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 Projective Schemes for
 Random Operator Equations.
 I. Weak Compactness of
 Approximate Solution Measures
 A. T. Bharucha-Reid*

 Department of Mathematics and Computer Science,
 Atlanta University, Atlanta, Georgia 30314

 and

 W. Römisch

 Bereich Numerische Mathematik, Sektion Mathematik
 Humboldt Universität zu Berlin, 1086 Berlin, DDR

 Projective schemes for solving linear random equations are considered. Using an
 approach to tightness of probability measures on Banach spaces due to de Acosta,
 we prove a result about the weak compactness of distributions of the approximate
 solutions. An application is given to the approximate solution of random Fredholm
 integral equations of the second kind via approximation by random degenerate
 kernels.

 1. Introduction and Preliminaries

 In recent years, the study of approximate methods for solving random
 equations has been an area of active research. Surveys on this subject are
 presented in [3] (especially, in [21]), [6], and [12]. An important technique
 for solving random equations is the use of projection schemes. [11] provides
 a general methodology for adapting projection methods to random operator
 equations in Hilbert spaces. Note that the general concepts of [12], [13], and
 [27] for the approximate solution of nonlinear random operator equations
 also allow applications to projection methods. [18] contains a convergence
 result for approximate solutions of an equation involving a P-compact
 random operator via projection schemes.

 In this paper we study projection schemes for solving linear random
 equations, especially random Fredholm integral equations of the second
 kind. Our main objective is to provide an approach for proving weak

 *Part of this paper was written while this author was visiting the Bereich Numerische
 Matematik, Sektion Mathematik, Humboldt-Universität zu Berlin. Research supported by
 ARO Contract No. DAAG29-83-G-0116 and NSF Grant No. PRM-8215949.
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 A. T. Bharucha-Reid and W. Römisch

 compactness of approximate "solutions measures," i.e., of probability distri
 butions of approximate random solutions. This approach is motivated by
 the flat-concentration property of probability measures on Banach spaces
 (introduced by de Acosta [1]), and by Theorem 2.3 of [1]; it is developed in
 Section 2. Using this approach, in Section 3 we prove a result about the
 weak compactness of distributions of approximate solutions obtained via
 projection schemes for linear random operator equations in Banach spaces.
 This result is applied to a kernel approximation method for random
 Fredholm equations of the second kind and compared with another result
 using the approach of [13]. The suggested approach to weak compactness
 represents an alternative approach to that of [13]. It seems that both
 approaches provide useful tools for establishing weak compactness and
 convergence of solution measures associated with random operator equa
 tions in Banach spaces.

 In the context of stochastic equations driven by martingales and random
 measures, weak-compactness approaches are well developed. These ap
 proaches use criteria for weak compactness of measures on special function
 spaces and special properties of the stochastic processes that are the
 solutions of stochastic equations. For a survey we refer to [16, Section 5]
 and to the remarks in [4]. The situation is rather different in the case of
 random operator equations in Banach spaces. For this case, only a few
 papers treating weak compactness of solution measures can be found in the
 literature (see [4], [13], and [26]). Reference [13] and this paper are con
 cerned with the development of general approaches to this problem, so
 applications to various random equations and their approximations in
 concrete Banach spaces can be considered.

 Throughout this paper, let X be a real separable Banach space (with
 norm ||-1|), and let 38(X) be the a-algebra of Borel sets of X. By @>(X) we
 denote the set of all probability measures on (X, 38(X)) equipped with the
 topology of weak convergence (see e.g. [7]). By X* we denote the dual of X,
 and by ( •, • ) the duality relation between X* and X. F c X* will be called
 total if (/, x > = 0, for all / g Fand some x&X, implies x = 0. (X„, P„)n(=N
 will be called a projection scheme for X if Xn c X (« £ 1^1) is a sequence of
 monotonically increasing finite-dimensional subspaces and Pn: X-> Xn (n
 <= N) are linear continuous projections such that hm„^00||?„x - x\\ = 0 for
 all x g X. For any x£ X and any subset Bç X, let d(x, B) = inf{||x -
 y\\\y^B}

