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1 Introduction 

Consider the following two-stage stochastic program 

(1.1) min{g(x) + Q"(Ax): x E C} 

(1.2) Q"(x) = j Q(z- x)p(dz), 
JR• 

(1.3) Q(t) = min{q T y: Wy = t, y 2: 0} 

where g : IRm ...... IR is a convex function, C C IRm is a non-empty closed convex 
set and p is a Bore! probability measure on IR'. Furthermore, q E IR"' and 
A E L(IRm, IR'), W E L(IR"', IR'). To have (1.1.)-(1.3) well-defined we assume 
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W(JR~) = JR' 

Mv :={uElR' :WTu:Sq}#0 

J llzJIJ-1( dz) < +oo 
IR' 

( complete recourse), 

(dual feasibility), 

(finite first moment). 

By linear programming duality, (Al) together with (A2) implies that Q(t) E 1R 
for all t E JR'. Due to (A3) also the integral in (1.2) is finite (cf. [10], [24] and 
the beginning of Section 2). 

The model (1.1)-(1.3) is derived from an optimization problern with uncertain 
data, where some evidence on the probability distribution of the random data 
is at hand or has been gained on the basis of statistical information. We have 
a first-stage decision x to be made here and now (i.e. before the realization of 
z), and a second-stage decision (recourse action) y that has to be fixed after 
the realization of the random parameters. ( 1.1) then aims at fixing an x that 
minimizes the sum of the first-stage costs and the expected second-stage costs 
caused by the corrective action y. Further details and fundamental properties 
of (two-stage) stochastic programs can be found in [10], [24]. 

The present paper contributes to the stability analysis of (1.1) if JJ ( and hence 
Ql') is subjected to perturbations. We consider (1.1) with convex functions 
v : JR' --+ lR instead of Ql' and study the optimal (marginal) value rp of (1.1) 
as a function of v. Resorting to convex perturbations v is motivated by the fact 
that, given (Al) and (A2), Ql' is convex for any probability measure JJ fulfilling 
(A3) (cf. [10], [24] and Section 2). 

Our investigations focus on second-order directional derivatives ofthe marginal
value function rp. In [18], [19], [20] such objects are considered for general para
metric optimization problems. Lacking smoothness and non-uniqueness of op
timal solutions prevent a direct application of the techniques from [19], [20] in 
the present setting. In contrast to the very general paper [18] we do not utilize 
a second-order strong stability condition imposed there. Our independent ap
proach uses ideas from (18], [20] and is essentially based on a Lipschitz-stability 
result for optimal solutions ([16]) and on the strong (strict) convexity of Ql' 
([15],[17]). Accent is placed on ending up with conditions that are verifiable for 
the problern dass (1.1)-(1.3). The issue offirst-order directional differentiability 
of <p in the context of two-stage stochastic programs is essentially settled in [7], 
[22]. For the reader's convenience we display a central result in this respect. In 
the general non-linear programming context, first-order directional derivatives 
of marginal values are addressed in [8], [14], cf. also the references therein. 

Our paper is organized as follows: In Section 2 we review improved convexity 
properties (strict and strong convexity) of Ql' that were established in [17]. As 
essential prerequisites, these properties enter Section 3, where we analyze the 
second-order directional differentiability of Q I'. 
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2 Strong Convexity 

Given (Al) and (A2), linear programming duality implies 

(2.1) Q(t) = max{t TU: WT U:::; q}. 

Moreover, Mn is also bounded, i.e. it has the vertices d;(i = 1, ... , 1). By (2.1) 
we obtain 

Q(t) = max dT t, 
•=1, ... ,1 

i.e. Q is piecewise linear and convex. 
Tagether with (A3) this implies that Q 11 is a real-valued convex function on 

IR'. It is natural to ask for stronger properties of Q I'" Concerning smoothness 
there are sufficient conditions for Q 11 to be ( twice) continuously differentiable: 
If J.l has a density, then Q 11 is continuously differentiable and 

1 

(2.2) 'VQ 11 (x) = I)-d;)J.L(x + K;), 
i=l 

where K; ( i = 1, ... , I) denotes the normal cone to Mn at d; ( cf. [10], [24]). The 
function Q 11 is twice continuously differentiable if J.l oB has a continuously differ
entiable distribution function for any nonsingular transformation B E L(IR', IR') 
(for details consult [11], [23] and [15]). 

