nondegenerated. The
statement for antimonotone random variables follows by replacing Y (2) with
−Y (2). ¤

The following example shows that although the correlation coefficient
of comonotone pairs must be positive, it may be arbitrarily small.

Example. Let for a > 1

(Y (1), Y (2)) =





(1, a) with probability 1
2a2

(1, 0) with probability 1
2 − 1

2a2

(−1, 0) with probability 1
2 − 1

2a2

(−1,−a) with probability 1
2a2

Both variables have expectation 0 and variance 1. They are comonotone
and their correlation is 1/a, which can be made arbitrary small by choosing
a large.

The coupling problem consists in constructing a joint distribution with
some given property, when the marginal distributions are given, that is to
find the right copula. Here are some examples of coupling problems.

1.8 Proposition. For given marginals G1 and G2, the covariance
is maximized, if the two random variables are comonotone coupled, i.e.
if (1.11) holds. The covariance is minimized, if they are antimonotone
coupled, i.e. if (1.12) holds.

Proof. We use Hoeffding’s Lemma (1.13) again. By (1.9),

Cov(Y (1), Y (2)) =
∫ ∫

[G12(u, v)−G1(u) ·G2(v)] du dv

≤
∫ ∫

[min(G1(u), G2(v))−G1(u) ·G2(v)] du dv

and

Cov(Y (1), Y (2)) ≥
∫ ∫

[max(G1(u) + G2(v)− 1, 0)−G1(u) ·G2(v)] du dv,

which implies the assertion. ¤

The generalization for multivariate Y ’s is more complicated.

1.9 Proposition. Let Y (1) = (Y (1)
1 , . . . , Y

(1)
K ) and Y (2) =

(Y (2)
1 , . . . , Y

(2)
K ) be two random vectors. Consider the problem to maxi-

mize
K∑

k=1

E[Y (1)
k Y

(2)
k ] (1.14)
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among all joint distributions, such that vector Y (1) has distribution G1 and
vector Y (2) has distribution G2. If one may find a convex function f with
conjugate function f∗ such that

K∑

k=1

Y
(1)
k · Y (2)

k = f(Y (1)) + f∗(Y (2)) a.s.

and if Y (1) resp. Y (2) have the correct marginals, then this pair solves the
maximization problem (1.14).

Proof. For a proof see [Rüschendorf and Rachev (1990)]. ¤

There is unfortunately no constructive way to find the convex pair
(f, f∗).

1.2.3 Utility functions and order relations

The concept of utility functions goes back to ([v. Neumann and Morgenstern
(1944)]). The idea behind utility is that a numerical value v of an economic
quantity is not conceived by all decision makers in the same way. Decision
makers judge according to their individual preference and express this by
an individual ”utility transformation” U(v).

For stochastic outcomes, the use of the expected utility was proposed
and thoroughly studied by Arrow and (independently) by Pratt ([Arrow
(1971); Pratt (1964)]). For a given utility function U , any two outcome
variables, say Y (1) and Y (2), can be compared for their expected utility:
Y (2) is preferred to Y (1), if E[U(Y (2))] ≥ E[U(Y (1))]. Thus utility functions
introduce a total ordering for outcome variables.

Utility functions are however artifacts and it is difficult to choose them
in the proper way. It is much easier to agree on a certain set of utility
functions and introduce a partial ordering (a preference relation) instead of
the total ordering: If U is a class of functions on R, then Y (2) is preferred
to Y (1) w.r.t. U , if

E[U(Y (2))] ≥ E[U(Y (1))] for all U ∈ U .

The following sets of utility functions are typically considered:

• UFSD, the set of all nondecreasing functions,
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• UCCD, the set of all concave functions,
• USSD, the set of all concave, nondecreasing functions,
• UCXD, the set of all convex functions.

Notice the following inclusions

USSD ⊆ UFSD, USSD ⊆ UCCD. (1.15)

To these classes of utility functions, there correspond order relations for
outcome distributions. We formulate these order relations in two ways: in
terms of random variables and in terms of distribution functions.

