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1 Introduction

Public transportation, i.e., public transit, rail, and air traffic, gives rise to challenging
planning problems. We distinguish strategic planning problems about network design,
line planning, timetabling, and price planning that decide about the services that
are being offered, operational planning problems of vehicle and crew scheduling and
rostering about the cost minimal implementation of the service by a best possible
allocation of resources, and operations control problems of vehicle and crew dispatch-
ing to monitor the execution of the plan and to counter deviations in real time.
Solving these problems in a best possible way is crucial for the system’s quality
and efficiency, and mathematical optimization is the key to achieve that.

In the past 20 years, mathematical “optimizers” have been established as the
industry standard in price planning in the airline industry, and in operational plan-
ning in public transit and air traffic. In particular, vehicle and crew scheduling
problems, which can be modeled as multi-commodity flow and set packing or
covering problems, and revenue management problems, which lead to multistage
stochastic optimization problems, have been thoroughly investigated and can nowa-
days be solved for large-scale, industrial instances, see [7] for a survey and point-
ers to the literature. Such success stories show what mathematics can do for public
transport. However: the bigger part of the planning process still lacks optimization
support.

The vision of the TRAFFIC AND TRANSPORT DOMAIN OF EXPERTISE in MATH-
EON’S APPLICATION AREA B: NETWORKS is that the entire planning process in
public transportation can be improved by mathematical optimization. “What con-
stitutes a good [public transportation] network?” – this key question of AA-B sum-
marizes this idea. MATHEON projects contributed to the following topics:

• Project B15 (= B1 + B5 since phase II): Service design in public transport has ad-
dressed the line planning and the timetabling problem.

• Project B6: Origin destination control in airline revenue management by dynamic
stochastic programming has investigated a network wide approach to airline
ticket sales maximization.

• Project B22: Rolling stock roster planning worked on the railway version of the
vehicle scheduling problem.

These questions lead directly to an abstract theory of network optimization, that carries
over between different applications:
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• Hypergraph optimization: Line planning and rolling stock roster planning lead
to hypergraph generalizations of fundamental combinatorial optimization
problems on Steiner trees and assignments, that model path connectivity and
locally constrained network flows.

• Combinatorial optimization: Timetabling problems can only be solved by us-
ing strong integer programming formulations based on structural knowledge
about short cycle bases of underlying scheduling graphs.

• Stochastic optimization: Network wide revenue management requires approx-
imations of high-dimensional stochastic processes that open the application
of multistage stochastic programming to large scale dynamic models.

Our contributions were awarded with national and international prizes, namely,
the Diploma thesis and the Dissertation award of the German operations research
society 2006, the INFORMS TSL Dissertation Award 2006, the Heureka prize 2008,
the DMV Abitur prize 2008, and the ATMOS best paper award 2013. The projects
also demonstrated the value of mathematical optimization for public transporta-
tion in industrial cooperations. Major breakthroughs were the implementation of
the first optimized timetable at the Berlin subway in 2005 and the first optimized line
plan for ViP Potsdam in 2010, see also the boxes on pages ?? and ??, repectively.

The following subsections of this article discuss the results of the projects of
MATHEON’s Domain of Expertise Traffic and Transport. The exposition is subdi-
vided into four subsections on line planning and path connectivity, timetabling
and cycle bases, revenue management and scenario reduction, and rolling stock
roster planning and hyper-assignments. We review each application, present the
mathematical model and the solution approach, discuss the main theoretical con-
tributions, and report on the impact that could be achieved.

2 Line Planning and Path Connectivity

Line planning is a fundamental problem in the design of a public transportation
system. It consists in finding a set of lines in an infrastructure network and their
frequencies of operation such that a given travel demand can be routed. There are
two main objectives, namely, minimization of operation costs and minimization of
travel and transfer times. Since the 1970s, ever more realistic optimization models
have been developed, see [44, 28] for a survey. MATHEON’s project B15 contributed
to the integration of line planning and passenger routing, transfer handling, and
dynamic line generation in order to optimize the line plan of Potsdam.