In the present paper we focus on improved convexity properties. Recall that Q J.l 

is strictly convex if the convexity inequality holds strictly for different arguments; 
Q 11 is called strongly convex on a convex subset V C IR' if there exists a constant 
" > 0 such that for all Xt, X2 E V,..\ E [0, 1] 

Q~'(..\xt + (1- ..\)x2):::; ..\Q~'(xt) + (1- ..\)Q11(x2)- ",..\(1- ..\)IIXt- x2W-

The strong convexity of Q11 on a convex subset V is equivalent to the strong 
monotonicity of the gradient 'VQ 11 on V and to the positive definiteness of the 
Hessian V'2 QI' on V, i.e. (Y' 2QI'(x)h, h) 2: 2~~;llhll 2 for all X E V, h E IR: (cf. 
[12]). 

Let us consider two illustrative examples to provide some initial insight into 
the situation. 

Example 2.1 Let Q(t) = min{y+ + y- : y+ - y- = t, y+ 2: 0, y- 2: 0} and 
J.l E P( IR) be given by the density 

{ 
4lrl if - ~ :::; T :::; ~ 

8(r) = 
0 otherwise 

Linear programming duality yields 

Q(t) = max{t u: -1:::; u:::; 1} = ltl. 
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A Straightforward calculation then provides 

otherwise 

Two conclusions can be drawn from this representation. Firstly, Q J.l is piece
wise linear and, hence, not strictly convex outside the support of J.!. Secondly, 
inside the support of J.l the function Q J.l is strictly convex but not strongly convex 
since the second derivative vanishes at X = 0. 

( 1 0 -1 0 ) ( )T Example 2.2 Let W = 1 1 1 _ 1 , q = 1, -1, 1, 1 and assume 

that J.l E P(IR2 ) fulfils (A3) and has a density. 
It is easy to see that(Al) isfulfilled andthatMn = conv ((-2, -l)T,(2, -l)T). 

However, in view of (2.2) the second component of VQJ.I(X) is identical -1 for 
all x E IR'. Therefore, VQJ.I cannot be strictly monotone and QJ.I is not strictly 
convex. 

The following theorems (proved in (17]) give positive answers with respect to 
the improved convexity of Qw Roughly speaking, it suffices to eliminate the 
pathologies encountered above. 

Theorem 2.3 Assurne (Al), (A3) and 

(A2)* int Mn f. 0, 

(A4) J.l has a density. 

Then QJ.I is strictly convex on any open convex subset of the support of J.!. 

Theorem 2.4 Assurne (Al), (A2)* , (A3) and 

(A4)* there exists an open convex set V C IR', constants r > 0, p > 0, 
and a density eJ.I of J.l such that 

eJ.I( r) :::-:: r for all TE IR' with dist( T, V) :s p. 

Then QJ.I is strongly convex on V. 

In addition to these two theorems it is shown in (17] that under (Al)-(A4) 
the assumption (A2)* is also necessary for the strict convexity of Q. There 
are instances where (A2)* becomes especially handy: For simple recourse (i.e. 
W = (I, -I), where I denotes the identity in IR') it is equivalent to q+ + 
q- > 0 (componentwise), where qT = (q+T,q-T),q+,q- E IR'; in case W E 
L(IR'+1 , IR') fulfils (Al) and (A2) is valid, (A2)* is equivalent to q fj WT (IR') 
(for details consult (17]). 
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3 Directional Derivatives of Marginal Values 

Consider perturbations 

(3.1) min{g(x) + v(Ax): x E C} 

of (1.1), where v : IR' --> IR is a convex function. We are interested in the 
directional behaviour of the value function 

'P(v) := inf{g(x) + v(Ax): x E C} 

at Q JJ into convex directions. 
Let 

!f(v) := argmin {g(x) + v(Ax): x E C}. 

The following Lipschitz result on 1/J with respect to the Hausdorff distance d8 

will become a fundamental prerequisite. 

Theorem 3.1 Assurne (A1)-(A3) and Iet !f(Qp) be non-empty, bounded. Let g 
be convex quadratic, C be convex polyhedral, and Qp be strongly convex on some 
open convex set V :::l A(!f(Qp)). 

Then, for each convex function v : IR' --> IR there exist constants L > 0, 6 > 0 
such that 

whenever 0 < t < 6. 