1.10 Definition: Dominance.
(i) Stochastic dominance of the first order.

The r.v. Y (1) is dominated by
Y (2) in first order sense,

Y (1) ≺FSD Y (2),

if E[U(Y (1))] ≤ E[U(Y (2))]

The distribution G1 is dominated
by G2 in first order sense,

G1 ≺FSD G2,

if
∫

U(v) dG1(v) ≤ ∫
U(v) dG2(v)

for all nondecreasing integrable U , i.e. for all U ∈ UFSD for which the
integrals exist.

(ii) Stochastic dominance of the second order.

The r.v. Y (1) is dominated by
Y (2) in second order sense,

Y (1) ≺SSD Y (2),

if E[U(Y (1))] ≤ E[U(Y (2))]

The distribution G1 is dominated
by G2 in first order sense,

G1 ≺SSD G2,

if
∫

U(v) dG1(v) ≤ ∫
U(v) dG2(v)

for all nondecreasing concave integrable U , i.e. for all U ∈ USSD for which
the integrals exist.

(iii) Concave dominance.

The r.v. Y (1) is dominated by
Y (2) in the concave order sense,

Y (1) ≺CCD Y (2),

if E[U(Y (1))] ≤ E[U(Y (2))]

The distribution G1 is dominated
by G2 in the concave order sense,

G1 ≺CCD G2,

if
∫

U(v) dG1(v) ≤ ∫
U(v) dG2(v)

for all concave integrable U , i.e. for all U ∈ UCCD for which the integrals
exist.
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(iv) Convex dominance.

The r.v. Y (1) is dominated by
Y (2) in the convex order sense,

Y (1) ≺CXD Y (2),

if E[U(Y (1))] ≤ E[U(Y (2))]

The distribution G1 is dominated
by G2 in the convex order sense,

G1 ≺CXD G2,

if
∫

U(v) dG1(v) ≤ ∫
U(v) dG2(v)

for all convex integrable U , i.e. for all U ∈ UCXD for which the integrals
exist.

Obviously, G1 ≺FSD G2 implies that G1 ≺SSD G2. Similarly, G1 ≺CCD

G2 implies that G1 ≺SSD G2. The relation ≺CXD is also known under the
names Bishop-de Leeuw ordering or Lorenz dominance, the reason for the
latter name is given in Proposition 1.16. More details about order relations
can be found in [Müller and Stoyan (2002)].

Examples. Let G1, G2 be the distribution functions of normally dis-
tributed random variables with means µ1 resp. µ2 and standard deviations
σ1 resp. σ2. If µ1 ≤ µ2 and σ1 = σ2, then G1 ≺FSD G2, but G1 6≺CCD G2.
In contrast, if µ1 = µ2 and σ1 > σ2, then G1 ≺CCD G2, but G1 6≺FSD G2.
In both cases G1 ≺SSD G2.

1.11 Remark. If ψ and φ are nondecreasing and concave, then
so is their composition ψ ◦ φ. Thus Y (1) ≺SSD Y (2) implies φ(Y (1)) ≺SSD

φ(Y (2)) for all nondecreasing concave φ. Y (1) ≺SSD Y (2) implies also Y (1)+
a ≺SSD Y (2) + b for a ≤ b.

Before we give alternative characterizations of these order relations, let
us introduce the integrated distribution function and the integrated quantile
function.

1.12 Definition. The IDF and the IQF. Let G be a distribution
function and let G−1 be its inverse, the quantile function. Suppose that
the first moment of G exists.

• The integrated distribution function (IDF) G is

G(u) =
∫ u

−∞
G(v) dv. (1.16)



MODELING, MEASURING AND MANAGING RISK 
© World Scientific Publishing Co. Pte. Ltd.
http://www.worldscibooks.com/business/6478.html

June 3, 2007 11:37 World Scientific Book - 9in x 6in MERI˙WS

Modeling uncertain outcomes 15

• The integrated quantile function (IQF) G[−1] is

G[−1](p) =
∫ p

0

G−1(q) dq. (1.17)

Notice that G[−1] is not the inverse of G, we express this by setting
[−1] in brackets. Notice also that

G[−1](1) =
∫

u dG(u) = E{G}.

