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Introduction

Many stochastic programming models may be traced back to minimizing an

expectation functional on some closed subset of a Euclidean space or, eventually

in addition, relative to some expectation constraint. Their general form is

(SP) min
{∫

Ξ

f0(x, ξ)P (dξ) : x ∈ X,
∫

Ξ

f1(x, ξ)P (dξ) ≤ 0
}

where X is a closed subset of Rm, Ξ a closed subset of Rs, P is a Borel probability

measure on Ξ abbreviated by P ∈ P(Ξ). The functions f0 and f1 from Rm× Ξ

to the extended reals R = (−∞,∞] are normal integrands.

For general continuous multivariate probability distributions P such stochastic

optimization models (SP) are not solvable in general.

Many approaches for solving such optimization models computationally are based

on finding a discrete probability measure Pn in

Pn(Ξ) :=
{ n∑

i=1

piδξi : ξi ∈ Ξ, pi ≥ 0, i = 1, . . . , n,
n∑
i=1

pi = 1
}

for some n ∈ N, which approximates P at least such that the corresponding

optimal values of (SP) are close. The atoms ξi, i = 1, . . . , n, of Pn are often

called scenarios in this context.



For example, typical integrands in linear two-stage stochastic programming mod-

els are

f0(x, ξ) =

{
g(x) + Φ(q(ξ), h(x, ξ)) , q(ξ) ∈ D

+∞ , else
and f1(x, ξ) ≡ 0,

where X and Ξ are convex polyhedral, g(·) is a linear function, q(·) is affine,

D = {q ∈ Rm̄ : {z ∈ Rr : W>z− q ∈ Y ?} 6= ∅} denotes the convex polyhedral

dual feasibility set, h(·, ξ) is affine for fixed ξ and h(x, ·) is affine for fixed x, and

Φ denotes the infimal function of the linear (second-stage) optimization problem

Φ(q, t) := inf{〈q, y〉 : Wy = t, y ∈ Y }

with (r, m̄) matrix W and convex polyhedral cone Y ⊂ Rm̄.

Typical integrands f1 appearing in chance constrained programming are of the

form

f1(x, ξ) = p− 1lP(x)(ξ),

where p ∈ (0, 1) is a probability level and 1lP(x) is the characteristic function of

the polyhedron P(x) = {ξ ∈ Ξ : h(x, ξ) ≤ 0} depending on x, where Ξ and h

have the same properties as above.



Stability-based scenario generation

Let v(P ) and S(P ) denote the infimum and solution set of (SP). We are inter-

ested in their dependence on the underlying probability distribution P .

To state a stability result we introduce the following sets of functions and of

probability distributions (both defined on Ξ)

F = {fj(x, · ) : j = 0, 1, x ∈ X} ,

PF =
{
Q ∈ P(Ξ) : −∞ <

∫
Ξ

inf
x∈X

fj(x, ξ)Q(dξ), sup
x∈X

∫
Ξ

fj(x, ξ)Q(dξ) < +∞,∀j
}

and the (pseudo-) distance on PF

dF(P,Q) = sup
f∈F

∣∣∣ ∫
Ξ

f (ξ)(P −Q)(dξ)
∣∣∣ (P,Q ∈ PF).

At first sight the set PF seems to have a complicated structure. For typical

applications, however, like for linear two-stage and chance constrained models,

the sets PF or appropriate subsets allow a simple characterization, for example,

as subsets of P(Ξ) satisfying certain moment conditions.



Proposition: We consider (SP) for P ∈ PF , assume that X is compact and

(i) the function x→
∫

Ξ f0(x, ξ)P (dξ) is Lipschitz continuous on X ,

(ii) the set-valued mapping y ⇒
{
x ∈ X :

∫
Ξ f1(x, ξ)P (dξ) ≤ y

}
satisfies the

Aubin property at (0, x̄) for each x̄ ∈ S(P ).

Then there exist constants L > 0 and δ > 0 such that the estimates

|v(P )− v(Q)| ≤ LdF(P,Q)

sup
x∈S(Q)

d(x, S(P )) ≤ ΨP (LdF(P,Q))

hold whenever Q ∈ PF and dF(P,Q) < δ. The real-valued function ΨP is

given by ΨP (r) = r+ψ−1
P (2r) for all r ∈ R+, where ψP is the growth function

ψP (τ ) = inf
x∈X

{∫
Ξ

f0(x, ξ)P (dξ)− v(P ) : d(x, S(P )) ≥ τ, x ∈ X,∫
Ξ

f1(x, ξ)P (dξ) ≤ 0
}
.

