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1 Introduction

Nonlinear programming is a key technology for finding optimal decisions in pro-
duction processes. It applies to optimal control as well as to operations research,
to deterministic as well as to stochastic models. The efficient solution of nonlinear
programs requires both, a good structural understanding of the underlying opti-
mization problems and the use of tailored algorithmic approaches mainly based on
SQP methods. The present chapter provides an account of the work in three MATH-
EON-projects with various applications and aspects of nonlinear programming in
production.

2 An optimal control problem in automotive industry

2.1 Background
Automotive industry has by now reached a high degree of automation. Complex
production lines must have been created. These lines are divided into workcells,
which are composed of a workpiece, several robots and some obstacles. The robots
perform tasks on the workpiece before the piece is moved to the next workcell.

Efficient production lines are essential to ensure the competitiveness of automo-
tive industry. For that purpose, the manufacturer must minimize the time taken to
complete all the tasks in a workcell, that is the makespan. The goal of the MATHEON
project “Automatic reconfiguration of robotic welding cells” is to design an algo-
rithm which minimizes the makespan. Given the Computer Aided Design (CAD)
data of the workpiece, the location of the tasks and the number of robots, the aim
is to assign tasks to the different robots and to decide in which order the tasks are
executed as well as how the robots move to the next task such that the makespan is
minimized. We call this problem the WorkCell Problem (WCP).

As presented in [34], the (WCP) can be modeled as a graph. The nodes of the
graph are the task locations and the initial location of the end effector of the robots.
An arc exists for a robot if and only if the robot can move between the nodes which
form the arc. Finally, a weight is associated with each arc. This weight is the traver-
sal time used by the robot to join the endpoints of the arc. The (WCP) is an instance
of vehicle routing problem and is solved with column generation and resource con-
straint shortest path as the pricing subproblem, see [41] for more details.

In the (WCP), the crucial information is the weight of the arcs, namely the
traversal time for the robot to join the source node of the arc to its target node.
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These times are obtained when calculating the path-planning of the robot to join
the nodes defining the arc. This motion must be as fast as possible and without
collision with the obstacles of the workcell. The collision between the robots is
not tested during the computation of the path-planning, but is checked during the
computation of the scheduled tours, as explained in [34]. The computation of the
motion of the robot and the associated traversal times is presented in the next sec-
tions.

2.2 Optimal control problem
In this section, we present a model to compute the path-planning of a robot. Let
us consider a robot composed of p links, which are connected by revolute joints.
Let q = (q1, . . . , qp) denote the vector of joint angles of the robot. Moreover, let
v = (v1, . . . , vm) contain the joint angle velocities and let u = (u1, . . . , um) describe
the torques applied at the center of gravity of each link.

The robot is asked to move as fast as possible from a given position to a desire
location. Its motion is given in the Lagrangian form as follows

q
′
(t) = v(t) and M(q(t)) v

′
(t) = G(q(t), v(t)) + F(q(t), u(t)), (1)

where M(q) is the symmetric and positive definite mass matrix, G(q, v) contains
the generalized Coriolis forces and F(q, u) is the vector of applied joint torques and
gravity forces. The function F is linear in u.

The motion of the robot must follow (1), but also be collision-free with the ob-
stacles of the workcell. For simplicity, let us assume that only one obstacle ex-
ists. To establish the collision avoidance condition, the robot and the obstacle are
approximated by a union of convex polyhedra. The approximation is denoted
by P for the robot, by Q for the obstacle and are given by P = ∪p

i=1P(i), with
P(i) = {x ∈ R3|A(i)x ≤ b(i)} and Q = ∪q

j=1Q(j), with Q(j) = {x ∈ R3|C(j)x ≤ d(j)},
where A(i) ∈ Rpi×3, b(i) ∈ Rpi , C(j) ∈ Rqj×3, d(j) ∈ Rqj , and pi and qj are the number
of faces in P(i) and Q(j), respectively.

There exist several techniques to characterize the collision avoidance between
the robot and the obstacle. One natural way is to require that the distance between
the objects remains bigger than a safety margin. However, the computation of the
distance is complex, in particular when the objects are intersecting [13]. Moreover,
the distance function is non-differentiable in general. Instead, we develop the fol-
lowing formulation whose derivative is simple to obtain:
The robot P and the obstacle Q do not collide if and only if for each pair of poly-
hedra (P(i), Q(j)), i = 1, . . . , p, j = 1, . . . , q, there exists a vector w(i,j) ∈ Rpi+qj such
that:

w(i,j) ≥ 0,
(

A(i)

C(j)

)T

w(i,j) = 0 and
(

b(i)

d(j)

)T

w(i,j) < 0. (2)

This is a direct consequence of Farkas’s lemma, see [12] for more details.
The fastest trajectory of a robot is the solution of an optimal control problem

where the system of ordinary differential equations (ODE) is given by (1), see [7].
If an obstacle is present in the workcell, the collision avoidance is guaranteed as
soon as the vector w(i,j) of (2) is found at each time t and for all pairs of polyhedra.
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However, to be written as state constraints, the strict inequality in (2) has to be
relaxed. Furthermore, since the robot moves, the matrices A(i) and the vectors b(i)

evolve in time. Their evolution depends explicitly on q(t). A complete formulation
of A(i)(q(t)) and b(i)(q(t)) is given in [12].