 Let (fl, stf, P) be a probability space. For any X-valued random variable
 x [defined on (ß, si, P)] we denote by D(x) its probability distribution, i.e.,
 D(x)<s&>(X) defined by D(x)(B) = P(x~\B)), B&38(X). A mapping
 T: fl X X is a random operator if for every T{-, x) : ïï -> X is an
 X-valued random variable on (ÏÏ, s#, P). A random operator T: ß x X-* X
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 Projection Schemes

 is said to be linear, continuous, etc. if for every to e Q, T(u, •): X-* X is
 linear, continuous, etc. For an introduction to the theory of random
 operator equations we refer to [2], As usual, we say that a property
 depending on «eö holds almost surely (a.s.), or for P-almost all to e ß, if
 there is a set N & stf with P(N) = 0 such that the property holds for all
 to <= ïï \ N.

 2. Remarks on Weak Compactness and Convergence of
 Probability Measures on Separable Banach Spaces

 In this section, we develop the approach to weak compactness of prob
 ability measures which we will use in Section 3. This approach is close in
 spirit to that of [1] and [22], Of course, our main tool is Prohorov's theorem
 [24,7]. Let X be a separable Banach space, 3P(X) be defined as in Section
 1, and (jLt„)„eM be a sequence in @(X). It is known from [24] that
 is weakly compact [i.e., relatively compact with respect to weak convergence
 in @>(X)\ if and only if (/*„)« e\ *s tight, i.e., for all e> 0 there exists a
 compact subset Ke c X such that

 inf ixn(Ke)> 1-e.

 In our context (namely, the approximate solution of random operator
 equations) a straightforward use of tightness seems to be possible only for
 concrete Banach spaces. The following notions, together with Proposition
 2.2, turn out to be useful in this context, because their application does not
 require a description of compact subsets of the underlying Banach space.

 Definition 2.1.

 a- (/OneN wiH be called uniformly bounded iff for all e>0, there is a
 constant Ce > 0 such that

 inf e*|||*||<C.})>l-e.
 »EN

 b. (/One m be called flatly concentrated iff for all e> 0 and 8 > 0,
 there exists a finite-dimensional subspace L of X such that

 inf ju„({xe X\d(x,L)^S})^l-E
 neN

 (Cf. [1]).

 The following result, which is essentially Theorem 2.3 of [1], links the
 introduced notions with tightness.

 Proposition 2.2. (nn)neN c &>(X) is tight if and only if is uni
 formly bounded and flatly concentrated.
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 proof. The necessity is clear by definition. To prove sufficiency we use
 Theorem 2.3 of [1], and note that the uniform boundedness of (ju„)„eW
 implies that for all / e X*, (ju„ ° /~ ')„ is tight in ^(IR1). □

 remark 2.3. In [13], a sequence (*„)„<= w of ^-valued random variables was
 called D-bounded iff the sequence of their distributions (D(xn))nis
 uniformly bounded (as defined in 2.1). As indicated in [13], the Z)-bounded
 ness of a sequence of random solutions of random equations may often be
 verified in applications (see also Theorem 3.3). The next result, which
 represents a variant of Proposition 2.2, contains a more constructive version
 of the flat-concentration property, and will be used below.

 Proposition 2.4. Let (Xn, Pn)„eN be a projective scheme for X. Then
 gn c &(X) is tight if and only if is uniformly bounded and

 for all e> 0 and 8 > 0, there is an n0 = n0(e,8)
 e N such that for every w > n0

 inf X\d(x, A"m) < S})>1-e (2-1)
 »EN

 holds.

 proof. The "if' part of the statement follows from Proposition 2.2. Now,
 let (/OneN be tight; then we will show that (2.1) holds. Let e> 0 and 8 > 0
 be arbitrary, but fixed. There exists a compact subset Ke c X such that

 inf lx„(Ke)>l-e.
 n G I^J

 We note that {P„)neN converges to the identity uniformly on compact
 subsets of X. In particular, we note that there is an n0 = «0(e,8)eN such
 that for every m > n0

 sup II* -^«*11 <5.
 Jteï,

 It follows that for every m> n0,

 V„{{xeX\d(x,Xm)<8})>vin({xeX\\\x-Pmx\\<8})

