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Introduction

Many stochastic programming models may be traced back to minimizing an
expectation functional on some closed subset of a Euclidean space or, eventually
in addition, relative to some expectation constraint. Their general form is

sP)  min{ | ilw&PWE) iz e X, [ Al 6P <0}

where X is a closed subset of R™, = a closed subset of R*, P is a Borel probability
measure on = abbreviated by P € P(Z). The functions f; and f; from R™ x =
to the extended reals R = (—00, 00| are normal integrands.

For general continuous multivariate probability distributions P such stochastic
optimization models (SP) are not solvable in general.

Many approaches for solving such optimization models computationally are based
on finding a discrete probability measure P, in

=1 i=1

for some n € N, which approximates P at least such that the corresponding
optimal values of (SP) are close. The atoms &, i = 1,...,n, of P, are often
called scenarios in this context.



For example, typical integrands in linear two-stage stochastic programming mod-
els are

folz, €) = { g(x) + P(q(&), h(x,£)) ,q(§) € D and fi(z,&) =0,

+00 , else

where X and = are convex polyhedral, g(-) is a linear function, ¢(-) is affine,
D={qeR": {zeR :W'z—qe&Y*} #0} denotes the convex polyhedral
dual feasibility set, h(-, &) is affine for fixed £ and h(z, -) is affine for fixed x, and
® denotes the infimal function of the linear (second-stage) optimization problem

®(q,t) ==inf{({q,y) : Wy=t,y €Y}

with (7, m) matrix W and convex polyhedral cone Y C R™.

Typical integrands f; appearing in chance constrained programming are of the
form

fi(x,§) =p— 173(:5)(5)7
where p € (0, 1) is a probability level and 1p(,) is the characteristic function of
the polyhedron P(z) = {£ € =: h(x,£) < 0} depending on z, where = and h
have the same properties as above.



Stability-based scenario generation

Let v(P) and S(P) denote the infimum and solution set of (SP). We are inter-
ested in their dependence on the underlying probability distribution P.

To state a stability result we introduce the following sets of functions and of
probability distributions (both defined on =)

F={fiz,-):5=0,1,x € X},
P;:{QGP(E)I—OO </:;2)f(fj(5p,§) (d€), Sup/fjl‘€ (d€) < +o0, VJ}

zeX

and the (pseudo-) distance on Pr

iP.Q) =sw| [ FOP Q@) (P.QePs)
feF

At first sight the set Pr seems to have a complicated structure. For typical

applications, however, like for linear two-stage and chance constrained models,

the sets Pr or appropriate subsets allow a simple characterization, for example,

as subsets of P(Z) satisfying certain moment conditions.



Proposition: We consider (SP) for P € Pz, assume that X is compact and
(i) the function = — [ fo(z,§)P(dE) is Lipschitz continuous on X,

(ii) the set-valued mapping y = {z € X : [_ fi(x,&)P(d§) < y} satisfies the
Aubin property at (0, z) for each z € S(P).

Then there exist constants L. > 0 and d > 0 such that the estimates

[o(P) —v(Q)] < Ldr(P,Q)

<
sup d(z, S(P)) < Vp(Ldr(P,Q))
zeS5(Q)

hold whenever @@ € Pr and dz(P,Q) < 0. The real-valued function Vp is
given by Wp(r) = r + 1, (2r) for all r € R, where tp is the growth function

vp(r) = int { /foxg (de) — v(P) : d(z,S(P)) > 7, 3 € X,

[, 0)Pg) <0},

In case f1 = 0 only lower semicontinuity is needed in (i) and the estimates hold
with L = 1 and for any 0 > 0. Furthermore, ¥p is lower semicontinuous and
increasing on R with Wp(0) = 0. (Rachev-Rémisch 02)



The stability result suggests to choose discrete approximations from P, (=) for
solving (SP) such that they solve the best approximation problem

OSG min dr(P, P,).

(05G) PEP,(E) (P Fa)
at least approximately. Determining the scenarios of some solution to (OSG) may

be called optimal scenario generation. This optimal choice of discrete approxi-
mations is challenging and not possible in general.