Proof: The proof splits into two parts: First one has to show that ?f( Q'" +tv) :f 0 
for t > 0 sufficiently small and then the Lipschitz rate has to be established. 
Guidelines for both parts are given by results in [16] (Proposition 2.3, Theorem 
2.4). However, in [16] perturbations of Qp are of the type Qv with v E P(IR'). 
Therefore, some preparation is needed for drawing conclusions from [16] in case 
the perturbations are of the type Q'" + tv. 

The analysis in (16] is based on a subgradient distance d which, in the present 
setting, reads as follows: Let U = cl Uo, where Uo is an open convex bounded 
setsuchthat !f(QI') C U0 and A(U) C V, for convex Q: IR' -->IR we define 

(3.2) d(Q, Ql'; U) := sup{JJz*JJ : z* E ß(Q- Qp)(Ax): x EU} 

where 8 denotes the Clarke subdifferential ([5]). 
Inserting Q = Ql' + tv (t > 0) into the above relation yields 

d(Q'" + tv, Q'"; U) := t · sup{JJz*JJ : z* E ov(Ax) : x EU} 

where 8 specifies to the subdifferential of convex analysis. 
Since U is compact, we have 

La:= sup{Jiz*ll: z* E ßv(Ax): x EU}< +oo 

and 
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d(Q~" + tv, Q~"; U) =La· t. 

Re-interpreting Proposition 2.3. and Theorem 2.4 in (16] in terms of the 
definition (3.2) now provides that tf;( Q ~" + tv) is non-empty for t > 0 sufficiently 
small and that there exist constants L > 0, 6 > 0 such that 

whenever 0 < t < 6. 0 

Remark 3.2 Note that the above results (and those to follow) remain valid if 
v is replaced by v- Q ~". Both the assumptions on g, C and the strong convexity 
of Q ~" are indispensable in the above theorem. This is illustrated by several 
examples in (16]. To give an idea we quote the one justifying the polyhedrality 
assumption on C: Let m := 2,s := 1,g(x):::: O,A := (1,0),q := (1, 1)T, W := 
(1,-1),C := {x = (x1,x2) E IR?: (x2)2 ~ x1} andjj be the Uniformdistribution 
on [-~. ~]. Then QI"(Ax) = xr + ~ for 0 ~ Xj ~ ~ and tj;(QI") = {(0,0)}. Let 
further v := Q6,- Q~" where 61 is the measure putting unit mass atz= 1. Then 

dH(t/!(Q~"), t/!(Q~" + tv)) ~ {f fort> 0 sufficiently small. 

Another precondition for the subsequent second-order analysis consists in a 
first-order directional differentiability result for 'P as obtained, for instance, in 
(7], (22]. 

Theorem 3.3 Assurne (A1)-(A3) and Iet tj;(Q~") be non-empty, bounded. Then 
<p is {Gateaux) directiona//y differentiable at Q~" in any convex direction v 
IR' --+ IR and it ho/ds 

<p1 (Q~";v) := !im ~(<p(Q~" +tv)- <p(Q~")) = min{v(Ax): x E tf;(Q~")}. 
t-O+ t 

Conclusion 3.4 IJQI' is strictly convex on some open convex neighbourhood of 
A(t/!(QI')) (cf. Theorem 3.3} we obtain for a/1 convex v: IR'--+ IR 

<p'(Q~"; v) = v(x.) where A(tf;(QI')) = {x.}. 

Remark 3.5 Provided that C is bounded, techniques from (15] (Proposition 
2.1) can be utilized to establish that the marginal-vatue function <p is locally 
Lipschitzian (with respect to the uniform distance on A(C)) at any convex func
tion v. Then, the directional differentiability of <p in the sense of Hadamard ( cf. 
[21]) is a direct consequence of Proposition 3.5 in (21]. 

In what follows we explore whether 'P has second-order directional derivatives 
at (certain) Ql". 

Theorem 3.6 Assurne (A1)-(A3) and Iet tf;(QI') be non-empty, bounded. Let 
g be convex quadratic, C be convex polyhedral, Q fl be strongly convex on some 
open convex neighbourhood of A(tf;(Q~")) and twice continuously differentiab/e at 
X• with A(tf;(QI')) = {x.}. Then we have for a/1 convex v: IR' --+IR and any 
x E tf;(QI") 
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~.p"(Q,..; v) = !im ~( ~.p(Q,.. + tv) - ~.p(Q,..)- t~.p'(Q,..; v)) 
t-0+ t 

= inf{ ~(H y, y) + ~("'v2 Q,..(x.)Ay, Ay) + v' (x.; Ay) : y E S(x)} 

where S(x) = {y E JRm : y E Tc(x), 'Vg(x)y + 'VQI'(x.)Ay = 0}, 
Tc(x) = liminf f(C- x) is the tangent cone to C at x (with set convergence 

t- D+ 
in Kuratowski's sense [1]}, H := V'2g(x) and v'(x., .) denotes the directional 
derivative of v at X•. 