 > Hn( Ke) >1 — e for all neM. □

 remark 2.5. Let X be a Banach space with Schauder basis (e,)/er^, and let
 ( c X* be the associated coordinate functionals. We define for all
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 neN, X„ = span{el,...,e„},
 n

 Pn:X-*X„, P„x = £ (fi,x)et, x&X,
 1 = 1

 and therefore obtain a projection scheme for X.
 For this case, a result analogous to Proposition 2.4 is stated as Theorem 1

 in [22],

 remark 2.6. The following result about the link between tightness and
 convergence of (/*„)„ en is we'l known (e.g., [23, Theorem 13], [8, Theorem
 2.2.1]): Let F c X* be a total subset. Then, (ju„)„eN c 3P( X) is weakly
 convergent if and only if (fi„)«eN *s tight a f°r evei7 / e span(f),
 (fin o /_1)„6N is weakly convergent in ^(iR1).

 Note that Theorem 2.6.1 of [8] represents an analogous result about the
 relation between the convergence in probability of a sequence (*„)„<= ^ of
 X-valued random variables [on (ß, j/, P)] and the tightness of (D(x„))neN
 (see also Proposition 2.14 in [13]).

 3. Weak Compactness of Solution Measures Associated with
 Projection Schemes for Linear Random Operator Equations

 Throughout this section, let (ß, j/, P) be a probability space, I be a
 separable Banach space, and (Xn, Pn)neN be a projection scheme for X. Let
 7:0X1-^1 and Tn : ß X X -» X„ (neW) be linear continuous random
 operators, and y : £2 -» X and yn:i1-* X„ be random variables [defined on
 (ß,^,P)].

 Let us consider the random operator equation

 x = T( u, x) + y{u) (toe!!), (3.1)

 and its "approximations"

 x = T„{a,x) + y„(a) («eß, «eM). (3.2)
 In this section, we will be concerned with the following

 Problem. For all n e let xn : ß -» Xn be a "random solution" of (3.2) for
 the index n, i.e., xn is a random variable such that

 xn{^) = T„(u,xtl(u)) + yn(cc) a.s. (3.3)

 Assume that the sequence (D(yn))n(£Nc @>(X) is tight. Find conditions on
 T„ (nefiJ) that guarantee that the sequence (D(x„))neN of "solution
 measures" forms a tight subset of 3P{ X).

 99
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 REMARK 3.1.

 a. Note that, under the above assumptions, well-known random fixed-point
 theorems (see e.g. [10, Theorem 8]) yield the existence of a random
 solution xn of (3.2) if (3.2) is "deterministically solvable," i.e.,

 (x e X\x = Tn(u, jc) + yn(o:)} ¥= 0 a.s. («ef^).

 b. The above problem was also treated in [4] and [13]. But in [4] the
 operators are not allowed to be random. The convergence result of [13]
 states conditions (on Tn) under which the uniform boundedness of
 (D(xn))nEN is sufficient for its tightness. These conditions are taken
 from "deterministic operator approximation theory" because the oper
 ators are formulated in the following way: T„(zn(u), x), where T„ is
 deterministic and z„ is a "stochastic input."

 In the following we present an "alternative" approach (to that of [13]) for
 proving tightness of (D(xn))n^N, motivated by Proposition 2.4. The follow
 ing observation will be used below.