It was suggested in (Rachev-Romisch 02) to eventually enlarge the function class F
such that dr becomes a metric distance and has further nice properties. This
may lead, however, to nonconvex nondifferentiable minimization problems (OSG)
for determining the optimal scenarios and to unfavorable convergence rates of

< min_ dg(P, Pn)> :
PnePn(S) neN

Typical examples are to choose F as bounded subset of some Banach space
C(Z) with 7 € Ny, a € (0,1], and convergence rate O(n="s")




The road of probability metrics

Motivated by linear two-stage models one may consider
Fortet-Mourier metrics:

G(P.Q) = drg(P.Q) =sw| [ fIENP-Q)d9): f € (3]
where the function class F, for r > 1 is ;iven by
2)={f 2= R:f(&) - [ <l ), VEEEES,
e(6,€) = max{1, |l€]"L, IEI 1 HIE — €l (6,6 €.

Proposition: (Rachev-Riischendorf 98)
If = is bounded, (,, may be reformulated as dual transportation problem

G(P.Q)=inf{ [ _é(€Enlde,dd): mn=Pmn = Q},

where the reduced cost ¢, is a metric with ¢, < ¢, and given by the minimal cost

[I]

flow problem

c = inf {

n—1

M

Cp 5lz’glwl ‘n e N7€li < Evfh — 575171 - g}

n=ll



The problem of optimal scenario generation (OSG) then reads
(P, P,
pin (B )

or

min / ‘min (&, &) P(dE).
J

(fl,...,fn)EEn = :1,..../71

The function (&',...,&") — [cmin; 1, ¢(&,&7)P(dE) is continuous on ="
and has compact level sets, but is nonconvex and nondifferentiable in general.
Hence, optimal scenarios exist, but their computation is difficult.

If P itself is discrete with possibly many (say N >> n) scenarios and the minimiza-
tion is restricted to = = supp(P) one arrives at the optimal scenario reduction
problem. This problem can be shown to decompose into finding the optimal sce-
nario set J to remain and into determining the optimal new probabilities given
J. The background is that the Fortet-Mourier metric is of a special form if both
probability measures are discrete.



Let P and Q be two discrete distributions, where &' are the scenarios with prob-
abilities p;, i = 1,..., N, of P and &’ the scenarios and ¢;, j = 1,..

., n, the
probabilities of (). Let = denote the union of both scenario sets. Then
6(P.Q) = nt{ [ ale.Enlde,d): mn = Pomy = Q)
N =
= inf{Zanj@(fufy an pz,Z% = qj,Ni; = 0,
i=1 j=
i=1,....N, j=1,. }
— Sup { Zplul Z QJUJ pi — (gﬂ gj) ) N7

jzl,...,n}

These two formulas represent primal and dual representations of (,.(P, () and
primal and dual linear programs.



Now, let P and () be two discrete distributions, where fl are the scenarios with
probabilities p;, t =1,..., N, of P and fj, j € J, the scenarios and ¢;, j € J,
the probabilities of (). Let = denote the support of P.

The best approximation of P with respect to (, by such a distribution () exists
and is denoted by Q*. It has the distance

D;=6(PQ7) = min G(PQ)= szmmcrf &)

QEPn(E i

and the probabilities ¢; = p; + > pi, Vj € J, where I; :={i & J : j = j(i)}
iEIj

and j(i) € arg m1§1 (€4, 87), Vi & J (optimal redistribution).

(Dupatové—Growe-Kuska—Romisch 03)

Determining the optimal scenario set J with prescribed cardinality n is, however,
a combinatorial optimization problem: (metric n-median problem)

min{D;:J C {l,...,N},|J| =n}

The problem of finding the optimal set J of remaining scenarios is known to be
NP-hard (Kariv-Hakimi 79) and polynomial time algorithms are not available.



Reformulation of the (metric) n-median problem as combinatorial program:

N
min Z piTiic (€, €9) subject to
i,j=1

N N
lej = 1 (]:1,,N>, Zylgn,
1=1 1=1

Lij S Yi, xlj6{071} (17]:177]\])7
Yi € {0,1} (izl,...,N>.