Thus, the optimal control problem to find the fastest collision-free trajectory is:
(OCP): Find the traversal time t f , the state variables q, v : [0, t f ] → Rp, and the controls
u : [0, t f ] → Rp and w(i,j) : [0, t f ] → Rpi+qj , i = 1, . . . , p, j = 1, . . . , q, such that t f is
minimized subject to
1) ODE: q

′(t) = v(t) and v
′(t) = M(q(t))−1 (G(q(t), v(t)) + F(q(t), u(t))) ;

2) state constraints for i = 1, . . . , p, j = 1, . . . , q:

(
A(i)(q(t))

C(j)

)T

w(i,j)(t) = 0 and
(

b(i)(q(t))
d(j)

)T

w(i,j)(t) ≤ −ε, (3)

3) boundary conditions: R(q(0))−V0 = 0, v(0) = 0, R(q(t f ))−Vf = 0 and v(t f ) = 0;
4) box constraints: umin ≤ u ≤ umax and 0 ≤ w(i,j), i = 1, . . . , p, j = 1, . . . , q,
where R(q) denotes the position of the end effector of the robot and V0, Vf are the
given task locations. The vectors umin and umax are given as well as the relaxation
parameter ε, which is positive and small.

Depending on the number of state constraints (3), the problem is inherently
sparse since the artificial control variables w(i,j) do not enter the dynamics, the
boundary conditions, and the objective function of the problem, but only appear
linearly in (3).

(OCP) can be easily applied with several obstacles. It suffices to define new
artificial control variables and to write (3) for each obstacle.

2.3 Numerical method and results
We solve (OCP) with a reduced discretization approach. The method involves first
discretizing the control problem and transforming it into a finite-dimensional non-
linear optimization problem. The control variables are approximated by B-splines,
which are defined on an equidistant grid. A one-step method is used to integrate
the ODE.

In a second time, the resulting nonlinear optimization problem is solved by a
sequential quadratic programming (SQP) method [14]. As in [38], we use an Armijo
type line-search procedure for the augmented Lagrangian function in our imple-
mentation. Moreover, we use BFGS update formula [3] instead of the exact Hes-
sian matrix of the Lagrangian function. This formula guarantees that the Hessian
matrix remains symmetric and positive definite. Thus, the quadratic subproblems
in SQP are strictly convex.

The resulting optimization problem contains a lot of constraints. Indeed, at each
time step of the control grid and for all pairs of polyhedra (P(i), Q(j)), four state
constraints are defined (compare (3)). To reduce the number of constraints and
variables, we add an active set strategy based on the following observation: the
state constraints are superfluous when the robot is far from the obstacle or moves
in the opposite direction.
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Figure 1: (a) The polyhedron P(i) is moving downwards. The faces of Q(j) are
denoted by e1, . . . , e5. (b) The set Q̃(j) is generated by the faces e1 and e2 of Q(j).

If P(i) is far from Q(j) at time step tk, then no state constraint is defined at tk.
Let us assume now that P(i) is close to Q(j) and consider the situation depicted in
Figure 1: P(i) is moving downwards, vc indicates the velocity of P(i) and Q̃(j) is
generated by the faces e1 and e2 of Q(j). According to (2), Q̃(j) does not intersect P(i)

if and only if

∃w̃(i,j) ≥ 0, such that

(
A(i)

C(j)
1,2

)>
w̃(i,j) = 0 and

(
b(i)

d(j)
1,2

)>
w̃(i,j) < 0, (4)

where C(j)
1,2 is the matrix composed of the first two rows of C(j) and d(j)

1,2 is the vector
composed of the first two components of d(j).

Suppose now that w̃(i,j) exists. By setting w(i,j) = (w̃(i,j), 0, 0, 0), we obtain:
(

A(i)

C(j)

)>
w(i,j) = 0 and

(
b(i)

d(j)

)>
w(i,j) < 0.

Then, (2) implies that P(i) and Q(j) do not intersect. In summary, if no collision
occurs between Q̃(j) and P(i), then Q(j) and P(i) do not intersect. The dimension
of w̃(i,j) is always smaller than that of w(i,j). Thus, the number of unknowns de-
crease when the state constraints are replaced by (4). The active set strategy is fully
detailed in [12, 33].

A numerical example is presented in Figure 2. The robot is composed of three
links. At the end of the last link, a load is fixed. Here, it is sufficient to apply
the state constraints only between the load and the obstacle to have a collision-
free motion. In Figure 2, the faces of the obstacle that are considered in the state
constraints are white. We can observe that only three faces of the obstacle are taken
into consideration. The computational time is 52 s. If we do not use the active set
strategy, the computational time is about four times longer.