 Proposition 3.2. Let T and Tn (neN) be as above, and assume that for
 P-almost all to e ß,

 I — T(w, •) is injective, (3.4)

 lim ||7;(«,.)-r(«,.)lho (3.5)
 n —» oo

 (here ||-|| denotes the usual operator norm). Then

 there is a real random variable a : ß -» IR1 such

 that for all e > 0 there exist n0 = n0(e) e M and

 Ae£stf with P(Ae)^ 1 — e such that we have (3.6)
 for all u G n > n0 and x e X
 ||jc|| < a(w)|| jc — Tn(u,x) ||.

 proof. Let N g si with P(N) = 0 be such that (3.4) and (3.5) hold for all
 to e Q \ TV. It follows from (3.4) and (3.5) that for every to e fl \ N, T(to, •)

 is completely continuous (see e.g. [15, p. 87]) and

 I - T(u, ■) : Z-> X is bijective [15, p. 96], (3.7)

 Because of [15, Theorem 1], (3.7) yields that the map (to, *)-»[/
 r(to, OP1* from Qx X onto X (modified for to e TV) is a linear continuous
 random operator.
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 In particular, the map w -» ||[/- T(u, O]-1!! is a real random variable,
 and we define

 «(„)-(2|['-n»,-)ri. »ss\jv,
 10, w g TV.

 Let e > 0 be arbitrary, but fixed. It is well known (e.g., [28, p. 269]) that
 almost sure convergence in (3.5) implies for any S > 0

 lim p(/w| sup llr^w,-)-^",-)!!!^-^«,-)]"1!^5}) = 0 m — co \ V n>m ) I

 (3.8)

 Because of (3.8), there is an n0 = n0(e) g such that for

 Je=(<oGß\jV|sup ||Tn(w,-)-r(ü,.)||||[/-r(w>.)]-1||>l}

 (3.9)

 satisfies P(/le)<e. We define /1£ = ß\(,4eU TV) and have P(Ae)^l- e.
 Because of (3.9), it follows that for all « G Ae and n > n0,

 |r>,.)-r(«,-)II[/-r(«.-)]-1|<i. (3-io)
 Because of (3.7) and (3.10), it follows that from the well-known "perturba
 tion lemma" [19, p. 181] that for all u£Ae and « > «0 the operator
 I - Tn(u, •) : X -» X is bijective, and

 ||[/-r„(co,-)]"1||<2||[/-r(w,-)]_1|| = a("). (3.11)
 Because of (3.11), (3.6) holds. □

 The above proposition motivates the condition (3.6), which will play an
 essential role in the following main result of this section.

 Theorem 3.3. Let T, Tn (n g N) and yn (n G fol) be as above, and let (3.4),
 (3.5) be fulfilled for P-almost all u G Î2. For all n^N let x„ be a random
 solution of (3.2), i.e., a random variable such that (3.3) holds for the index
 n. Then

 a. (D(xn))„ert is uniformly bounded if (D(yn))n^x is uniformly bounded,
 b- (^W)„eN « Ugh' if (%)),eN is tight.

 proof, a: Let e > 0 be arbitrary, but fixed. Because of (3.6) (from Proposi
 tion 3.2), there exist «0 = w0(e)Gfol and -4tlGi with P(Ael)^l-e/3

 101
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 such that for all u G Ael, n > n0 and x g X,

 W<a(«)||[/-7;(«,■)]*!. (3.12)
 There exist an N G j/ with P(N) = 0 and an aE such that

 [/-r„(«, •)]*„(«) = .?„(«) forall ue8\N, (3.13)
 and

 />({w|a(w)<af})>l-|. (3.14)
 Because of the uniform boundedness of (£(/„))„ <=n, there is a CE > 0 such
 that

 (3.15)

 Let n g N, n > n0, be arbitrary, but fixed, and define

 Ae2 = {«I a(«)<ae},

 ^.3= Hlk(w)i<C«}' (3.16)

 ac4 = {«|ll*„(«) II <«£.}■

 Now, let we(fl\iV)n(n,3=i^e,)- Because of (3.12), (3.13), and (3.16), it
 follows that ||x„(w)|| < a(to)||iy„(w)|| < aeCe, so that ueJî4. Using (3.14)
 and (3.15), we have

 P(ü\Ae4) < E P(0\AJ <f + f + f-e
 / = 1

 Since n > n 0 was arbitrary, this means

 inf Z)(*n)((jce A"|||jc||<aeCt})>l-e,
 n > n0

 i.e., (D(xn))n>rio is uniformly bounded. Obviously the finite family
 (D(xn))n^l x is uniformly bounded, and therefore part a is proved.