The variable y; decides whether scenario &' remains and z;; indicates whether
scenario &/ minimizes the ¢,-distance to &'

The combinatorial program can, of course, be solved by standard software. How-
ever, meanwhile there is a well developed theory of polynomial-time approxima-
tion algorithms for solving it.. The current best approximation algorithm provides
always an approximation guarantee of 1 + v/3 + & (Li-Svensson 16).

The simplest algorithms are greedy heuristics, namely, backward (or reverse) and
forward heuristics.



Starting point (n = N — 1): ' in ¢, (&, &;
ing point ( b i {5 )

Algorithm: (Backward reduction)
Step [0]: J” =0.
Step [i]: [; € arg min Z pr min  ¢(&, &)
Iz ke Ji=1u{} el
Ji = g=ly {1}
Step [N-n+1]: Optimal redistribution.

N

Starting point (n = 1):  min > pp¢.(&k, &)
ued{l,..,N} k=1

Algorithm: (Forward selection)
Step [0]: J" .= {1,...,N}.

Step [i]: w; € arg m%nl] Z Pk %Tllﬁ’l (&, &),
ueJ keJ[i_”\{u} J&J \{u}

Ji = Ji=1N £} .
Step [n+1]: Optimal redistribution.

Although the approximation ratio of forward selection is known to be unbounded (Rujeerapaiboon-
Schindler-Kuhn-Wiesemann 17), it worked well in many practical instances.



Example: (Weekly electrical load scenario tree)

Ternary load scenario tree (N=729 scenarios)
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Reduced load scenario trees obtained by forward selection with respect to the Fortet-Mourier distances (.,
r=1,2,4,7 and n = 20 (starting above left) (Heitsch-Romisch 07)



Optimal scenario generation for linear two-stage models

We consider linear two-stage stochastic programs as introduced earlier and impose
the following conditions:

(A0) X is a bounded polyhedron and = is convex polyhedral.

(A1) h(x,&) € W(Y) and q(§) € D are satisfied for every pair (z,&) € X x =,

(A2) P has a second order absolute moment.

Then the infima v(P) and v(P,) are attained and the estimate
(P) = o(P)] < sup /fowﬁ @)~ [ fiwr )
~ sup| [ ala(e). . )Piae) — [ @(a(©). 1w )R

holds due to the stability result for every P, € P,(Z).

Hence, the optimal scenario generation problem (OSG) with uniform weights may
be reformulated as: Determine P’ € P, (=) such that it solves the best uniform
approximation problem

min  sup
(Sl 7777 gn)egn reX




The class of functions {®(q(-), h(z,-)) : x € X} from = to R enjoys specific
properties. All functions are finite, continuous and piecewise linear-quadratic on
=. They are linear-quadratic on each convex polyhedral set

=)(z) = {€ €21 (q(0), h(z, ) €K} (i =1,...,0)

where the convex polyhedral cones IC;, j = 1,...,/, represent a decomposition
of the domain of ®, which is itself a convex polyhedral cone in R™"",

Theorem: (Henrion-Rémisch 17)
Assume (A0)-(A2). Then (OSG) is equivalent to the generalized semi-infinite
program
% Z?:1<h(£€, 52)7 Z7> <t +.FP(37)
Lot Nt Fple) St i (a(€) v g
e V(z,y,2) € M(EL ..., &")
where the set M = M(&Y, ..., €") and the function Fp : X — R are given by

M ={(z,y,2) € X x Y" x R™ : Wy; = h(z, &), W 2 — q(£') € Y* i},
ﬂmm:/®memm@wwa

—_
—

The latter is the convex expected recourse function of the two-stage model.



Theorem: Let the function h be affine, assume (A0)—(A2) and that either h or
g be random. Then the set-valued mapping M : =" == R x R™ x R has
convex polyhedral graph and is Hausdorff Lipschitz continuous on =".

The feasible set M is closed and convex.