In conclusion, an optimal control problem was defined to find the fastest collision-
free motion of an industrial robot. Farkas’s lemma allowed us to state the collision
avoidance as an algebraic formulation whose derivative is simple to obtain. An
active set strategy was developed to speed up the SQP method. This strategy also
keeps the size of the quadratic subproblems low when the robot and the obstacles
have complex geometry.
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Figure 2: Snapshots of the motion of the robot avoiding an obstacle. The faces of
the obstacle that are considered in the state constraints are white.

3 Stochastic optimization models for electricity production in
liberalized markets

3.1 An optimization model
The operation of electric power companies is often substantially influenced by a
number of uncertain quantities like uncertain load, fuel and electricity spot and
derivative market prices, water inflows to reservoirs or hydro units, wind speed
etc. In particular, mid-term operation planning involves many risks and represents
an enormous challenge. Here, we take the view of a (market) price-taking retailer
owning a generation system and participating in the electricity market. This means
that its operation does not influence market prices. A typical example is a munici-
pal power company that intends to maximize revenue and whose operation system
consists of thermal and/or hydro units, wind turbines and a number of contracts
including long-term bilateral contracts, day ahead trading of electricity and trading
of derivatives.

It is assumed that the time horizon is discretized into uniform (e.g., hourly) in-
tervals. Let T, I, J, K and L denote the index sets of time periods, thermal units,
hydro units, wind turbines and contracts, respectively. For thermal unit i ∈ I in
period t, uit ∈ {0, 1} denotes its commitment decision (1 if on, 0 if off), xit its pro-
duction level and Ui the polyhedral set of all pairs (xit, uit) satisfying the capacity
and minimum up/down-time constraints for all time periods t ∈ T (for a detailed
description of such constraints see e.g [19]). Similarly, yjt, j ∈ J, and zkt, k ∈ K, are
the production levels of hydro and wind units, respectively, and wlt, l ∈ L, the con-
tract levels for all time periods t ∈ T. While the production decisions xit and zkt are
always positive, the decisions yjt and wlt may also be negative to model pumping
in case of pumped hydro units and delivery contracts, respectively.

By ξ = (ξt)t∈T we denote the stochastic input process on some probability space
(Ω,F , P), whose components may contain market prices, demands, inflows and
wind speed. Typically, reliable forecasts for the inputs are available for the first
t1 time periods and, hence, the decisions at those periods are deterministic (thus,
measurable with respect to the trivial σ-field {∅, Ω}.

The constraint sets of hydro units and wind turbines may then depend on ξ

and, hence, are denoted by Yj(ξ) and Zk(ξ), respectively. They are assumed to be
polyhedral with stochasticity appearing on right-hand side of linear constraints.



6
Torsten Bosse Andreas Griewank René Henrion Dietmar Hömberg Chantal Landry Hernan Leövey

Werner Römisch

multi-stage stochastic program
scenario tree

Basic system requirements are to satisfy the electricity demand dt(ξ) and (possibly)
certain reserve constraints during all time periods t ∈ T. The demand constraints
are of the form

∑
i∈I

xit + ∑
j∈J

yjt + ∑
k∈K

zkt + ∑
l∈L

wlt ≥ dt(ξ) (t ∈ T)

and the reserve constraints are imposed to compensate sudden demand peaks or
unforeseen unit outages by requiring that the totally available capacity should ex-
ceed the demand in every time period by a certain amount (e.g. a fraction of the
demand).

The expected total revenue is given by the expected revenue of the contracts
reduced by the expected costs of all thermal units over the whole time horizon, i.e.,

E(R(x, u, y, z, w, ξ)) = ∑
t∈T

E
(

∑
l∈L

plt(ξ)wlt −∑
i∈I

Cit(xit, ui, ξ)
)

, (5)

where we assume that the operation costs of hydro and wind units are negligible
during the considered time horizon. The costs Cit for operating thermal unit i dur-
ing period t consist of fuel and startup costs. The corresponding cost functions are
assumed to be piecewise linear convex whose coefficients are possibly stochastic
(see [19] for an explicit formulation of thermal cost functions).

We assume that the stochastic decisions (xt, ut, yt, zt, wt) are nonanticipative,
i.e., they only depend on (ξ1, . . . , ξt) and, hence, are measurable with respect to the
σ-field Ft = σ(ξ1, . . . , ξt) which is contained in F .

Then the objective consists in maximizing the expected total revenue (5) such
that the decisions are nonanticipative and the operational constraints (xi, ui) ∈ Ui,
i ∈ I, yj ∈ Yj(ξ), j ∈ J, zk ∈ Zk(ξ), the demand and reserve constraints and
(eventually) certain linear trading constraints are satisfied. Altogether, the model
represents a multi-stage mixed-integer linear stochastic program that is large scale in
many practical situations (notice that mid-term models range from several days up
to one year; hourly discretization then leads to a cardinality |T| from about 100 to
8760).