In case f1 ≡ 0 only lower semicontinuity is needed in (i) and the estimates hold

with L = 1 and for any δ > 0. Furthermore, ΨP is lower semicontinuous and

increasing on R+ with ΨP (0) = 0. (Rachev-Römisch 02)



The stability result suggests to choose discrete approximations from Pn(Ξ) for

solving (SP) such that they solve the best approximation problem

(OSG) min
Pn∈Pn(Ξ)

dF(P, Pn) .

at least approximately. Determining the scenarios of some solution to (OSG) may

be called optimal scenario generation. This optimal choice of discrete approxi-

mations is challenging and not possible in general.

It was suggested in (Rachev-Römisch 02) to eventually enlarge the function class F
such that dF becomes a metric distance and has further nice properties. This

may lead, however, to nonconvex nondifferentiable minimization problems (OSG)

for determining the optimal scenarios and to unfavorable convergence rates of(
min

Pn∈Pn(Ξ)
dF(P, Pn)

)
n∈N

.

Typical examples are to choose F as bounded subset of some Banach space

Cr,α(Ξ) with r ∈ N0, α ∈ (0, 1], and convergence rate O(n−
r+α
s ).



The road of probability metrics

Motivated by linear two-stage models one may consider

Fortet-Mourier metrics:

ζr(P,Q) := dFr(Ξ)(P,Q) := sup
∣∣∣ ∫

Ξ

f (ξ)(P −Q)(dξ) : f ∈ Fr(Ξ)
∣∣∣,

where the function class Fr for r ≥ 1 is given by

Fr(Ξ) :=
{
f : Ξ 7→ R : f (ξ)− f (ξ̃) ≤ cr(ξ, ξ̃), ∀ξ, ξ̃ ∈ Ξ

}
,

cr(ξ, ξ̃) := max{1, ‖ξ‖r−1, ‖ξ̃‖r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξ).

Proposition: (Rachev-Rüschendorf 98)

If Ξ is bounded, ζr may be reformulated as dual transportation problem

ζr(P,Q) = inf
{∫

Ξ×Ξ

ĉr(ξ, ξ̃)η(dξ, dξ̃) : π1η =P, π2η = Q
}
,

where the reduced cost ĉr is a metric with ĉr ≤ cr and given by the minimal cost

flow problem

ĉr(ξ, ξ̃) := inf
{ n−1∑

i=1

cr(ξli, ξli+1
) : n ∈ N, ξli ∈ Ξ, ξl1 = ξ, ξln = ξ̃

}
.



The problem of optimal scenario generation (OSG) then reads

min
Pn∈Pn(Ξ)

ζr(P, Pn)

or

min
(ξ1,...,ξn)∈Ξn

∫
Ξ

min
j=1,...,n

ĉr(ξ, ξ
j)P (dξ).

The function (ξ1, . . . , ξn) 7→
∫

Ξ minj=1,...,n ĉr(ξ, ξ
j)P (dξ) is continuous on Ξn

and has compact level sets, but is nonconvex and nondifferentiable in general.

Hence, optimal scenarios exist, but their computation is difficult.

If P itself is discrete with possibly many (say N � n) scenarios and the minimiza-

tion is restricted to Ξ = supp(P ) one arrives at the optimal scenario reduction

problem. This problem can be shown to decompose into finding the optimal sce-

nario set J to remain and into determining the optimal new probabilities given

J . The background is that the Fortet-Mourier metric is of a special form if both

probability measures are discrete.