 b: Assume that (D(yn))neN is tight. From part a we have that
 (^(jcn))„eN is uniformly bounded. To prove tightness of (Z)(x„))neEwe
 use Proposition 2.4. Let £ > 0 and S > 0 be arbitrary, but fixed. We define
 «0 = n0(e) g M, N g j/, Aa, Ael G si, and ae as in part a of the proof, but
 such that

 / =1,2.
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 By assumption, there is a compact Ke c X such that

 inf P({u\yn(u)(=Ke})>l-^. n EN O

 Let { yt| i = 1,..., k } be a finite 5/3ae-net for Ke, i.e.,

 Kcc (J e X\\\z — 3^|" (3-17)
 As in the proof of Proposition 3.2, we conclude that for P-almost all co e fl,
 I — T(u, •) is bijective. Let x, : ß -> A" be the a.s. unique random solution of

 [l-T(u,-)]x = yh i = \,...,k,

 and let N e stf, P(N) = 0, be enlarged so that [/-T(co, •)].*,(co) = J, for
 all co e ß\JV, i = l,...,k. There exists a constant CE> 0 such that it holds
 for

 Ae,= U\ max ||ji(«)||<Cf,||r(«,-Jkcl (3.18)
 v k J

 that P(Ae3)^l- e/6.
 Let K > 0 be chosen such that || /*„ || < K for all neM. Because of (3.5)
 and the pointwise convergence of (PJ„6N to the identity I, it follows from
 [28, p. 269] that

 Jim r({»|sup I|r,(u, 3J^}) -°.

 -/({"tt-rJ5'1"' -wwl> i(i^})
 Thus, there exists an nx = nx(e, S) e M, nl ^ n0, such that for

 Ie4 = («I sup ITn{u,-)~T{a,-)\\> 8 I
 V n ^ nl JASaf /

 Äe5 = CO I sup max |x,(to)- P„x,(co) ||> 8 | (3.19)
 I k 3(l + CJaJ

 we have P(Aei) < e/6, i = 4,5. Let Aei = i = 4,5. Now, let «,meN,
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 n > m > nlt be arbitrary, but fixed. We define

 Ae6=

 Ael = {«!</(*„(«), xm)a8}.

 Let u g (ß\jV)n(nf=1/4ei). By (3.6) and (3.16), it follows that

 J(x„(w),Zm)<ae inf ||[/-T„(a, •)] [*„(«)-*] ||
 x e Xm

 = ae inf ||^(«)-[/-r„(w,-)]x|
 x e Xm

 <a£ nun |j[/-T„(w, •)]P„,5c,(co) ||. (3.20)
 i =1

 Let i g (1,..., k} be arbitrary. Then we have

 |ä(«) - i1 - Tn(u>')] PmXi(u) II

 < I|ä(«)-äII + III J- t(u, •)]*/(«)- [J- r«(". •)] />«*<(«) II

 ^IIäC«)-äII+(i+II^(«.-)II)II*/(«)-^™*/(«)II

 +iirB(«,.)-n«.-)mi«(")ii
 Because of (3.17), (3.18), (3.19), and (3.20), this yields

 II ä(«)~ Pi II d(xn{oi),Xm)^ae min
 / •= 1 k

 +(1+CJ3(ï^+3*b;JCC
 <ae min || y„( a)-.y,|| +§S

 i *= 1,..., k

 <«.3^+}»-»,
 i.e., u^Atl. Analogous to part a of the proof, we obtain P(ti\Ael) < e,
 and thus

 PUe7) = e *| J(*, XJ >1 -£

 Since «, m G M, n~^m^nx, were arbitrary, it holds for all m^nx that

 inf fl(xJ({x6X|d(xJJ<Ä})>l-E.
 n > m

 Note that for every n, m G with n < m,

 D(xn)({x<=X\d(x,Xm)*6})-l.
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 This yields for all m~^ nx

 inf D(x11)({xeI|^,lJ<8})>l-£.
 n eN

 Since £ > 0 and 5 > 0 were arbitrary, this means that (2.1) is valid for
 Hn = D(xn) (n e M). Thus, an application of Proposition 2.4 proves asser
 tion b. □