Observe that, given the function v, the value of ~.p"(QI'; v) is the same Jor all 
x E 1/I(Q,..). Moreover, the infimum in (3.3) is attained. 

Proof: Let v: JR• -> lR be convex and x E 1/I(Q,..). Let L > 0 and 8 > 0 be as 
in Theorem 3.1 and t E (0, 8). By Theorem 3.1 there exists an x(t) E 1/I(QI' +tv) 
such that llx(t)- xll :S Lt. 

It holds 

~.p(Q,.. + tv)- ~.p(QI')- t~.p'(Q,..;v) = 
= g(x(t)) + QI'(Ax(t)) + tv(Ax(t))- g(x)- QI'(Ax)- tv(Ax) 

1 = 'Vg(x)(x(t)- x) + 2 (H(x(t)- x), x(t)- x)+ 

1 
+'VQ,..(Ax)(A(x(t)- x)) + "2('V2Q,..(Ax)(A(x(t)- x)), A(x(t)- x)) 

+t(v(Ax(t))- v(Ax)) + o(llx(t)- xll 2) 

where we have used Theorem 3.3 for the first identity and the twice differ
entiability of g at x and Ql' at Ax = x. for the second identity, respectively. 
Moreover, the above remarks imply that o(llx(t)- xW) = o(t2 ). This provides 
for all t E (0, 8) 

~(<p(QI' + tv)- ~.p(Q,..)- t~.p'(Q,..; v)) = 

1 = t2('Vg(x)(x(t)- x) + (AT'VQ,..(Ax),x(t)- x))+ 

1 
+"2{H(x(t)- x), x(t)- x)+ 

1 1 1 
+"2{AT'V2Q,..(x.)A( t(x(t)- x)), t(x(t)- x))+ 

1 
+t(v((Ax(t))- v(Ax)) + o(1). 

The optimality of x implies 
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(V'g(x)+ATV'QI'(Ax),x(t)-x) 2 0. 

Now take tk -+ 0+ in such a way that 
k-oo 

By llt;-(x(tk)-x)ll ~ L for kEIN sufficiently !arge, there exists asubsequence 

{t<herv• suchthat 

1 
Y< := -(x(tk)- x)-+ y. 

tk k€1'1' 

Now y E Tc(x) and x(tk) = x + tkYk for all k EIN'. Theorem 3.3 yields 

v(Ax) = <.p'(QJJ;v)= lim ..!._(<.p(QI'+t<v)-<.p(QJJ)) 
k-oo tk 
lcEN1 

= !im .!._(g(x + tkYk) + (QJJ + tkv)(A(x + tkY<))- g(x)- QI'(Ax)) 
k-oo tk 
lcEN1 

= V'g(x)y+V'QJJ(Ax)Ay+v(Ax). 

The above relation implies 

V'g(x)y + V'QJJ(Ax)Ay = 0, 

thus y E S(x). 
Therefore 

Hence 

lim ~(<.p(QJJ + tkv)- <p(QJJ)- tk<.p'(QI'; v)) 2 
~~"';' tk 

2 ~ l~r:! ((Hyk,Yk) + (ATV' 2QJJ(x.)AYkYk)+ 
kEJ'Il1 

= ~(Hy,y) + ~(V'2QJJ(x.)Ay,Ay) +v'(x.;Ay) 

2 inf {~(Hy,y)+-21 (V'2QJJ(x.)Ay,Ay)+v'(x.;Ay)}. 
yES(x) 2 
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:::: inf {~(Hy,y)+-21 (V2QJA(x.)Ay,Ay)+v'(x.;Ay)}. 
yES(x) 2 

Now we establish the reverse inequality for the Iimes superior. 
To this end, Iet y E S(x) be arbitrary, i.e., in particular , y E Tc(x). The 

polyhedrality of C now implies that, given a sequence { tk} with tk ___. 0+, we 
have x + tky E C for sufficiently !arge k. This allows the following estimate 