Let P and Q be two discrete distributions, where ξi are the scenarios with prob-

abilities pi, i = 1, . . . , N , of P and ξ̃j the scenarios and qj, j = 1, . . . , n, the

probabilities of Q. Let Ξ denote the union of both scenario sets. Then

ζr(P,Q) = inf
{∫

Ξ×Ξ

ĉr(ξ, ξ̃)η(dξ, dξ̃) : π1η = P, π2η = Q
}

= inf
{ N∑

i=1

n∑
j=1

ηij ĉr(ξi, ξ̃j) :

n∑
j=1

ηij = pi,
N∑
i=1

ηij = qj, ηij ≥ 0,

i = 1, . . . , N, j = 1, . . . , n
}

= sup
{ N∑

i=1

piui −
n∑
j=1

qjvj : pi − qj ≤ ĉr(ξi, ξ̃j), i = 1, . . . , N,

j = 1, . . . , n
}

These two formulas represent primal and dual representations of ζr(P,Q) and

primal and dual linear programs.



Now, let P and Q be two discrete distributions, where ξi are the scenarios with

probabilities pi, i = 1, . . . , N , of P and ξj, j ∈ J , the scenarios and qj, j ∈ J ,

the probabilities of Q. Let Ξ denote the support of P .

The best approximation of P with respect to ζr by such a distribution Q exists

and is denoted by Q∗. It has the distance

DJ := ζr(P,Q
∗) = min

Q∈Pn(Ξ)
ζr(P,Q) =

∑
i6∈J

pi min
j∈J

ĉr(ξ
i, ξj)

and the probabilities q∗j = pj +
∑
i∈Ij

pi, ∀j ∈ J, where Ij := {i 6∈ J : j = j(i)}

and j(i) ∈ arg min
j∈J

ĉr(ξ
i, ξj), ∀i 6∈ J (optimal redistribution).

(Dupačová–Gröwe-Kuska–Römisch 03)

Determining the optimal scenario set J with prescribed cardinality n is, however,

a combinatorial optimization problem: (metric n-median problem)

min {DJ : J ⊂ {1, ..., N}, |J | = n}

The problem of finding the optimal set J of remaining scenarios is known to be

NP-hard (Kariv-Hakimi 79) and polynomial time algorithms are not available.



Reformulation of the (metric) n-median problem as combinatorial program:

min

N∑
i,j=1

pixij ĉr(ξ
i, ξj) subject to

N∑
i=1

xij = 1 (j = 1, . . . , N),

N∑
i=1

yi ≤ n ,

xij ≤ yi, xij ∈ {0, 1} (i, j = 1, . . . , N) ,

yi ∈ {0, 1} (i = 1, . . . , N).

The variable yi decides whether scenario ξi remains and xij indicates whether

scenario ξj minimizes the ĉr-distance to ξi.

The combinatorial program can, of course, be solved by standard software. How-

ever, meanwhile there is a well developed theory of polynomial-time approxima-

tion algorithms for solving it.. The current best approximation algorithm provides

always an approximation guarantee of 1 +
√

3 + ε (Li-Svensson 16).

The simplest algorithms are greedy heuristics, namely, backward (or reverse) and

forward heuristics.



Starting point (n = N − 1): min
l∈{1,...,N}

pl min
j 6=l

ĉr(ξl, ξj)

Algorithm: (Backward reduction)

Step [0]: J [0] := ∅ .
Step [i]: li ∈ arg min

l 6∈J [i−1]

∑
k∈J [i−1]∪{l}

pk min
j 6∈J [i−1]∪{l}

ĉr(ξk, ξj).

J [i] := J [i−1] ∪ {li} .
Step [N-n+1]: Optimal redistribution.

Starting point (n = 1): min
u∈{1,...,N}

N∑
k=1

pkĉr(ξk, ξu)

Algorithm: (Forward selection)

Step [0]: J [0] := {1, . . . , N}.
Step [i]: ui ∈ arg min

u∈J [i−1]

∑
k∈J [i−1]\{u}

pk min
j 6∈J [i−1]\{u}

ĉr(ξk, ξj),

J [i] := J [i−1] \ {ui} .
Step [n+1]: Optimal redistribution.

Although the approximation ratio of forward selection is known to be unbounded (Rujeerapaiboon-

Schindler-Kuhn-Wiesemann 17), it worked well in many practical instances.



Example: (Weekly electrical load scenario tree)

Ternary load scenario tree (N=729 scenarios)
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Reduced load scenario trees obtained by forward selection with respect to the Fortet-Mourier distances ζr,
r = 1, 2, 4, 7 and n = 20 (starting above left) (Heitsch-Römisch 07)



Optimal scenario generation for linear two-stage models

We consider linear two-stage stochastic programs as introduced earlier and impose

the following conditions:

(A0) X is a bounded polyhedron and Ξ is convex polyhedral.