 REMARK 3.4.

 a. The condition (3.6) is a generalization of so-called "inverse stability
 conditions" used in [27, Theorem 2] and [12, Proposition 4.7] (for the
 case of linear random operators). A generalization of Theorem 3.3 to the
 case of nonlinear random operators should be possible if "nonlinear
 versions" of (3.5) and (3.6) are used.
 b. Note that the assumptions of Theorem 3.3 are rather strong. This can be
 seen e.g. from the fact that (3.4), (3.5), and the convergence in probability
 of to y imply that (x„)„6N converges in probability to the
 unique random solution x of (3.1).
 c. The approach to tightness of (ö(^„))„eN provided by Theorem 3.3
 proves to be an alternative to that of [13]. Some of their relations are
 discussed in Section 4 in the context of an application to random
 Fredholm integral equations. Section 4 also contains a characterization of
 weak limits of (£K*„))„eN as distributions of so-called "D-solutions"
 introduced in [13].

 4. Application to Random Fredholm Integral Equations

 In Section 3, we developed an approach to weak compactness of a set of
 measures containing distributions of approximate random solutions of
 linear random operator equations. Now, we will be concerned with random
 Fredholm integral equations of the second kind. For an introduction to
 random Fredholm integral equations we refer to [2, Chapter 4]. Recent
 surveys on the approximate and numerical solution of such random equa
 tions can be found in [5] and [6],
 In [9] algorithms for the numerical solution of random Fredholm equa
 tions of the second kind by quadrature methods are given. In the following,
 we will consider another type of approximation procedure based on "kernel
 approximations." More precisely, we will study the approximation of
 Fredholm equations with random kernel and random forcing function by a
 sequence of Fredholm equations with random "degenerate" kernels. Our
 aim is to show that Theorem 3.3 and the main result of [13] can be applied
 to this type of approximation scheme.
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 Let us consider the equation

 x(t) = f K(o>,t,s)x(s) ds + y(u,t), /g[0,1], (4.1)

 under the following assumptions:

 X^xlO.llxlO.ll^R1 is an j/X <0([O,1])X
 ä?([0, l]-measurable stochastic process such
 that for all co g ü, K(u, - , •) is an element of
 Z= L2((0,1)X(0,1)),

 y: X[0,lJ-^IR1 is an srf X ^([0, l])-mea
 surable stochastic process such that for all
 m g ß, j(w, •) G L2(0,1). (Here (S2de
 notes the underlying probability space,
 ^([0,1]) the Borel-a-algebra on the interval
 [0,1].)

 (4.2)

 (4.3)

 Throughout this section, we define X = L2(0,1), T: £2 X X -» X as follows:

 [r(w, x)](r) = /" K(u,t,s)x(s) ds, fG[0,l], wgQ, jel
 Jo

 From [10, p. 230] it follows that T is a linear, completely continuous
 random operator, and from [25] that y (K) can be viewed as an X-valued
 (Z-valued) random variable. Thus, (4.1) fits into the setting of Section 3.

 Now, let (<t>,-)/em be an orthonormal basis of X; for each n gN let
 Xn = span{ <j>v..., <j>n } and Pn be the orthogonal projection from X onto Xn.
 Clearly, (Xn, Pn)„eN is a projection scheme for X.

 We assume that the sequences (Kn)n<EN and of random kernels
 and random forcing functions, respectively, are given, such that for each
 n G N

 and

 Kn and yn satisfy (4.2) and (4.3), respectively, (4.4)

 /C„(w,-,-)esPan{^>,(-)^(-). i,y' = l,...,n},

 y„(u)&Xn for all wefi. (4.5)

 Each kernel Kn is a so-called "random degenerate kernel" [2, p. 150].
 Analogously to the above, we define for all n g N linear, continuous

 random operators Tn : S2 X X -» X„,

 fr„(w,x)](r) = f Kn(u, t, s)x(s) ds, /g[0,1], wgŒ, x&X,
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 and consider the random Fredholm equations

 x = Tn(u, x)+ yn(u) («eß, neM). (4.6)
 The first result of this section is an immediate consequence of Theorem 3.3.