The IDF and the IQF are related by Young’s inequality

G(u) + G[−1](q) ≤ uq for u ∈ R, q ∈ (0, 1) (1.18)

where equality holds if and only if G(u) = q. The validity of this inequality
can be easily seen from Figure 1.4: The sum of the two areas 1 and 2 is less
than or equal to uq.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

u

q

area 1

area 2

Fig. 1.4 Illustration of Young’s inequality

As a consequence of (1.18) one readily sees that G and G[−1] are mutually
dual in the following sense:

G(u) = sup{uq − G[−1](q) : q ∈ (0, 1)} (1.19)

and

G[−1](q) = sup{uq − G(u) : u ∈ R}. (1.20)

We are now ready to state several alternative formulations of the order
relations.
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1.13 Theorem.

(i) G1 ≺FSD G2 is equivalent to G1(u) ≥ G2(u) for all u ∈ R.
(ii) G1 ≺FSD G2 is also equivalent to G−1

1 (p) ≤ G−1
2 (p) for all p ∈

(0, 1).
(iii) G1 ≺CCD G2 is equivalent to G1 ≺SSD G2 and at the same time

E{G1} = E{G2}.
(iv) G1 ≺CCD G2 is also equivalent to the existence of a Markov kernel

K with the properties

G1(u) =
∫

K(u|v) dG2(v) and
∫

u dK(u|v) = v for all v.

(v) G1 ≺SSD G2 is equivalent to

G1(u) ≥ G2(u)

for all u ∈ R.
(vi) G1 ≺SSD G2 is also equivalent to

G[−1]
1 (p) ≤ G[−1]

2 (p)

for all p ∈ (0, 1).

Proof. (i) can be easily seen since 1 − G(u) =
∫

1l{v>u} dG(v) and
v 7→ 1l{v>u} is nondecreasing. (ii) is a direct consequence of (i). (iii) Let
G1 ≺CCD G2. Then, since the identity u 7→ u is concave and convex at
the same time, E{G1} = E{G2}. Since monotonic, concave functions are
concave, G1 ≺SSD G2 follows. To prove the opposite relation assume that
E{G1} = E{G2} and G1 ≺SSD G2. We have to show that E[U(Y (1))] ≤
E[U(Y (2))] for every (integrable) concave function U . Recall the notion
of the supergradient of a concave function U at a point v: ∂U(v) = {a :
U(v) + a(w − v) ≥ U(w) for all w}. Call the function U supergradient-
bounded from below, if c := inf{a ∈ ∂U(v) : v ∈ R} is not equal to −∞.
If c ≥ 0, then U is nondecreasing. If U is supergradient-bounded from
below, then U(w) − cw is nondecreasing and concave. Thus according to
the assumption, E[U(Y (1))] − cE[Y (1)] ≤ E[U(Y (2))] − cE[Y (2)], whence
E[U(Y (1))] ≤ E[U(Y (2))]. If U is not supergradient-bounded from below,
it may be approximated by a sequence of supergradient-bounded concave
functions U (n) such that U (n) ↓ U and E(U (n)(Y (i))) ↓ E(U(Y (i))) for
i = 1, 2. Since E[U (n)(Y (1))] ≤ E[U (n)(Y (2))] for each n, the same relation
holds also for the limit U .
(iv) This result has many fathers: Hardy, Littlewood, Polya, Blackwell,
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Stein, Sherman, Cartier, Fell, Meyer, for a proof see [Strassen (1965)].
(v) Since G(u) =

∫ u

−∞G(v) dv =
∫∞
−∞[u− v]+ dG(v), one sees that G1(u) ≥

G2(u) is equivalent to
∫∞
−∞ ψ(v) dG1(v) ≤ ∫∞

−∞ ψ(v) dG2(v) for all functions
of the form ψ(v) =

∑
k(−αk)[uk − v]+ + βk, with αk ≥ 0. These functions

are dense in the set of all nondecreasing, concave functions.
(vi) The equations (1.19) and (1.20) show that the relations G1(u) ≥ G2(u),
for all u and G[−1]

1 (q) ≤ G[−1](q) for all q, are equivalent (see also [Ogryczak
and Ruszczyński (1999)]). ¤

The next example illustrates the just defined order relations for two
random variables.