(A1) h(x, ξ) ∈ W (Y ) and q(ξ) ∈ D are satisfied for every pair (x, ξ) ∈ X×Ξ,

(A2) P has a second order absolute moment.

Then the infima v(P ) and v(Pn) are attained and the estimate

|v(P )− v(Pn)| ≤ sup
x∈X

∣∣∣∣∫
Ξ

f0(x, ξ)P (dξ)−
∫

Ξ

f0(x, ξ)Pn(dξ)

∣∣∣∣
= sup

x∈X

∣∣∣∣∫
Ξ

Φ(q(ξ), h(x, ξ))P (dξ)−
∫

Ξ

Φ(q(ξ), h(x, ξ))Pn(dξ)

∣∣∣∣
holds due to the stability result for every Pn ∈ Pn(Ξ).

Hence, the optimal scenario generation problem (OSG) with uniform weights may

be reformulated as: Determine P ∗n ∈ Pn(Ξ) such that it solves the best uniform

approximation problem

min
(ξ1,...,ξn)∈Ξn

sup
x∈X

∣∣∣∣∣
∫

Ξ

Φ(q(ξ), h(x, ξ))P (dξ)− 1

n

n∑
i=1

Φ(q(ξi), h(x, ξi))

∣∣∣∣∣.



The class of functions {Φ(q(·), h(x, ·)) : x ∈ X} from Ξ to R enjoys specific

properties. All functions are finite, continuous and piecewise linear-quadratic on

Ξ. They are linear-quadratic on each convex polyhedral set

Ξj(x) = {ξ ∈ Ξ : (q(ξ), h(x, ξ)) ∈ Kj} (j = 1, . . . , `),

where the convex polyhedral cones Kj, j = 1, . . . , `, represent a decomposition

of the domain of Φ, which is itself a convex polyhedral cone in Rm̄+r.

Theorem: (Henrion-Römisch 17)

Assume (A0)–(A2). Then (OSG) is equivalent to the generalized semi-infinite

program

min
t≥0,(ξ1,...,ξn)∈Ξn

t
∣∣∣∣∣∣

1
n

∑n
i=1〈h(x, ξi), zi〉 ≤ t + FP (x)

FP (x) ≤ t + 1
n

∑n
i=1〈q(ξi), yi〉

∀(x, y, z) ∈M(ξ1, . . . , ξn)

,
where the set M =M(ξ1, . . . , ξn) and the function FP : X → R are given by

M = {(x, y, z) ∈ X × Y n × Rrn : Wyi = h(x, ξi),W>zi − q(ξi) ∈ Y ∗,∀i},

FP (x) :=

∫
Ξ

Φ(q(ξ), h(x, ξ))P (dξ).

The latter is the convex expected recourse function of the two-stage model.



Theorem: Let the function h be affine, assume (A0)–(A2) and that either h or

q be random. Then the set-valued mapping M : Ξn ⇒ Rm × Rm̄n × Rrn has

convex polyhedral graph and is Hausdorff Lipschitz continuous on Ξn.

The feasible set M is closed and convex.

We note that FP (x) can only be calculated approximately even if the probability

measure P is completely known. For example, this could be done by Monte Carlo

or Quasi-Monte Carlo methods with a large sample size N > n. Let

FP (x) ≈ 1

N

N∑
j=1

Φ(q(ξ̂j), h(x, ξ̂j))

be such an approximate representation of FP (x) based on a sample ξ̂j, j =

1, . . . , N . The corresponding generalized semi-infinite program is of the form

min
t≥0,(ξ1,...,ξn)∈Ξn


t

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
n

n∑
i=1

〈h(x, ξi), zi〉 ≤ t + 1
N

N∑
j=1

〈q(ξ̂j), ŷj〉

1
N

N∑
j=1

〈h(x, ξ̂j), ẑj〉 ≤ t + 1
n

n∑
i=1

〈q(ξi), yi〉

∀(x, ŷ, ẑ) ∈M(ξ̂1, . . . , ξ̂N)

∀(x, y, z) ∈M(ξ1, . . . , ξn)


.