3.2 Scenario trees and solution methods
Often historical data is available for the stochastic input process and a statisti-
cal model for ξ may be derived (for example, via time series analysis (see, e.g.,
[10, 40]). The next step consists in generating scenarios, i.e., possible realizations of
ξ. An overview of methods for generating scenarios ranging from Monte Carlo and
Quasi-Monte Carlo methods to optimal quantization and sparse grid techniques
is given in [37, Section 1.5.4]. Recent developments in high-dimensional numeri-
cal integration [6] suggest that recently developed randomized Quasi-Monte Carlo
methods have excellent convergence properties. Starting with scenarios obtained
by one of those ways and applying stability-based scenario tree generation tech-
niques from [25, 23] then leads to a scenario tree approximation ξtr of the input
process ξ. If the number of decision variables and constraints is too large when in-
serting ξtr, the tree dimension may be reduced appropriately to arrive at a moderate
dimension (see [24]).
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A scenario tree is given by a finite set N of nodes with root node n = 1 at
the first time period, a mapping t from N onto T and by requiring that every node
n ∈ N has a unique predecessor n− except n = 1. The number t(n)− 1 corresponds
to the number of successive predecessors of n to reach the root node. If N+(n)
denotes the set of successors to n ∈ N , we set NT = {n ∈ N : N+(n) = ∅}. For
every n ∈ NT, the set {1, . . . , n−, n} is called scenario and πn denotes its probability.
A probability is assigned to each node n by setting recursively πn = ∑n+∈N+(n) πn+ .

The scenario tree ξtr then consists of all ξn, n ∈ N , where ξn is a realization of
ξt(n). The decisions in the tree formulation of the stochastic optimization model are
(xn

i , un
i , yn

j , zn
k , wn

l ) and the expected revenue is of the form

∑
n∈N

R(xn, un, yn, zn, wn, ξn) = ∑
n∈N

(
∑
l∈L

plt(ξn)wn
lt(n) −∑

i∈I
Cit(xn

it(n), un
i , ξn)

)
.

Then the objective consists in maximizing the expected revenue subject to the oper-
ational constraints (xn

i , un
i ) ∈ Ui, i ∈ I, yn

j ∈ Yj(ξn), j ∈ J, zn
k ∈ Zk(ξn), the demand

and reserve constraints and (eventually) certain linear trading constraints at every
node. This tree formulation of the optimization model represents a mixed-integer
linear program containing |N |(|I|+ |J|+ |K|+ |L|) continuous and |N ||I| binary
variables and an extremely large number of constraints.

The numerical solution of such optimization models requires decomposition
methods except in particular situations. We refer to the survey [39] for existing
primal and dual decomposition approaches. Since the optimization models con-
tains at most 2|N | coupling constraints, Lagrangian relaxation of coupling con-
straints seems to be promising. In fact, as shown in [19], the dualization leads to
a decomposition into unit and contract subproblems, respectively. Since there ex-
ist efficient solution algorithms for all subproblems (see e.g. [19]), dual function
and subgradient evaluations are reasonable. Applying bundle subgradient meth-
ods for solving the dual then leads to an iterative coordination of the operation
of all units. After finishing the bundle subgradient method the final Lagrangian
solution violates in general the coupling demand and reserve constraints at some
nodes n ∈ N . Since the relative duality gaps are typically small for such mod-
els, simple problem-specific Lagrangian heuristics may be developed to modify
the Lagrangian commitment decisions nodewise and to reach primal feasibility af-
ter finitely many steps of the heuristics. A final economic dispatch then leads to a
good primal feasible solution (see also [19]).

3.3 Mean-risk objective
The revenue R(x, u, y, z, w, ξ) depending on the decision (x, u, y, z, w) is a real ran-
dom variable which often has a large variance if the decision is (nearly) optimal.
Hence, the probability may be large that a perturbed decision leads to (much)
smaller revenues than the expected revenue E(R(x, u, y, z, w, ξ)), i.e., the optimal
decision is risky. Since this effect is hardly acceptable, determining a decision based
only on maximizing the expected revenue is unsuitable.

Alternatively, one might wish to measure the risk of a decision and to mini-
mize or at least to bound the risk simultaneously when maximizing the expected
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revenue. This idea leads to maximizing a so-called mean-risk objective of the form

(1− γ)E(R(x, u, y, z, w, ξ))− γρ(R(x, u, y, z, w, ξ))

where ρ is a convex risk functional (see [11]) and γ ∈ (0, 1) a risk parameter mea-
suring the degree of risk aversion. Since a risk functional is always nonlinear, one
might wish that the linearity structure of the optimization model is preserved. An
additional aspect is that revenue represents a stochastic process that evolves over
time t ∈ T. Hence, a so-called polyhedral multi-period risk functional ρ [9, 36, 20]
might be an appropriate tool to be incorporated into the mean-risk objective, which
then is of the form

(1− γ)E(R(x, u, y, z, w, ξ))− γρ((Rt)t∈T),

where Rt is the portion of the revenue R(x, u, y, z, w, ξ) obtained until t. In this way,
risk managment is integrated into the model for maximizing the expected revenue
and the scenario tree-based optimization model may be reformulated as a mixed-
integer linear program as in the risk-neutral case γ = 0 (see [9, 8]).