<p(QJA + tkv)- <p(QJA)- tk<p1(QJA; v):::; 

:::; g(x + tky) + QJA(A(x + tky)) + tkv(A(x + tky))- g(x)- QJA(Ax)- tkv(Ax) 

1 
=tkV'g(x)y+ 2t~(Hy,y) +tkV'QJA(Ax)Ay 

1 
+2t~(V'2QJA(Ax)Ay, Ay) + o(tn + tk(v(A(x + tky))- v(Ax)) 

1 1 = 2t~(Hy,y) + 2t~(V' 2QJA(Ax)Ay,Ay) +o(tn+ 

+tk(v(A(x + tky))- v(Ax)). 

The last identity is valid since y E S( x) implies 

V'g(x)y + VQ(Ax)Ay = 0. 

Now we obtain 

Since y E S( x) was arbitrary, (3.3) is established. 
To prove that the infimum is actually attained, Iet us denote 

1 
h(y) := '2(H y, y) +l(Ay), 

where 

We will show that the function h is constant on each common direction of 
recession of h and S(x). Theorem 27.3 in [13) then states that h attains its 
intim um over S( x). 
Let u E JRm be a common direction of recession of h and S(x), i.e. u E JRm 
fulfils 

y + "\u E S(x) and h(y + "\u):::; h(y) 
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for all ). ~ 0 and all y E S(x). 

Since S(x) is a polyhedral cone, u E IRm is a direction of recession of S(x) if 
and only if u E S(x). 
Let u E S(x) and). ~ 0. It holds 

1 ).2 
h(y + ).u) = 2,(Hy, y) + ).(Hu, y) + "2(Hu, u) + t'(Ay +).Au). 

By assumption, the function f is strongly convex on IR' and, hence, obeys 
a unique minimizer x on AS(x). Moreover, we have, with a suitable constant 
o:>O 

f(x) ~ t'(:X) + o:ilx- xll 2 for all XE AS(x) ((12]). 

Therefore, 

t'(Ay +).Au)~ f(x) + o:(IIAy- xW + 2).(Ay- :x, Au)+ A2 IIAuW). 

For Au =J. 0 this implies f(Ay +).Au) >.--=;;, oo. Together with (H u, u) ~ 0 we 

obtain h(y + ).u) ---+ oo, i.e. u is no direction of recession of h. 
>.-oo 

In case Au = 0 and (H u, u) > 0 we agairr obtain h(y + ).u) ---+ oo, showing 
>.-oo 

that u is no direction of recession of h. 
It remains to check the case where Au = 0 and (Hu, u) = 0. Then we have 
H u = 0, yielding h(y + Au) = ~(Hy, y) for all A ~ 0, i.e. h is constant in 
direction u and Theorem 27.3 in (13] works. D 

Example 3.7 Let m := s := 1,g(x) = O,A := 1,C :=IR and select QJJ as in 
Example 2.1. Then it holds tj;(QJJ) = {0}, 'P(QJJ) = ~· With v(x) := -x (x E IR) 
we obtain for all t E (0, 1] 

tj;(QJJ +tv) = {x E IR: Q~(x) = t} = Uvt}, 
1 3 

'P(QJJ + tv) = "3(1- t'i) 

and 

Thus 

~('P(QJJ + tv)- 'P(Q~')- t'P'(QJJ; v)) = -~ct 
for all t E (0, 1]. 
Hence, 'P has no second-order directional derivative at QJJ in direction v. Note 

that there exists a neighbourhood of tj;( Q JJ) where Q JJ is strictly convex. H owever, 
there is no such neighbourhood where QJJ is strongly convex. This shows that the 
strong convexity in Theorem 3.6 is indispensable. 
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The next result shows that the estimate for the upper second-order directional 
derivative of cp, which constitutes the final part of the proof of Theorem 3.6, 
remains valid under more general hypotheses. Second-order tangents sets to 
C (cf. [1], [6]) turn out to be essential in this respect. Higher-arder sets of 
such type are studied in [9] in the context of (higher-order) necessary optimality 
conditions for abstract mathematical programs. 