Basic model. A basic integrated line planning and passenger routing model (LPP)
can be formulated as in Figure 1. It uses binary variables x`, f for the choice of
line ` ∈ L at frequency f ∈ F and continuous variables yp for the number of
passengers traveling on path p ∈ P . Inequalities (i) stipulate a passenger flow
equal to the demand dst (number of passengers) for each pair of “origin-destination
nodes” (OD-nodes) (s, t) ∈ D. Inequalities (ii) enforce sufficient transportation
capacity on each arc. Inequalities (iii) ensure that a line is operated with at most
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(LPP) min λ ∑`∈L ∑ f∈F c`, f x`, f + (1− λ) ∑p∈P τp yp

(i) ∑p∈Pst
yp = dst ∀(s, t) ∈ D

(ii) ∑p:a∈p yp ≤ ∑`:a∈` κ`, f x`, f ∀a ∈ A
(iii) ∑ f∈F x`, f ≤ 1 ∀` ∈ L
(iv) ∑`:a∈` ∑ f∈F f x`, f ≤ Fa ∀a ∈ A
(v) x`, f ∈ {0, 1} ∀` ∈ L, ∀ f ∈ F
(vi) yp ≥ 0 ∀p ∈ P

Figure 1: Integrated line planning and passenger routing model.

one frequency, while inequalities (iv) bound the sum of the frequencies of lines that
can be operated on an individual arc. The objective minimizes line operating costs
c`, f and passenger traveling times τp weighted by a parameter λ ∈ [0, 1]. Varying
λ, the trade-offs between the two objectives can be studied in terms of Pareto curves,
see Figure 2 for an application at the city of Potsdam.

Dynamic line generation. The main innovation of model (LPP) was the consid-
eration of all possible line routes to overcome static line pools. It is solved by a
branch-and-price algorithm that iteratively constructs the needed line and passenger
paths by solving so-called pricing problems. The pricing problem for the passenger
path variables is a shortest path problem which can be solved in polynomial time
via Dijkstra’s algorithm. The pricing problem for the line path variables is a longest
path problem and thus NP-hard. If the lines have lengths O(log |V|) that are log-
arithmic in the number of nodes, lines can also be priced in polynomial time via
randomized coloring [3, 28]. This freedom in line and passenger routing can dras-
tically reduce line costs by up to 10% [5]. The model further allows to deal with
more realistic passenger routing models, e. g., to avoid long detours or splittings of
passengers routes [43].
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Figure 2: Cost vs travel time in Potsdam. Varying the weight parameter λ (x-axis) results in line plans
with different costs (green) and travel times (blue). A value of λ = 0.1 almost ignores costs,
a value of λ = 1 ignores travel time.
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Direct connections. The model (LPP) can also be extended to deal efficiently with
transfers or, more precisely, with direct connections. To this purpose, the passenger
flow variables yp are split into two types yp,0 and yp,1 that account for the number
of passengers on a transfer free connection on path p and for number of passen-
gers transferring at least once on path p, respectively. These are linked via direct
connection capacity constraints that ensure the correct passenger flow on direct con-
nections. These constraints are related to metric inequalities and can be derived via a
Benders decomposition. We showed that a certain explicit combinatorial subset of
these constraints suffices to estimate the number of direct travelers in a surprisingly
accurate way [11, 28]. In our computations, the geometric mean of the prediction
error on a test set of 14 large-scale real-world instances was only 0.39% [28].

Configuration model. One of the reasons for the hardness of line planning is the
gap between line capacities and demands. We proposed a concept to strengthen the
capacity constraints by means of a novel configuration model that enumerates the set
of possible line frequency configurations on each arc of the network. This replaces
numeric capacities by a combinatorial choice of configurations. We showed that
such an extended formulation implies general facet defining inequalities such a set
cover, band, and mixed integer rounding inequalities for the standard formulation,
and that it can be used to solve large-scale line planning instances [10].

Special network topologies. Another idea to cope with the complexity of line plan-
ning is to exploit the structure of special network topologies. We studied the case of the
Quito Trolbús system, which consists of a trunk route and a number of feeder bus
systems. Trolebús therefore has a simple tree topology, but it also features many de-
grees of freedom in line construction, e. g., express lines and uni-directional lines;
these had not been considered in the mathematical line planning literature before.
It turned out that the problem remains hard in general, however, some cases can be
solved in polynomial time, e. g., if only “closed lines” are used [48]. Moreover, our
computations indicated potential cost reductions of sometimes up to 50%.