Example. Consider the family of Gamma distributions
Gamma(a, b,m) with densities

ga,b,m(u) =

{
1

ba Γ(a) (u−m)a−1 exp(−(u−m)/b) for u > m

0 for u ≤ m

Let Y (1) ∼ Gamma(4, 0.25, 0), Y (2) ∼ Gamma(4, 0.25, 0.5),
Y (3) ∼ Gamma(4, 0.15, 0.5), Y (4) ∼ Gamma(4, 0.1, 0.5). Then

Y (1) ≺FSD Y (2),
Y (1) ≺SSD Y (3), but Y (1) 6≺FSD Y (3),
Y (1) 6≺FSD Y (4) and Y (1) 6≺SSD Y (4).

These relations are illustrated in Figures 1.5 – 1.7.
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Fig. 1.5 Left: the distribution functions G1 of Y (1) (solid) and G2 of Y (2) (dashed)
Right:the integrated distribution functions G1 of Y (1) (solid) and G2 of Y (2) (dashed);
The relation Y (1) ≺FSD Y (2) holds.

The dominance relations can be concretized by some coupling. Recall
that coupling is the construction of specific joint distributions (i.e. specific
copulas), when the marginals are fixed.
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Fig. 1.6 Left: the distribution functions G1 of Y (1) (solid) and G3 of Y (3) (dashed)
Right:the integrated distribution functions G1 of Y (1) (solid) and G3 of Y (3) (dashed);
Y (1) ≺SSD Y (3) holds, but Y (1) ≺FSD Y (3) does not hold.
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Fig. 1.7 Left: the distribution functions G1 of Y (1) (solid) and G4 of Y (4) (dashed)
Right:the integrated distribution functions G1 of Y (1) (solid) and G4 of Y (4) (dashed);
Neither Y (1) ≺FSD Y (4) nor Y (1) ≺SSD Y (4) holds.

1.14 Proposition.

(i) The FSD-coupling: If G1 ≺FSD G2, then one may construct a pair
Y (1), Y (2) of random variables with marginals G1, G2, such that

Y (1) ≤ Y (2) a.s.

(ii) The CCD-coupling: If G1 ≺CCD G2, then one may construct a pair
Y (1), Y (2) of random variables with marginals G1, G2, such that

Y (2) = E(Y (1)|Y (2)) a.s.

(iii) The SSD-coupling. If G1 ≺SSD G2, then one may construct a pair
Y (1), Y (2) of random variables Y (1), Y (2) with marginals G1, G2,
such that

Y (2) ≥ E(Y (1)|Y (2)) a.s.

Alternatively, one may also construct random variables Y (1), Y (2)

with marginals G1, G2 and a third random variable Y such that

Y (1) ≤ E(Y (2)|Y ) a.s.
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Proof. The construction for (i) is to set (Y (1), Y (2)) =
(G−1

1 (U), G−1
2 (U)), for a U uniform in [0,1]. For the constructions (ii)

and (iii) see [Strassen (1965)]. ¤

1.15 Definition. The Lorenz curve pertaining to a distribution G

with finite expectation is defined as

LG(p) = G[−1](p)/G[−1](1) = G[−1](p)/E{G},

where G[−1] is the IQF (see (1.17)).

For a distribution with only non-negative values, the value LG(p) of
the Lorenz curve indicates the percentage of the total outcome, which is
attributed to the p percent of worst scenarios. In this case, LG is a non-
negative, monotonic, convex function, with LG(0) = 0, LG(1) = 1, see
Figure 1.8.

If the distribution may take negative values, the Lorenz curve is no
longer monotonic and non-negative, but still is convex, see Figure 1.9.
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Fig. 1.8 Left: the distribution function Gamma(4, 0.25, 0) Right: the pertaining Lorenz
curve

Lorenz curves are related to the convex ordering by the following rela-
tionship.

1.16 Proposition. G1 ≺CCD G2 is equivalent to LG1(p) ≤ LG1(p)
for all p ∈ (0, 1) and at the same time E{G1} = E{G2}.

Proof. Combine (iii) and (vi) of Theorem 1.13. ¤



MODELING, MEASURING AND MANAGING RISK 
© World Scientific Publishing Co. Pte. Ltd.
http://www.worldscibooks.com/business/6478.html

June 3, 2007 11:37 World Scientific Book - 9in x 6in MERI˙WS

20 Modeling, Measuring and Managing Risk

−2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

Fig. 1.9 Left: the distribution function Gamma(2, 0.25,−0.8) Right: the pertaining
Lorenz curve