3.4 Probabilistic constraints
As mentioned above, many optimization problems arising from power managment
are affected by random parameters. In this case, the use of probabilistic constraints
makes it possible to find optimal decisions which are robust against uncertainty
at a specified probability level. More precisely a probabilistically constrained opti-
mization problem has the form

min{ f (x)|P (g(x, ξ) ≥ 0) ≥ p}, (6)

where f is an objective depending on a decision vector x, ξ is a random vector de-
fined on a probability space (Ω,A, P) and g is a mapping defining some random
inequality system with several components. The probabilistic constraint defines a
decision as feasible if the associated random inequality system is satisfied at prob-
ability at least p ∈ (0, 1]. From a formal point of view, probabilistic constraints are
conventional inequalities restricting the domain of feasible decisions. The major
difficulty in their numerical treatment consists in the absence of explicit formulae
for function values and gradients. At the same time, this difficulty leads to numer-
ous challenges in the analysis of the structure and stability for such optimization
problems. Therefore, a major task of our work consisted in improving our insight
into essential properties like continuity, differentiability, convexity etc. and to ex-
ploit it for algorithmic purposes. The focus was on linear probabilistic constraints,
where linear relates to the random vector in the mapping g(x, ξ). As a consequence,
two basic models have to be distinguished:

P (h(x)− Aξ ≥ 0) ≥ p (separated model) (7)

P (T(x)ξ ≥ b(x)) ≥ p (multiplicative model) (8)

In the following we give a compressed account of the obtained results:
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Structural Properties

In [31] we investigated continuity and differentiability properties of the probability
function ϕ(x) := P (x− Aξ ≥ 0) which is the basis for (7). It was shown that for ξ

having a so-called quasi-concave distribution, Lipschitz continuity of ϕ is equiva-
lent with its simple continuity and both are equivalent to the fact that none of the
components ξi has zero variance. Combining this with a Theorem by Borell one de-
rives that ϕ is Lipschitz continuous if the s-dimensional random vector ξ possesses
a density f such that f−1/s is convex. It was also shown that in the case of ξ having
a nondegenerate Gaussian distribution ϕ is of class C∞ around some x̄ provided
that the polyhedron {z|Az ≤ x̄} is nondegenerate. The latter means that the active
rows of A (satisfying Aiz = x̄i) are linearly independent which is a substantially
weaker condition than surjectivity of A.

Convexity and compactness properties of probabilistic constraints were anal-
ysed in [26, 32]. Special attention was payed to sets of feasible decisions defined by
a probabilistic constraint on a linear inequality system with stochastic coefficient
matrix under Gaussian distribution:

M := {x|P(Ξx ≤ a) ≥ p}. (9)

Note that (9) is a special instance of (8). It could be shown that M is compact for all
probability levels p larger than a critical value p∗ which can be calculated explicitly
from the parameters of the distribution. Similarly, under the additional assumption
that the rows of Ξ are independently distributed, it follows the convexity of M for
p ≥ p̄ where again p̄ follows explicitly from the parameters of the distribution.
Evidently, both properties have importance for algorithmic solution approaches to
probabilistically constrained programs. It is worth mentioning that the validity of
these statements for sufficiently large p only is not restrictive as in practice p is
chosen close to one.

Gradient Formulae

For an efficient solution of (6) one has to be able to provide values and gradients of
the probability function x 7→ g(x, ξ) ≥ 0). Already on the level of function values
this is a challenging task requiring sophisticated techniques of numerical integra-
tion, (Quasi-) Monte Carlo methods, variance reduction techniques etc. In gen-
eral, only approximations with a certain (modest) precision can be provided. Most
promising results are obtained for the special separated structure g(x, ξ) = ξ − x
leading to the evaluation of multivariate distribution functions. Efficient methods
for approximating such distribution functions have been reported, for instance, in
the case of the Gaussian, Student, Dirichlet, Gamma or Exponential distribution.
If there is no explicit formula available for probability functions, much less this is
true for their gradients. Given the inaccuracy of values, a finite difference scheme
appears to be inappropriate for approximating gradients. Interestingly, for certain
distributions (e.g., Gaussian, Student) there exists an analytic reduction of gradi-
ents to values of the corresponding distribution functions (with possibly modified
parameters). This allows to calculate gradients by the same methodology as func-
tion values without further increasing the inaccuracy of results. The possibility to
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hydro reservoir globally control the relative precision of gradients by the precision of function val-
ues independent of the concrete argument is discussed in [27] for a special class
of correlation matrices. However, this reduction traditionally requires regularity
of the correlation matrix which is not given in many important applications (for
instance in (7) if the matrix A has more rows than columns). Therefore, a possi-
ble extension of gradient reduction in the case of singular covariance matrices has
become a central aim of our analysis. We were successful in obtaining analytic
reductions of gradients to distribution function values in the case of probability
functions (7) (without surjectivity of A) and (8) under Gaussian distribution [28, 2].