ViP. We optimized the ViP (Verkehrsbetrieb Potsdam GmbH) line plan for 2010
within an industry project Stadt+. In fact, our optimization methods worked very
well, and the difficulties in the project were mainly data issues: We had to define
possible endpoints of new lines, add missing links, and model requirements such
as a minimum cycle time for the tram, minimum frequency requirements for each
station, or minimal and maximal lengths for lines with respect to travel time and
distance. The final optimized line plan achieved substantial reductions in costs of
around 4% and in perceived travel times of around 6% [13, 6], see also page ??. ViP
implemented this solution almost one-to-one. As far as we know, this is the first
mathematically optimized line plan that was implemented in practice. In this way,
project Stadt+ proved that line optimization methods are ready for practice.

Connectivity theory. The abstract combinatorial problem that underlies line plan-
ning is the Steiner connectivity problem. It generalizes the well known Steiner tree
problem from the graphical to a hyper-graphical setting: Given a graph G = (V, E),
a subset T ⊆ V of the nodes, and a set of paths P , the Steiner connectivity prob-
lem asks for a minimum cost subset of paths from P connecting all nodes in T.
Similar to the relevance of the Steiner tree problem in network design, the Steiner
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connectivity problem can be seen as the prototype of all problems where nodes are
connected by installing capacities on paths which is exactly the case in line plan-
ning. Likewise, main results about complexity, approximation, integer program-
ming formulations, and polyhedra can be generalized from the Steiner tree to the
Steiner connectivity setting [12, 28].

Complexity and approximation. A relation of the Steiner connectivity problem to
the undirected and the directed Steiner tree problem yields the NP-hardness of
the general problem and some polynomially solvable cases, e. g., if |T| is constant.
However, a major difference between the Steiner tree problem and the Steiner con-
nectivity problem is the “spanning” case in which all nodes have to be connected:
While the spanning tree problem is solvable in polynomial time, the spanning set
problem is NP-hard. The greedy algorithm, however, gives a logarithmic approxi-
mation for this case [9]. In general, we showed that the primal-dual approximation
technique of Goemans and Williams can be extended to the Steiner connectivity
problem. This yields constant factor approximations.

Polyhedral results. The investigation of the Steiner connectivity polytope is the ba-
sis for the development of cutting plane methods for the line planning problem.
We investigated a canonical undirected cut formulation as well as an extended di-
rected cut formulation. The Steiner partition inequalities, a fundamental class of facet
defining inequalities for the Steiner tree problem, can be generalized to the Steiner
connectivity setting. We also stated necessary and sufficient conditions for these
inequalities to be facet defining. Our main algorithmic result is that (a super class of)
the Steiner partition inequalities can be separated in polynomial time [12, 28]. In partic-
ular, the undirected cut formulation enriched by all Steiner partition inequalities is
dominated by the extended directed cut formulation.

Min-max results. Properties and duality results on paths and cuts in graphs gen-
eralize to results on connecting and disconnecting sets in hypergraphs in the Steiner
connectivity setting. In particular, a Menger result holds in the two-terminal case.
Here, connecting and disconnecting sets give rise to a blocking pair of ideal matri-
ces just like the incidence matrices of paths and cuts. Moreover, the LP relaxation of
the cut formulation of the Steiner connectivity problem for two nodes is totally dual
integral [9, 28]. It follows that not only Menger’s Theorem holds for hypergraphs,
which is folklore, but also that the associated Menger companion Theorem holds:

Theorem 1 (Menger Companion Theorem for Hypergraphs). The minimum cardinal-
ity of an st-hyperpath is equal to the maximum number of hyperedge-disjoint st-hypercuts.

3 Timetabling and Cycle Bases

“The timetable is the essence of the service offered by any provider of public trans-
port” (Jonathan Tyler, CASPT 2006). Indeed, the timetable has a major impact on
both operating costs and on passenger comfort. Moreover, in a railway context,
the timetable determines the use of the track capacity. Yet, depending on the con-
text, there may be different perspectives on what actually is “the timetable”: It can
range from just a basic hourly pattern to a complete composition of all trips of a
day including infrastructure capacity assignments, see [31] for a survey.
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MATHEON’s project B5 addressed the computation of a good basic (hourly) pat-
tern, which is of course the key structure for the actual timetable, in particular in a
non-railway context. Its key property is that any action within the network repeats
periodically, say every hour. This structure is reflected well in the so-called periodic
event scheduling problem (PESP) [45].