1.2.4 Compounding

Loosely spoken, a compound distribution is a mixture of other distributions.
For an exact definition, let K(·|u) be a Markov kernel, i.e. a family of
distribution functions indexed with a real parameter u, and let G(u) be a
further distribution function. The compound distribution function K ◦G is
defined as

(K ◦G)(v) =
∫

K(v|u) dG(u). (1.21)

On the level of random variables, we say that V is a compound random
variable, if there is a stochastic process (Y (u)) such that each Y (u) has
distribution K(·|u) and a switching variable X with distribution G. If X

is constructed on a new, independent probability space, then

V = Y (X)

has distribution K ◦G.

The simplest compounding switches only between two variables. Let
Y (1) and Y (2) be random variables and let X be the switching variable,
which is independent from Y (1), Y (2) and which takes the value X = 1
with probability λ and X = 2 with probability 1− λ. Then the compound
variable is

C(Y (1), Y (2), λ) =
{

Y (1) if X = 1
Y (2) if X = 2

(1.22)

The distribution function of C(Y (1), Y (2), λ) is

λG1(u) + (1− λ)G2(u).
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Notice the difference between compounding and comonotone coupling:
If Y (1) and Y (2) are compounded with probability 1/2, then the distribution
function of the compound variable C(Y (1), Y (2), 1/2) is the average of the
distribution functions G1 and G2

1
2
G1(u) +

1
2
G2(u).

In contrast, if one takes the comonotone average of Y (1) and Y (2), i.e.
finds comonotone versions Y (1)′ and Y (2)′ and takes 1

2Y (1)′ + 1
2Y (2)′, then

this random variable’s quantile function is the average of the quantile func-
tions G−1

1 and G−1
2

1
2
G−1

1 (p) +
1
2
G−1

1 (p),

according to Proposition 1.7. Thus compounding and monotone coupling
are in a sense dual operations.

1.3 Standard statistical parameters

Since probability distributions are complex objects, there is a need of de-
scribing them with few relevant parameters. Such parameters like the mean,
the variance or higher moments have been used in statistics for more than
100 years. Some of these parameters have also been used in the earlier
days of risk management. However, specific requirements for appropriately
measuring risk have led to new statistical parameters (new risk functionals)
as they will be introduced in Chapter 2.

Some traditional statistical parameters still have their important role
in risk measuring. They will be reviewed below and their properties will
be discussed. We distinguish between location parameters and dispersion
parameters. Notice that statistical parameters, are - by definition - only
dependent on the distribution of the random variable, that is they are
version independent in the sense of Definition 2.1 in Chapter 2.

1.3.1 Location parameters

A location parameter L follows all translations of the distribution, i.e. for
all constant c

L(Y + c) = L(Y ) + c L{G(· − c)} = L{G}+ c.
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This property is also called translation equivariance (compare Definition
2.2 of Chapter 2).

Examples of frequently used location parameters are

• the expectation E(Y ) =
∫∞
−∞ u dG(u);

• the median Med(Y ) = [G−1(0.5) + G−1(0.5+)]/2;
• the α-quantile G−1(α), also called the value-at-risk V@Rα of level

α;
• Linear combinations of quantiles (order statistics, L-statistics)∫

G−1(u) dH(u)

for some monotonic function H. These functionals are also called
distortion functionals (see Section 2.4.2).

1.3.2 Dispersion parameters

A dispersion parameter D is unaffected by translations of the underlying
distribution, i.e. for all c

D(Y + c) = D(Y ) D{G(· − c)} = D{G}.
This property is also called translation invariance (compare Definition 2.2
of Chapter 2).

Some, but not all dispersion parameters are scale-equivariant, i.e. they
have the property

D(λY ) = |λ|D(Y ).

Examples are

• The variance.

Var(Y ) = E(Y − EY )2.

In terms of the distribution function, the variance can be written
as

Var{G} =
∫

(u−
∫

v dG(v))2 dG(u) =
1
2

∫ ∫
(u−v)2 dG(u) dG(v),

which has the interpretation as

Var(Y ) = E(Y − Y ′)2,

where Y ′ is an independent copy of Y (i.e. has the same distribu-
tion as Y but is independent of it).
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• The standard deviation.