 Theorem 4.1. Let K,Kn (n <=N) and yn («ef^l) satisfy (4.2), (4.4), and
 (4.5). Assume that

 I - T((o, • ) is injective for P-almost all to e £2, (4.7)

 lim f f [Kn(u,t,s)~ K(u,t,s)]2 dsdt = 0 a.s., (4.8)
 n —> oc '0 Jq

 (D(yn))net* is tight. (4.9)
 For all n&N, let xn be a random solution of (4.6). Then (D(xn))n^N is
 tight.

 proof. We note that for all u e 0 we have

 ||riI(«,-)-r(«»-)l|2=! f1 f[Kn{u,t,s)-K{œ,t,s)]2dsdt, Jo Jo

 and the assertion follows from Theorem 3.3b. □

 Theorem 4.2. Let Kn (n e N) andyn (n e N) fulfill (4.4), (4.5), and assume
 that the sequences of distributions (D(Kn))n&N and (D(yn))neN aretight.
 For all n gN let xn be a random solution of (4.6) such that ( D(xn))n e w is
 uniformly bounded. Then (D(xn))„e^ is tight.

 proof. We use the approach of [13] and define

 Z = L2(( 0,1)x(0,1)), T-.ZXX-+X,

 [r(z, Jt)](/) = ( z(t,s)x(s) ds, /e [0,1], (z,Jt)eZXl
 Jo

 (4.6) is now equivalent to

 x = T(Kn(u),x)+ y„(u) (aefl, n&N). (4.10)

 Clearly, t is (jointly) continuous and T(z,-): X-* X is compact for all
 z e Z.

 Moreover, it holds for all zv z2 e Z, x<e X, that

 \\f(zi,x)-f(z2, x) I < Hzj - z2||z||x||. (4.11)
 This implies that for all bounded subsets C c X, {f(-,x)\x^C} is
 equicontinuous on Z. Thus, (4.10) fits into the setting of [13] and all
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 assumptions of Theorem 2.11 a) of [13] are fulfilled. Now, the assertion
 follows from that theorem. □

 REMARK 4.3a. Theorem 4.2 shows that under weak hypotheses on Kn
 (nefy) and yn (neN) the uniform boundedness of (D(xn))neN implies
 its tightness. But, for the application of Theorem 4.2, we need conditions
 that are sufficient for the uniform boundedness of the distributions of some

 sequence of random solutions of (4.6). Of course, the best way is
 the choice of random best approximate solutions (with minimal norm) of
 (4.6), i.e., *„(«) = (/ - Tn)+ (a, >>») (« e Q, n e N), where (I - Tn)+ : ÏÏ
 X X-* X is the random generalized inverse of I -Tn (neN) (see e.g., [21,
 Section II]).
 One possibility for proving uniform boundedness of (D(x„))nSN seems

 to be the use of approximation results for generalized inverses (see Theorem
 4.1 or other results in [20]). But, these results require strong conditions on T

 and Tn (n e N), e.g., (3.5) (in the "stochastic" case). In Section 5 of [20],
 projection methods for best approximation solutions of linear operator
 equations are developed. It is shown that appropriate projection schemes
 should be used. [11] contains a "stochastic" version of that approach. It
 turns out that in the case of random operators, "stochastic projection
 schemes" (involving finite-dimensional subspaces that depend onw) have to
 be used. Therefore, that approach does not fit into the setting of this paper.
 Summarizing these remarks, it appears that although Theorem 4.2 con

 tains a more general result, Theorem 4.1 is of value. Note that the proof of
 Theorem 4.1 is based on the approach motivated by Proposition 2.4.