Periodic event scheduling model. The core of the PESP is a directed graph D =

(V, A). The vertices are events which repeat periodically after the constant period
time T (e.g., T = 60 minutes), and which typically represent arrivals or depar-
tures of a line at particular stops. An arc a ∈ A measures the time duration that
passes from the occurrence πi of its head event i until the occurrence πj of its tail
event j. A PESP constraint requires this time duration to be within some periodic
interval [`a, ua]T:

`a ≤ (πj − πi − `a) mod T + `a ≤ ua,

where only ua < `a + T is of any interest. Bounds on the time duration between
events may model minimum headway times, minimum transfer times, or upper
bounds on the transfer waiting time of important directed transfers. An instance
of the PESP is then specified by a constant period time T and an event-activity
network (D, `, u). In order to transfer this model into an integer linear program,
we have to express the modulo operator of an arc a in terms of additional integer
variables pa. At the same time, typically a linear objective function is added in
which time durations on transfer waiting times or turnaround times of vehicles are
penalized.

Complexity. It is MAXSNP-hard to determine the maximum number of PESP-
constraints that can be satisfied by the a timetable vector π. This explains why
the MIPLIB 2003 contains two PESP instances, although they have only a relatively
small number of rows and columns.

Node potentials and arc tensions. In several computational studies it turned out
that an alternative IP formulation works much better [34]. Instead of expressing
time values at the vertices, which can be interpreted as node potentials, consider the
corresponding periodic tension

xa := πj − πi + T · pa,

where a = (i, j) ∈ A and pa is the integer such that `a ≤ πj − πi + T · pa ≤ ua in
the initial PESP-constraint, if it exists. One can get rid of the node variables entirely
by observing that an arc vector x is the periodic tension of some node potential
vector π if and only if for every oriented circuit in the digraph D, the sum of the
arc values is an integer multiple of the period time T [33]. In fact, it even suffices
to require the sum along every oriented circuit of an integral cycle basis B to be
an integer multiple of the period time T. With Γ denoting the arc-cycle incidence
matrix of B, the starting point for the most efficient IP formulations of the PESP
is the integer programming model on the left of Figure 3. Inequalities (i) and (ii)
model the PESP-constraints, while equality (iii) ensures x to be indeed a periodic
tension.

Cycle bases. Short integral cycle bases promise short running times for integer
programs that arise in periodic timetabling. Recent studies reveal that state-of-
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strictly fundamental cycle basis
(PESP-IP-x-z) min wT(x− `)

(i) x ≤ u
(ii) x ≥ `

(iii) ΓTx− Tz = 0
(iv) z ∈ ZB

(v) x ∈ ZA

Figure 3: Left: Cycle-based integer programming formulation for the periodic event scheduling prob-
lem PESP as it typically arises in periodic timetabling problems in public transport. Right:
Consider the following problem. Given the N × N square planar grid graph GN,N . Find a
spanning tree T such that the sum of the lengths of its induced fundamental circuits is as
small as possible. A very good solution for G8,8 is depicted – is it optimal?

the-art solvers for integer programs like CPLEX do not only profit from cycle bases
of short length, but take even more advantage if the basis is structured well. In
particular strictly fundamental cycle bases, i.e., bases which are induced by spanning
trees, turn out to yield the shortest overall solution times. This motivates an in-
depth investigation of strictly fundamental cycle bases and related combinatorial
optimization problems in the popular area of graph spanners [37].

Short strictly fundamental cycle bases. Our goal was to capture the gap between
the values of optimum strictly fundamental cycle bases and optimum weakly fun-
damental cycle bases [29]. Here, planar square grid graphs are a challenging bench-
mark, see the right of Figure 3 for an example. In [38], we significantly improved
the constant factor in the known asymptotic bound on this gap [1]. Furthermore,
we came up with a new combinatorial bound on this gap which is much stronger
than the asymptotic bounds for small and medium sized grids (n < 5000). Finally,
we also proved that each unweighted graph has a strictly fundamental cycle basis
of length O(n2), hereby proving a 25-years old conjecture by Deo, Krishnamoorthy,
and Prabhu [18]. In addition, we proved [20]

Theorem 2. Every weighted graph (G, w) with total edge weight W admits a weakly fun-
damental cycle basis of length at most W ·O(log n log log n). Such a basis can be computed
in polynomial time.