Std(Y ) =
√
E(Y − EY )2

is the square root of the variance.
• The mean absolute deviation.

Mad(Y ) = E|Y − EY |.
• The Gini measure.

Gini(Y ) =
1
2
E|Y − Y ′|

where Y ′ is an independent copy of Y . Notice that

Gini(Y ) =
1
2
E[Y + Y ′ − 2min(Y, Y ′)]

= EY − 2
∫ ∞

−∞

∫ x

−∞
y dG(y) dG(x)

= E{G} − 2
∫ ∞

−∞

∫ G(x)

0

G−1(p) dp dG(x)

= E{G} − 2
∫ 1

0

∫ q

0

G−1(p) dp dq

= E{G} − 2
∫ 1

0

G[−1](q) dq

= E{G}
[
1− 2

∫ 1

0

LG(q) dq
]

(1.23)

where G[−1] and LG are the integrated quantile function and the
Lorenz curve, respectively. In words, the Gini measure is the ex-
pectation minus twice the area between the identity and the Lorenz
curve in the unit square.

• The lower semi variance

Var−(Y ) = E([Y − EY ]−)2

where [a]− = −min(a, 0).
• The upper semi variance

Var+(Y ) = E([Y − EY ]+)2

where [a]+ = max(a, 0). Notice that

Var(Y ) = Var+(Y ) + Var−(Y ).
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• The lower semi standard deviation

Std−(Y ) =
√
E([Y − EY ]−)2

is the square root of the lower semi variance.
• The upper semi standard deviation

Std+(Y ) = Std−(−Y ) =
√
E([Y − EY ]+)2

is the square root of the upper semi variance.

The variance and the semi variances are special cases of higher central
moments, resp. higher partial moments. The k-th central absolute moment
of the distribution of Y is defined as

E|Y − EY |k.

The k-th lower partial moment is

E([Y − EY ]−)k

and the corresponding upper partial moment is

E([Y − EY ]+)k.

Partial moments have been introduced in risk management in [Bawa
(1975)].

1.3.3 Correlation parameters

The joint behavior of two or more random variables is determined by the
marginal distributions and the copula function. The covariance and cor-
relation are statistical parameters, which give some, but not a complete
information about the dependence of two random variables with second
moments.

The covariance between the two random variables Y (1) and Y (2) is de-
fined as

Cov(Y (1), Y (2)) = E[(Y (1) − EY (1))(Y (2) − EY (2))],

while their correlation is

Corr(Y (1), Y (2)) =
Cov(Y (1), Y (2))

Var(Y (1))Var(Y (2))
.
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For a random vector (Y (1), . . . , Y (M)) of length M , the covariance ma-
trix is defined as




Var(Y (1)) Cov(Y (1), Y (2)) · · · Cov(Y (1), Y (M))
Cov(Y (1), Y (2)) Var(Y (2)) · · · Cov(Y (1), Y (M))

...
...

. . .
...

Cov(Y (1), Y (M)) Cov(Y (2), Y (M)) · · · Var(Y (M))


 .

The covariance matrix C of a random vector (Y (1), . . . , Y (M)) is sym-
metric and positive semidefinite. Such a matrix always has the representa-
tion as

C = V · Λ · V T ,

where V is an orthonormal matrix (the matrix of eigenvectors) and Λ is a
diagonal matrix with non-negative entries (the eigenvalues).

Λ = diag(λ1, . . . , λM ) =




λ1 0 0 . . . 0
0 λ2 0 . . . 0
...

...
...

. . .
...

0 . . . . . . 0 λM


 .

Let V = (v1, . . . , vM ), i.e. let vm be the columns of V . The vm’s are
mutually orthogonal and have unit length. The matrix C satisfies

C =
M∑

m=1

λm vmv>m.

The transformed variables

Z(i) =
M∑

m=1

vm,iY
(m)

are called the principal components of (Y (1), . . . , Y (M)). The covariance
matrix of the principal components is Λ, i.e. the principal components are
uncorrelated.

The m-th eigenvalue λm equals the variance of the m-th principal com-
ponent Z(m). The proportion of the total variance which is explained by
the m-th principal component is λm/

∑
i λi.

An example for a covariance matrix, an eigenvalue decomposition and
the pertaining principal components can be found in Appendix C.