Application to power managment problems

The theoretical results presented above were applied to the numerical solution of
several problems of power managment with data primarily provided by Electricité
de France. For the numerical solution of the nonlinear programs (6) we employed
the supporting hyperplane method – which is slow but robust and provides bounds
for the optimal value – as well as an SQP solver (SNOPT). We present just one exam-
ple out of the spectrum of considered applications. It concerns the optimal short-
term managment of a system of 6 serially linked hydro reservoirs under stochastic
level constraints (a simplified version is described in [1]). The underlying optimiza-
tion problem has the structure

max{pTx|P(l∗ ≤ c− Ax + Bξ ≤ l∗) ≥ p, x ∈ X}.

The objective consists in maximizing the profit made by selling turbined hydroen-
ergy on a day-ahead market for a time horizon of two days discretized in time
steps of 2 hours. The vector x represents the water released from the six reservoirs
at each time step and, similarly, the random vector ξ models the discrete stochastic
inflow processes to two of the reservoirs. p is a price signal such that pTx yields
the profit by power production. The deterministic constraints x ∈ X reflect lower
and upper operational bounds for turbining. Apart from these constraints, one has
to respect lower and upper bounds l∗, l∗ in the reservoir for various, technological,
ecological and sometimes even economical reasons. The vector c− Ax + Bξ yields
the current filling levels in the reservoir at each time step (c is a vector of initial
levels and A, B model the accumulation of water inflows and releases as a function
of the topology of the network). Given the stochastic nature of inflows (e.g., pre-
cipitation or snow melt), the level constraints are stochastic too. On the other hand,
sale on a day-ahead market has to be decided on without knowing realizations of
the random inflow for the future time horizon. This motivates the introduction of
a probabilistic constraint as shown above. Figure 3 (left) illustrates the (idealized)
sinoidal price signal along with the optimal turbining profiles of the 6 reservoirs.
It can be seen that these profiles try to follow the price signal as much as possi-
ble in order to maximize the profit. On the other hand, they have to respect the
imposed constraints, in particular those for the filling level of the reservoir. The
chosen probability level was p = 0.98. In order to make an á posteriori check of the
robustness of the solution obtained, 100 inflow scenarios were generated according
to the given multivariate distribution of the inflow processes. The filling levels in
the reservoir resulting upon applying the computed optimal turbining profiles are
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equilibrium problem with
equilibrium constraints
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Figure 3: Illustration of the solution to a probabilistically constrained program in
power managment.

plotted in Figure 3 (right). It can be seen that all of the filling level100 scenarios stay
within the prescribed limits throughout the whole time horizon.

Other applications to power managment were dealing with the choice of an
optimal electricity portfolio in production planning under uncertain demand and
failure rates [2] and cost-minimal capacity expansion in an electricity network with
uncertain demands [28].

3.5 Equilibrium problems in power spot markets
In the model of Section 3.1 the viewpoint of a price-taking retailer was adopted. On
the level of price-making companies it makes sense to model prices as outcomes of
market equilibrium processes driven by decisions of competing power retailers or
producers. Mathematically, this leads to so-called Equilibrium Problems with Equilib-
rium Constraints (EPECs):

min
xi∈Xi ,z∈C

{ fi (xi, z) |0 ∈ F (x−i, xi, z) + NC(z)} (i = 1, . . . , n) , (10)

Here, z is a vector of state variables (power generation by each producer, power
transmission through the network), x is a decision vector (coefficients for quadratic
bidding functions of each producer) and the fi are the objectives (negative profit
functions) of the producers. Note that (10) is a coupled system of optimization
problems, where each producer tries to find an optimal decision xi given the com-
petitors decisions x−i. In other words, (10) is an equilibrium problem. However,
in contrast with conventional Nash equilibria, the constraints of competitors are
not defined by simple convex sets but by solutions of a generalized equation. The
latter models the so-called ISO-problem, in which an independent system opera-
tor (ISO) finds cost-minimal generation and transmission in the network, given the
consumers demands at the nodes and given the bidding functions of producers.
Stationary points for solutions to EPECs can be characterized by tools from nons-
mooth and variational analysis. In [29], we provided fully explicit (in terms of the
initial data) stationarity conditions for (10) by applying Mordukhovich generalized
calculus. In [30], such stationarity conditions were applied to stochastic EPECs
with random demands in the nodes.
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Automatic Differentiation 4 Derivative based optimization

4.1 Motivation
In contrast to the situation in linear optimization, nonlinear optimization is still
comparatively difficult to use, especially in an industrial setting. Well known pack-
ages like IPOPT and SNOPT have a large number of options and parameters that
are not easy to select and adjust, even for someone who understands the basic
mathematics of nonlinear optimization. A particularly critical point is the eval-
uation of first and second derivatives, which form the basis of local linear and
quadratic models in nonlinear programming.