Polyhedral results. New classes of valid inequalities for the PESP polytopes that
arise in periodic timetabling were found in the second Chvátal closure [36]. They
serve as the only known polyhedral certificate for the infeasibility of a very small
timetabling instance and were instrumental in the development of a branch-and-
cut algorithm that could solve the MIPLIB instance timetab2 for the first time, and
within less than one day on a standard PC.

Robustness. To support punctuality, the planning of public transport systems
incorporates certain buffer times, that absorb occasional delays. Traditionally such
buffers are distributed evenly and a priori over the network. This comes at the
expense of operating costs and nominal travel times. As exact assessment of the ro-
bustness of timetables, on the other hand, has to take the delay management policy
into account, which makes these problems PSPACE-hard. We could nevertheless
develop a new concept of robustness that incorporates optimal buffer allocation
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with respect to a simplified delay management policy into our periodic timetabling
models. Numerical simulations within the DisKon software system of the numeri-
cal and applied mathematics group at the University of Göttingen proved to reduce
the number of lost connections for passengers by up to 50% at the expense of at
most 7% of nominal travel time [35].

ViP. The ViP (Verkehrsbetrieb Potsdam GmbH) timetable was optimized in an
industry project. ViP explicitly requested to extend the timetable model to cover
duty scheduling aspects, and finally attested that the extended model indeed yields
good timetables [26, 32]. A theoretical comparison of periodic and non-periodic
timetables showed that for a sufficiently long planning horizon, omitting the peri-
odicity requirement cannot lead to timetables that require fewer vehicles [4].

BVG. An industrial cooperation with the Berlin underground division of the
Berliner Verkehrsbetriebe (BVG) resulted in a notable achievement: In effect since
December 12, 2004, the 2005 timetable of the Berlin underground is based on the
results of mathematical programming techniques. It is the first such service con-
cept that has been put into daily operation. This timetable offers shorter passenger
waiting times – both at stops and at transfers – and even saves one train [39], see
also page ??.

4 Revenue Management and Scenario Reduction

Origin&Destination Revenue Management (O&D RM) is a stochastic optimization
method to control the passenger booking process for flight tickets in order to max-
imize the total (expected) revenue. The idea is that low fare passengers typically
book early while the willingness to pay higher fares tends to increase as the depar-
ture date comes closer. Hence, selling too many low fare tickets as well as keeping
to many seats for higher fares which remain unsold results in revenue losses. O&D
RM tries to forecast these demands and allocate “the right ticket contingents at the
right prices”.

O&D RM became standard in the airline industry during the last 20 years [47],
but is currently done for each leg (=flight) separately. Leg-based methods, however,
ignore that the revenue for different O&D itineraries using the same legs may vary
when selling a seat to a longer distance itinerary or to several shorter parts of it
depending on the demand. This means that there is a competitive demand on dif-
ferent itineraries in a flight network. Consequently, revenue management methods
must include the whole flight network and a suitable approximation of the stochas-
tic demand process for all itineraries, fare classes, and the whole booking horizon.

MATHEON’s project B6 developed stochastic programming techniques for a net-
work wide treatment of the airline O&D RM problem. Since recursive observations of
the booking process should lead to new decisions, an O&D RM optimization model
has to be multistage, as first proposed in [40], see [25, 16] for two-stage approaches.
Correspondingly, the approximation of the (high-dimensional) passenger demand
process has to be modeled in terms of a scenario tree. Structural and stability prop-
erties of this stochastic programming model were studied and a decomposition-
based solution strategy was developed.
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t = 0 1 . . . t(n̄) T

n = 0 n̄−
n̄

Nt(n̄)

N+(n̄)

Figure 4: Illustration of a scenario tree.

Approximation of the booking process. As a first step toward the numerical solu-
tion of the O&D revenue management problem, the stochastic passenger demand
is approximated by a process having a finite number of scenarios with given proba-
bilities. To determine such scenarios, historical data of the model must be adjusted
subject to a suitable demand model (unconstraining) and then drawn by resam-
pling techniques from the records.