Monte Carlo and Quasi-Monte Carlo methods

Monte Carlo: Let ξi(·), i ∈ N, denote independent and identically distributed

random vectors with common distribution P and Pn be the empirical measure

Pn(·) =
1

n

n∑
i=1

δξi(·) (n ∈ N)

defined on some probability space (Ω,A,P). The law of large numbers implies

that the sequence (Pn(·))n∈N converges P-almost surely weakly to P .

To study the convergence rate one considers the empirical process

{βn(Pn(·)− P )f}f∈F (n ∈ N)

indexed by a function class F with sequence (βn), where Qf =
∫

Ξ f (ξ)Q(dξ) for

any Borel probability measure Q on Ξ. The empirical process is called bounded

in probability with tail function τF if for all ε > 0 and n ∈ N the estimate

P({βndF(Pn(·), P ) ≥ ε}) ≤ τF(ε)

holds. Whether the empirical process is bounded in probability, depends on the

size of the class F measured in terms of covering numbers in L2(Ξ, P ). Typically,

one has an exponential tail τF(ε) = C(ε) exp (−ε2) and βn =
√
n.



Quasi-Monte Carlo: The basic idea of Quasi-Monte Carlo (QMC) methods is

to use deterministic points that are (in some way) uniformly distributed in [0, 1]s

and to consider first the approximate computation of

Is(f ) =

∫
[0,1]s

f (ξ)dξ by Qn,s(f ) =
1

n

n∑
i=1

f (ξi)

with (non-random) points ξi, i = 1, . . . , n, from [0, 1]s.

The uniform distribution property of point sets may be defined in terms of the

so-called Lp-discrepancy of ξ1, . . . , ξn for 1 ≤ p ≤ ∞

dp,n(ξ1, . . . , ξn) =
(∫

[0,1]s
|disc(ξ)|pdξ

)1
p
, disc(ξ) :=

d∏
j=1

ξj −
1

n

n∑
i=1

1l[0,ξ)(ξ
i) .

A sequence (ξi)i∈N is called uniformly distributed in [0, 1]s if

dp,n(ξ1, . . . , ξn)→ 0 for n→∞

There exist sequences (ξi) in [0, 1]s such that for all δ ∈ (0, 1
2]

d∞,n(ξ1, . . . , ξn) = O(n−1(log n)s) or d∞,n(ξ1, . . . , ξn) ≤ C(s, δ)n−1+δ .



Using a suitable randomization of such sequences may lead to a root mean square

convergence rate
√
E[d2

2,n(ξ1, . . . , ξn)] ≤ C(δ)n−1+δ with a constant C(δ) not

depending on the dimension s and δ ∈ (0, 1
2].

Example: Randomly shifted lattice rule (Sloan-Kuo-Joe 02).

With a random vector 4 which is uniformly distributed on [0, 1]s, we consider

the randomly shifted lattice rule

Qn,s(ω)(f ) =
1

n

n∑
j=1

f
({(j − 1)

n
g +4(ω)

})
.

Theorem: Let n ∈ N be prime and f belong to the weighted tensor product

Sobolev spaceW (1,...,1)
2,γ,mix([0, 1]s). Then g ∈ Zs+ can be constructed componentwise

such that for each δ ∈ (0, 1
2] there exists a constant C(δ) > 0 with

sup
‖f‖γ≤1

√
E|Qn,s(ω)(f )− Is(f )|2 ≤ C(δ)n−1+δ ,

where C(δ) increases if δ decreases, but does not depend on s if the sequence

(γj) of coordinate weights satisfies
∑∞

j=1 γ
1

2(1−δ)
j <∞ (e.g. γj = 1

j3
).

Note that piecewise polynomial functions f do almost belong toW (1,...,1)
2,γ,mix([0, 1]s) if its effective

dimension is small (Heitsch-Leövey-Römisch 16).
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Comparison of n = 27 Monte Carlo Mersenne Twister points and randomly binary shifted
Sobol’ points in dimension s = 500, projection (8,9)





Illustration:
N = 2340 samples based on randomized Sobol’ points are generated for several hundred exits
and later reduced by scenario reduction to n = 50 scenarios. The result is shown below for a
specific exit where the diameters of the red balls are proportional to the new probabilities.
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