We note that Fp(z) can only be calculated approximately even if the probability
measure P is completely known. For example, this could be done by Monte Carlo
or Quasi-Monte Carlo methods with a large sample size N > n. Let

~ % Zl @(q(é‘j), h(z, é]))

be such an approximate representation of Fp(z) based on a sample &/, j =
1 N. The corresponding generalized semi-infinite program is of the form

( n _ N N )

9 0 e ey

~"

min {t % %(h(m, Aj),2j> <t ZZ:( (€, yi)

t>0,(£1,...,£n)ezn j=1

/



Monte Carlo and Quasi-Monte Carlo methods

Monte Carlo: Let £'(+), i € N, denote independent and identically distributed
random vectors with common distribution PP and P, be the empirical measure

2(552 (n € N)

defined on some probability space (Q,.A, P). The law of large numbers implies
that the sequence (P, ()),en converges P-almost surely weakly to P.
To study the convergence rate one considers the empirical process

{Bn(Pu(:) = P)f}yer (n €N)

indexed by a function class F with sequence (3,,), where Qf = - f(£)Q(d§) for
any Borel probability measure () on =. The empirical process is called bounded
in probability with tail function 7£ if for all € > 0 and n € N the estimate

]P)<{6nd}"(Pn()v P) > 5}) < 7_]:(5)

holds. Whether the empirical process is bounded in probability, depends on the
size of the class F measured in terms of covering numbers in Ly(=, P). Typically,
one has an exponential tail 77(¢) = C(e) exp (—&?) and 3, = /1.



Quasi-Monte Carlo: The basic idea of Quasi-Monte Carlo (QMC) methods is
to use deterministic points that are (in some way) uniformly distributed in |0, 1]°
and to consider first the approximate computation of

L= [ fede by Qulh=1 ()

[0,1]

with (non-random) points &', 7 =1,...,n, from [0, 1]°.
The uniform distribution property of point sets may be defined in terms of the
so-called L,-discrepancy of &!,... " for 1 < p < oo

1 d n
1 ny\ __ i1 p ﬁ j_‘ - _l i
€. = ( /{0 @)’ disele) [T& =5 210 c)-

A sequence (£")cn is called uniformly distributed in [0, 1]* if
dpn(Er,...,€") =0 for n— o0
There exist sequences (£') in [0, 1]* such that for all § € (0, 3]

doo (€L, ..., €M) = O(n " logn)®) or dun(&',..., ") < COs,0)n .



Using a suitable randomization of such sequences may lead to a root mean square
convergence rate \/E[dgn(fl, ., EM] < C(6)n~ 1 with a constant C(§) not

depending on the dimension s and § € (0, %}

Example: Randomly shifted lattice rule (Sloan-Kuo-Joe 02).
With a random vector /A which is uniformly distributed on [0, 1]°, we consider
the randomly shifted lattice rule

Qus(w Zf({ Vet a)}).

Theorem: Let n € N be prime and f belong to the weighted tensor product
Sobolev space W, WmD){([O 1] ). Then g € Z’, can be constructed componentwise
such that for each ¢ € (0, 3] there exists a constant C(§) > 0 with

sup 4/E|Qus(w)(f) — L2 < C(6)n~+,

171ly=1

where C'(0) increases if 0 decreases, but does not depend on s if the sequence

(7;) of coordinate weights satisfies Z;’O ) %2(175) < oo (eg v = %3)
""" 1)([0 1]%) if its effective

,Y,mix

Note that piecewise polynomial functions f do almost belong to )/V2

dimension is small (Heitsch-Ledvey-Romisch 16).
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Sobol’ points in dimension s = 500, projection (8,9)



Figure 1.4. German H-gas (ved) and L-gas (black) network systems. The arrows indicate entry and
exit nodes. Gas storages ave represented by black squaves. (Source: OGE,)



lllustration:

N = 2340 samples based on randomized Sobol’ points are generated for several hundred exits
and later reduced by scenario reduction to n = 50 scenarios. The result is shown below for a
specific exit where the diameters of the red balls are proportional to the new probabilities.
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(Chapters 13 and 14 in Koch-Hiller-Pfetsch-Schewe 15)
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