Over the last two decades there has been a concerted effort to bypass the prob-
lem through the development of derivative-free algorithms. In fact Nelder–Mead
and other derivative-free algorithms dating from the middle of the last century
are still rumored to be widely used, despite the danger of them getting stuck on
a slope far from a stationary point. A widely accepted fallacy is that algorithms
that do not explicitly use derivatives must therefore be good for the solution of
non-smooth problems with little or no differentiability properties. In fact, all non-
trivial convergence results for derivative-free algorithms have been proven under
the assumption that the objectives and constraints are sufficiently smooth to be ap-
proximated by higher order interpolation [5]. In theory and practice derivative free
solvers converge at best at a slow linear rate.

During the Matheon period we have attacked various problems associated with
the use of derivatives in the context of optimization. By the turn of the millen-
nium automatic differentiation tools based on operator overloading like for exam-
ple ADOL-C [17] as well as source transformation tools like Tapenade [22] had
reached a considerable level of maturity and were widely applied. With the notable
exception of TAF/TAC developed by Fast-Opt in Hamburg all tools are public do-
mains and the support is rather academic. The tool ADOL-C originally written by
Andreas Griewank during a two week visit to ZIB in 1989 is now part of the Debian
distribution and maintained in the group of Prof. Andrea Walther at the University
of Paderborn.

As long as further AD tool development appeared to be mostly a matter of good
software design we concentrated on the judicious use of derivatives in simulation
and optimization codes. Not only the approximation of Jacobians or Hessians by
divided differences, but also their evaluation by algorithmic differentiation as well
as their subsequent factorization may take up the bulk of the run-time in an opti-
mization calculation. In some large applications like aerodynamic design optimiza-
tion evaluating full derivative matrices is simply out of the question. Therefore we
have pursued several approaches to develop algorithms that are based on deriva-
tive vectors alone, which have provably the same complexity as the function itself.

The following specific goals were pursued by our research group during the
Matheon period.

1. A derivative-vector based NLOP solver.

2. A derivative-vector based equations and least squares solver.
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Gauss Transposed Broyden
Nonlinear Least Square

3. An unconstrained optimizer based on cubic overestimation.

4. Non-smooth optimization via piecewise linearization.

There was also a very significant effort on one-shot optimization in aerodynamics
within the DFG priority program 1259, unfortunately it fell outside the Matheon
applications areas. Furthermore, there was also a collaboration with project D7
of Caren Tischendorf to analyze and utilize the structure of differential algebraic
equations on the basis of their computational graph.

4.2 Transposed updating
The efforts 1) and 2) were based on the secant updating technique described in the
following section. The two predominant classes of NLOP solvers, SQP and Interior
Point Methods are both based on the evaluation of constraint Jacobians and La-
grangian Hessians with the latter usually being approximated by secant updates in
SQP methods. Recent developments of the two methods has been benefited greatly
from significant advance in sparse matrix methodology and packages. Rather than
exploiting sparsity explicitly our approach was to apply low-rank updating not
only to approximate the symmetric Hessian of the Lagrangian but also the rectan-
gular Jacobian of the active constraints. The classical updates for non symmetric
derivative matrices, namely the good and bad Broyden formulas [15] suffer from
various short comings and have never been nearly as successful as the symmetric
counterpart BFGS and its low rank variants.

For a differentiable vector function F : Rn → Rm an approximation B+ ∈ Rm×n

may be required to satisfy direct and adjoint secant and tangent conditions of the
following form

B+ s = y ≡ F(x + s)− F(x), B+ s = y ≡ F′(x)s, σ>B+ = σ>F′(x) .

Here s ∈ Rn and σ ∈ Rm are primal and dual steps, which arise naturally within
many iterative algorithms. Using the reverse mode of algorithmic differentiation
[16] one can evaluate the transposed Jacobian vector product F′(x)>σ ∈ Rm at about
the same cost as the direct product F′(x)>σ.

Given a previous approximate Jacobian B ∈ Rm×n one can apply the so-called
transposed Broyden update

B+ = B +
σσ>

σ>σ

[
F′(x)− B

]
=
[

I − σσ>

σ>σ

]
B +

σσ>

σ>σ
F′(x)

to satisfy not only a given transposed secant condition, but also the direct secant
condition if one sets σ = r ≡ y− B s. The transposed Broyden formula has many
attractive features, in particular it satisfies both bounded deterioration on nonlinear
functions and heredity in the affine case.

4.3 Implementations

Nonlinear equations and least squares
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Nonlinear optimization
Cubic Overestimation

It was shown in [18] that a nonlinear equations solver based on the transposed
Broyden update always achieves the maximal super-linear convergence order 1 +
log(n)/n that is achievable by any method based on single rank updating per iter-
ations. On affine problems the method reduces to GMRES and thus achieves finite
termination in maximally n steps.