Scenario tree generation. Starting with a certain number of (individual) scenarios,
the tree generation procedure described in [22] is used to produce a scenario tree
whose probability distribution is close to the original one up to a prescribed toler-
ance. The closeness is measured in terms of the Kantorovich metric on the space
of all probability measures. The whole procedure is based on recursive scenario
reduction [19] on decreasing time horizons, i.e., by bundling scenarios which are
close to each other on the relevant time horizon. This approach allowed for the
first time the generation of higher-dimensional scenario trees by preserving statis-
tical dependencies and properties. Scenario tree generation is available within the
professional software package GAMS-SCENRED.

Figure 4 illustrates the construction. The optimization horizon is divided into T
time periods (t− 1, t] (t = 1, . . . , T), the scenario tree represents an approximation
of a T-variate random vector. The set of all tree nodes is denoted byN while the set
of nodes belonging to a certain time point t is denoted by Nt. The notation t(n̄) is
used to specify the time point belonging to node n̄. Each node n̄ ∈ N has a unique
predecessor n̄− (excepted the root node n = 0) as well as a nonempty set N+(n̄) of
succeeding nodes (excepted the leafs n ∈ NT). A path from the root node to some
leaf is called a scenario. The decision at t = 0 is used to control the booking process.

Stochastic optimization model. The O&D revenue management problem can be
modeled in terms of a very large scale mixed-integer multistage stochastic pro-
gramming model [41], see Figure 5. Inputs and decisions are the stochastic pas-
senger demand and the “protection levels” of booking classes, respectively, stages
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(ODRM) max(Pn
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]
(i) B0

i,j,k = B̄0
i,j,k ≥ 0, C0

i,j,k = C̄0
i,j,k ≥ 0 ∀(i, j, k) ∈ I×J×K

(ii) Bn
i,j,k = min

{⌊
Pn−

i,j,k
1−γn

i,j,k
+ 1

2

⌋
, Bn−

i,j,k+dn
i,j,k

}
∀(i, j, k) ∈ I×J×K, ∀n ∈ N\{0}

(iii) Cn
i,j,k =

⌊
γn

i,j,kBn
i,j,k+

1
2

⌋
∀(i, j, k) ∈ I×J×K, ∀n ∈ N\{0}

(iv) bn
i,j,k = Bn

i,j,k−Bn−
i,j,k ∀(i, j, k) ∈ I×J×K, ∀n ∈ N\{0}

(v) cn
i,j,k = Cn

i,j,k−Cn−
i,j,k ∀(i, j, k) ∈ I×J×K, ∀n ∈ N\{0}

(vi) Cl,m≥ ∑I
i=1 ∑J

j=1 ∑K
k=1 δl,m

i,j Pn
i,j,k ∀l ∈ L, ∀m ∈ M(l), ∀n ∈ NT−1

where δl,m
i,j :=

{
1, if fareclass j of ODI i belongs to compartment m of leg l

0, otherwise
(vii) bn

i,j,k≥ 0, cn
i,j,k ≥ 0 ∀(i, j, k) ∈ I×J×K, ∀n ∈ N\{0}

(viii) Pn
i,j,k ∈ Z ∀(i, j, k) ∈ I×J×K, ∀n ∈ N\NT

Figure 5: Node representation of the airline network revenue management model.

refer to the data collection points of the booking horizon. The optimization goal
consists in finding cumulative protection levels Pn

i,j,k for each O&D itinerary i, each
fare class j, each point of sale k and each node n ∈ N \ NT such that the expected
revenue is maximized. Initial cumulative bookings and cancellations are accounted
by equations (i). Equation (ii) states that the number of cumulative bookings Bn

i,j,k
at node n ∈ N \ {0} exhaust the contingent allocated by the protection levels, if
possible, but is also restricted by the passenger demand dn

i,j,k during the time inter-
val (t(n) − 1, t(n)]. Furthermore, cancellation rates γn

i,j,k (percentages of the number
of bookings) are taken into account by equation (ii). The cumulative cancellations
Cn

i,j,k are computed ∀n 6= 0 by equation (iii) while the bookings bn
i,j,k and cancel-

lations cn
i,j,k during the corresponding time interval when traversing the scenario

tree from node n− to node n are represented by equation (iv) and equation (v), re-
spectively. Inequality (vi) ensures that for each leg l and each compartment m its
capacity is not exceeded by the corresponding protection levels at the end of the
optimization horizon. Capacity constraints are modeled for the last stage only in
order to allow for overbooking in earlier stages without additional efforts. Finally,
(vii) and (viii) contain non-negativity and integrality conditions.