 remark 4.3b. We denote for each n e N

 K„(u,t,s)= £ bjf(u})^(t)^(s), se [0,1],
 i.J-l

 0= Lcin)(u )<*>,(')> t G [o,i],
 i=i

 where b\"\ cj"\ i, j = 1,..., n, are real random variables (on (ß, s/, ?)).
 Then (4.4) and (4.5) are fulfilled, and (4.6) is equivalent to the following

 random linear algebraic equation:

 7-1

 / = 1,...,k, wefi,

 *„(«)=£ (412)
 1 = 1
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 This equation can easily be solved numerically in the case that bjp, c,(n),
 /, j = 1,..., n, are discrete random variables. Note that e.g. (4.8) is fulfilled if
 for /"-almost all w£ß,

 lim £ [^<;)(w)-^7(w)]2 = °,
 i,;-l

 where

 M") = f1 f1K(u,t,s)<l>i(t)<t>(s)dsdt, i,je. N, wefl.
 •'o •'o

 For a further discussion of related questions concerning the approxima
 tion approach of this section, we refer to [5]. In particular, in [5] the known
 results on limit theorems for random linear algebraic equations (with
 increasing dimensions) are discussed. These results indicate a direct ap
 proach [using (4.12)] to weak convergence of the solution measures
 (Z)(x„))„eN. This approach is also used in [26].

 Finally, we will show that every weak limit of probability distributions of
 random solutions x„ (neN) of (4.6) is the distribution of an X-valued
 random variable [defined on (ïï, s/, P)} that is a so-called "D-solution" of
 (4.1). The concept of a D-solution was introduced in [13]; for a detailed
 discussion of this notion we refer to [13, Remarks 2.3 and 2.15].

 Although the proof of the following result is essentially the same as that
 of Theorem 2.11(b) in [13], we will briefly sketch it.

 Proposition 4.4. Let K,Kn (n e |^) and y, yn (neN) satisfy (4.2), (4.3),
 (4.4), (4.5), and assume that the sequence (D (Kn, y„))„^N of joint prob
 ability distributions converges weakly to D(K,y) (on Z X X). For all
 n e let xn be a random solution of (4.6), and assume that (D(x„))„^N
 is tight. Then there exist a subsequence (xnk)k of (*„)„eN and an
 X-valued random variable x (defined on (fl, s/, P)) such that (i) (D(xrh ))k
 converges weakly to D(x), and (ii) x is a "D-solution" of (4.1), i.e., there
 exist_ random variables K.Ü-> Z and y:ti-*X such that D(K,y) =
 D(K, y) and the distributions of x and w coincide, where

 w(«)= ( K(u,- ,s)x(u,s) ds + y(u), wefi.
 Jo

 proof. Because of [13, Lemma 2.8], the sequence (D(Kn, yn,xn))n^N of
 probability distributions on Z X X X X is tight. By Prohorov's theorem and

 the main result of [14], there exists a_subsequence ((K„k, y„k,xnJ)k and a
 Zxlx ^-valued random variable (K, y, *) (defined on (Ù, srf, Pj) such
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 that (D(Knk, y„k, x„k))k converges weakly to D(K, y, x). This implies

 D(K„k, yj - D(K, y) = D(K, y) (see [7]),
 and D(xn ) =» D(x) ( => denotes weak convergence). We define T: Z X X
 X X -» X as follows:

 [T(z,u,v)\(t) — f z(t,s)v(s) ds + u(t), t e [0,1],
 ■'o

 (z,c,u)eZXlXÏ, and note that T is (jointly) continuous. Because of
 [7, Theorem 5.1] and (4.6), this implies

 D(xJ = D(f{K„k, ynk, xj) - D(f(K, y, x)) = D(w),

 and finally, D(x) = D(w). □

 remark 4.5. Note that a "Z)-solution" x of (4.1) cannot be interpreted as a
 stochastic process [on (S2But in Theorem 3.1 of [25] it is shown
 that there is an st? X â$([0, Immeasurable stochastic process x (defined on
 some probability space), almost all paths of which belong to L2(0,1), such
 that D(x) = D(x).
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