A quasi-Gauss–Newton method based on the transposed formula can be shown
to achieve asymptotically the same Q-linear convergence rate as Gauss–Newton.
More specifically, consider a stationary point x∗ of the squared residual f (x) ≡
1
2‖F(x)‖2 where the normal Hessian W2 ≡ [F′(x∗)>F′(x∗)] ∈ Rn×n has full rank.
Then the Gauss Transposed Broyden method generates from x0 ≈ x∗ a sequence of
iterates xk such that

lim sup
k→∞

‖W(xk+1 − x∗)‖2

‖W(xk − x∗)‖2
≤ κ ≡

∥∥∥∥∥W−1

[
m

∑
i=1

Fi∇2Fi(x∗)

]
W−1

∥∥∥∥∥
2

provided the κ ≥ 0 on the right is less than 1. This generic curvature bound also
necessary for the local convergence of Gauss–Newton and implies strict minimality
of f at x∗. A similar method with weaker theoretical properties has been applied
extensively to geophysical data assimilation problems by Haber [21] with whom
we have collaborated. The method was original developed at the HU by Claudia
Kratzenstein, who works now on data assimilation problems in oceanography and
climatology. A limited memory variant is expected to yield significant performance
gains on these very important applications.

Constrained and unconstrained optimization

Within the NLOP solver LRAMBO the transposed updates were used to approx-
imate the Jacobian of the active constraints. In combination with BFGS updating
of the Lagrangian Hessian this yielded a null-space implementation, whose linear
algebra effort grows only quadratically in the dimensions. Classical SQP methods
have a cubic effort in the dimensions. For large scale applications we also devel-
oped a limited memory option and an iterative internal solver. The code has been
publicly available on the NEOS server since Summer. The method was found to
be competitive with standard solvers like SNOPT and IPOPT. However, on the
Cuter test set and other collections of primarily academic problems, the avoidance
of derivative matrix evaluations did not pay off as much as hoped since there com-
plete Jacobians are never more than 20 times as expensive [4] to evaluate. Moreover,
they can usually efficiently factorized due to their regular sparsity structures.

For unconstrained optimizations we developed a code called COUP, which is
based on the cubic overestimation idea, originally proposed by Andreas Griewank
in 1981. It has recently gained acceptance as an alternative to trust region stabiliza-
tions, especially through the work of Gould, Cartis, Gould et al. Our algorithmic
development is specifically geared towards the scenarios where second derivatives
need to be avoided and reduces the linear algebra effort to O(n log(n))2 by using
fast updates of symmetric eigenvalue decompositions.
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Consumption of Gas4.4 Application and numerical results

Sigmoidal Regression

The first application was a highly non-linear regression problem coming from a
cooperation with a German energy provider who was interested in a simple model
for the daily consumption of gas based on empirical data that were recorded over
the last years to predict future developments. Therefore, a sigmoidal model was
used to link the daily gas consumption rate with the temperature of the previous
days at one exit point of the gas network. The model itself was given by

f (α, β, γ, δ, t̂i(w), X) = E(X)


 α

1 +
(

β

t̂i(ω)−40

)γ + δ


 ,

depending on the expectation E(X) of the N considered gas-flow consumption
measurements X = (X1, . . . XN) ∈ RN , some parameters (α, β, γ, δ) ∈ R4 and a
weighted temperature average t̂i(ω) = ω1ti + ω2ti−1 + ω3ti−2 + ω4ti−3 over the last
4 days of the measured temperatures t = (t−3, t−2, . . . , tN) ∈ RN+3 with weighting
factors ω = (ω1, ω2, ω3, ω4) ∈ R4. The resulting non-linear least square problem

min
(α,β,γ,δ,ω1,ω2,ω3,ω4)

N

∑
i=1

( f (α, β, γ, δ, ti, X)− Xi)
2

and several extensions of it were successfully solved by various of our methods
(compare Figure 4), and represented a further qualitative improvement to the re-
sults mentioned in [35]. We considered above minimization problem including the
additional convex-combination constraints ∑4

j=1 ωj = 1 and 0 ≤ ωi ≤ 1.
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Simulated Moving Bed
Chromatographical Process

Simulated Moving Bed Processes

In the second application we considered the optimization of a Simulated Moving
Bed (SMB ) process for continuous multi-column chromatography. The problem
was used to verify the robustness and performance of our non-linear optimiza-
tion solver LRAMBO since the periodic adsorption process based on fluid-solid
interactions, never reaches steady state, but a cyclic steady state, which leads to
dense Jacobians, whose computation dominates the overall cost of the optimiza-
tion strategy. Therefore, we used a simplified model [42] for SMB with a nonlinear
adsorption isotherm consisting of six chromatographic columns, packed with solid
adsorbent and arranged in four zones to determine a high purity separation of two
components, which was solved by backward Euler method.
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Figure 5: Comparison results for LRAMBO and IPOPT applied to nonlinear SMB.

As decision variables we choose the extract, raffinate, desorbent and feed streams
which were limited by lower and upper box-constraints. Furthermore, we added
further inequality constraints besides the cyclic steady state condition to the guar-
antee a purity over 95 percent of the extract and raffinate. As objective functional
we maximized the time-averaged throughput in terms of the feed stream.

The optimization was done for a different number of time steps Nel and number
of compartments Ndis using IPOPT and LRAMBO. In all cases both optimizer found
an identical optimal function value QFE for the same initialization but in terms of
computation time we were able to outperform IPOPT as can be concluded from 5.
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