Stability properties. Within the framework of the MATHEON companion project
C7 “Mean-risk optimization of electricity production in liberalized markets” sta-
bility results for multistage stochastic programs have been obtained [24, 23] that
unveiled the role of filtration distances for tree generation and allowed to develop
a forward variant for generating trees.

Computational results. Numerical computations were performed for two test
problems: A network model consisting of a hub-and-spokes flight network con-
taining 6 legs, 2 compartments per leg, 12 itineraries, 6 fare classes, and 14 data
collection points. The demand process was approximated by about 100 scenarios
leading to about 500.000 decision variables. The tree representation of the model
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was solved by a standard solver for mixed-integer linear programs (CPLEX) [41].
The second (still unpublished) network model is based on real-life data and con-
tains 54 itineraries, 27 legs, 2 compartments per leg, 6–10 fare classes and 23 data
collection points. The demand was approximated by about 100 scenarios leading to
about 3.5 million decision variables. The model was solved by a decomposition ap-
proach based on Lagrangian relaxation of the capacity constraints. It decomposes
the original optimization model into the successive solution of fast solvable small
O&D subproblems. The computational experience justifies the multistage stochas-
tic programming approach even for larger O&D flight networks.

5 Railway Vehicle Rotations and Hypergraph Assignments

Vehicle rotation planning deals with the construction of rotations for individual units
of rolling stock and, simultaneously, the composition of trains from these units.
This is one of the basic planning problems in rail transport, and known to be no-
toriously hard, see [15] for a survey. MATHEON’s project B22 focused on (long dis-
tance) passenger transport. Here, units of different types are arranged to form trains
in “regular” sequences and orientations, i. e., the trains are composed “in the same
way” every day of the week when they operate.

Regularity. We consider two types of regularity. Operational regularity stipulates
that train turns should be regular, i. e., if train 4711 ends in Frankfurt and continues
as 4712 on Monday, this should also be the case on Tuesday, Wednesday, etc., if pos-
sible. Sequence regularity aims at regular train compositions, i. e., train 4711 should
consist of the same types of rolling stock, in the same sequence and orientation,
every day of the week. This type of regularity is well known from car position in-
dicators. Regularity makes the operation of a railway easier. It minimizes potential
sources of disturbances by establishing every-day routines. Despite its significance,
regularity has been investigated only recently in the optimization literature [46, 2].

Hypergraph assignments. The hypergraph assignment problem (HAP), a hypergraph
generalization of the fundamental assignment problem, can be used to describe the
vehicle rotation planning problem in its simplest form. It consists of finding a per-
fect matching, called a hyperassignment, of minimum cost in what we call a bipartite
hypergraph, i. e., we assign sets of vertices on one side of a bipartite hypergraph
to sets of vertices on the other side. The right of Figure 6 gives an example of a
bipartite hypergraph G = (U, V, E) with U = {u1, u2, u3}, V = {v1, v2, v3}, E =

{e1, e2, e3, e4}, e1 = {u1, v1}, e2 = {u1, u2, v1, v2}, e3 = {u1, u3, v2, v3}, e4 = {u3, v3}.
Vertices are circles, hyperedges have square labels. We assume w.l.o.g. that each
hyperedge contains the same number of vertices on both sides. The hyperedges
of the hyperassignment {e2, e4} are drawn with thick lines. The hypergraph as-
signment problem can be formulated as a set partitioning problem, see the left of
Figure 6. The objective minimizes the cost sum of the selected hyperedges for the
cost function c : E → R. Equations (i) are the perfect matching constraints: There
is exactly one incident hyperedge for every vertex in U and V. Constraints (ii) and
(iii) are the non-negativity and integrality constraints, respectively.
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hypergraph matching problem
Hall theorem for normal

hypergraphs
partitioned hypergraph (HAP) min ∑xe∈E c(e) xe

(i) ∑e∈δ(v) xe = 1 ∀v ∈ U ∪V
(ii) xe≥ 0 ∀e ∈ E
(iii) xe ∈ Z ∀e ∈ E

Figure 6: Left: The hypergraph assignment problem. Right: A bipartite hypergraph.