Proposition 3.8 Assurne (Al)-(A3) and Iet 1/!(Q 11 ) be non-empty, bounded. Let 
Q11 be strict/y convex on some open convex neighbourhood of A(l/!(Q11 )) and con
tinuously differentiable at X• with A(l/!(Q11 )) = {x.}. Assurne that Q11 has a 
second-order directional derivative at X•, i. e. there exist 

Q~(x.; h) = !im ..!..2 (Q 11 (x. + th)- Q11 (x.)- t'VQ~'(x.)h) 
t-O+ t 

for a/1 h E IR'. Let g be twice continuously differentiable. Then we have for 
a/1 convex v: IR' -+IR and x E 1/J(QI') 

limsup ..!_2 (cp(Q 11 + tv)- cp(Q 11 )- tcp'(QI'; v)) 
t-D+ t 

:::; inf inf {vg(x)z + 'VQI'(x.)Az + -21 ('V 2g(x)y, y) 
yES(x) zET~(x,y) 

+ Q~(x.;Ay)+v'(x.;Ay)} 

where S(x) is given as in Theorem 3.6 and T~(x, y) is the second-order tangent 
set to C at x E C in direction y, i. e. 

Proof: 

T~(x, y) = liminf ..!_2 (C- x- ty). 
t- D+ t 

Let y E S(x) be arbitrary. If T{;(x, y) = 0, then the assertion trivially holds. 
Hence, Iet z E T~(x, y). Then, for arbitrary tk -+ 0+ there exists a sequence 
{ zk} such that Zk -+ z and x + h y + t~ Zk E C for all k E IN. This allows the 
following estimate 

cp(QI' + tkv)- cp(QI')- tkcp'(Q 11 ; v) 

:::; g(x + tky + t~zk) + QI'(A(x + tky + t~zk)) + tkv(A(x + tky + t~zk)) 

-g(x)- QI'(Ax)- tkv(Ax) 

= [g(x + tky + t~zk)- g(x)- tk 'Vg(x)y]+ 

+[QI'(A(x + tky + t~zk))- QI'(Ax)- tk 'VQ 11 (Ax)Ay]+ 

+tk[v(A(x + tky + t~zk))- v(Ax)]. 
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After dividing by t~ the right-hand side converges to ( cf. [3], p. 484) 

\lg(x)z + ~(\12g(x)y, y) + \lQI'(Ax)Az + Q~(Ax; Ay) + v'(Ax; Ay). 

Taking infima on the right-hand side yields the assertion. 

An upper bound similar to the above one is given in [2], Proposition 1. 

0 

Remark 3.9 The following condition allows to extend the estimate from Propo
sition 3.8 to the Iimes inferior liminf: Foreach c > 0 there exist x E 1/;(QI'), y E 

t- 0+ 
S(x) such that for arbitrary tk --+ 0+ there exists a sequence { zk} such that 
Zk-+ z,x+tky+t~zk E C and g(x+tky+t~zk)+(QJl+tkv)(A(x+tky+t~zk)) :5 
'P(QI' + tkv) + ct~ for kEIN sufficiently !arge. 

This condition is employed in [18], Theorem 4.1, where it is called second-order 
strong stability condition. Verifying it in the context of two-stage stochastic 
programs is an open problem. 

We finally combine the techniques from Theorem 3.6 and Proposition 3.8. In 
this way, the additional assumptions on g and C can be dropped. However, more 
implicit hypotheses on 1/;(QI') have tobe verified. 

Corollary 3.10 Assurne (A1)-(A3) and Iet 1/J(QI') be non-empty, bounded. Let 
Ql' be strongly convex on some open convex neighbourhood of A(I/;(QI')) and 
twice continuously differentiable at X• with A(I/;(QJl)) = {x.}. Let g be twice 
continuous/y differentiable and v: IR' --+IR be convex. Assurne that x E 1/;(QI') 
has the following properties: 

(i) d(x,I/;(QI' +tv)) = O(t), 

(ii) 0 E T~(x, y) for a/1 y E Tc(x). 

Then 'P"(QJl; v) = 

= inf a(\12g(x)y, y) + ~(\1 2 Q~'(x.)Ay, Ay) + v'(x.; Ay) : y E S(x)} , 

where S(x) is given as in Theorem 3.6. 

Proof: In view of (i), the same technique as in the proof ofTheorem 3.6 applies 
and one ends up with the right-hand side of the assertion as a lower bound 
for the !im inf. For the limsup , we use Proposition 3.8 and the fact that the 

t- 0+ t-O+ 
necessary optimality condition yields: 

\1 g(x)z + \lQI'(x.)Az 2: 0 whenever z E T6(x, y), y E Tc(x). 

(ii) now implies the assertion. 0 
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