Hypergraph matching. Hall’s Theorem gives a necessary and sufficient condi-
tion for the existence of a perfect matching in a bipartite graph. This result has
been generalized to certain classes of hypergraphs, most notably, to balanced hy-
pergraphs [17, 27]. We recently obtained a (yet unpublished) further generalization
to an even broader class of normal hypergraphs:

Theorem 3 (Hall Theorem for Normal Hypergraphs). A normal hypergraph H has a
perfect matching if and only if there exists a natural number N such that the hypergraph
HN that arises from H by “N-fold node multiplication” satisfies the Hall condition.

Complexity. The assignment problem can be solved in polynomial time, e. g.,
with the famous Hungarian algorithm. The hypergraph assignment problem, how-
ever, is NP-hard. It is also APX-hard and the gap between the optimum IP solution
and the corresponding LP relaxation as well as the sizes of basis matrix determi-
nants can be arbitrarily large. All these complexity results hold even in very simple
cases, e.g., if all hyperedges have head and tail size two.

Random hypergraph assignments. The analysis of random instances of the hy-
pergraph assignment problem provides insights about the structure of “typical in-
stances”. We transfered the ideas underlying the analysis of random assignment
problems and its generalizations [30] to random hypergraph assignments in parti-
tioned hypergraphs of part size two. We proved that the expected value of a mini-
mum cost hyperassignment which uses exactly half the possible maximum number
of proper hyperedges lies between 0.3718 and 1.8310 if the vertex number tends to
infinity and all hyperedge costs are exponentially i. i. d. with mean 1 [21].

Polyhedral results. The special structure of cliques in bipartite hypergraphs can
be exploited to derive a strengthened extended formulation of the hypergraph as-
signment problem. A clique is a set of hyperedges which have a pairwise non-
empty intersection. Associated with a clique is an inequality stipulating that only
one hyperedge from the clique can be part of a hyperassignment. Adding clique
inequalities to the IP formulation can significantly improve the root LP bound of
the set partitioning formulation of the hypergraph assignment problem [8]. In gen-
eral hypergraphs, clique inequalities are hard to separate as hyperedges involved
in a clique can be distributed “globally”. For partitioned hypergraphs, a special type
of bipartite hypergraphs, however, we developed an extended formulation that
implies all clique inequalities. This extended formulation has a polynomial num-
ber of extra variables, that describe the local structure of hyperassignments, i.e.,
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(a super class of) clique inequalities for hyperassignment problems on partitioned
hypergraphs can be separated in polynomial time. We also proved that every hy-
pergraph assignment problem can be polynomially transformed into a hypergraph
assignment problem on a partitioned hypergraph. The investigation of small hy-
pergraph assignment polytopes led to a new class of inequalities that subsume half
of the known facet classes. These inequalities are “clique generalizations” of the
well-known odd set inequalities for the matching problem. They are related to (but
different from) the general clique family inequalities of Pêcher and Wagler [42]; like
these, they also hold for general set packing problems.

Facet classification. The large number of facets in polytopes of already very small
problem sizes impedes their classification and understanding. This does not only
apply to hypergraph assignments, but to many combinatorial optimization prob-
lems. Fortunately, there are often symmetries in the combinatorial structure of the
problem. These symmetries also hold for the polytope and can be used to group
the facets. Due to the lack of a normal form the usual method to do this could not
be used for the hypergraph assignment problem. We devised a facet classification
algorithm that relies solely on the vertex-facet incidence structure of the polytope
to group its facets in symmetry classes and showed its applicability to several com-
binatorial optimization problems. A normal form is not needed.

ICE rotation planning. The polyhedral analysis of the hypergraph assignment
problem is the basis for the development of a branch-and-cut algorithm for the
solution of railway vehicle rotation planning problems. Such an algorithm has
been developed in an industry companion project with Deutsche Bahn. It com-
bines our results on hyperassignments with sophisticated column generation and
rapid branching strategies, large scale LP techniques, and special primal heuristics
[14, 15]. In 2010, it became for the first time possible to solve strategic vehicle ro-
tation planning problems for the entire ICE fleet of Deutsche Bahn over a planning
horizon of one week. The roll-out within Deutsche Bahn’s “Fahr- und Einsatz-
Optimierung” (FEO) planning system is currently under way.
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