
Efficient Transient Noise Analysis

in Circuit Simulation

Georg Denk1, Werner Römisch2, Thorsten Sickenberger2, and Renate
Winkler2

1 Qimonda AG, Products, München, Germany, georg.denk@qimonda.com
2 Institute of Mathematics, Humboldt-Universität zu Berlin, Germany
{romisch,sickenberger,winkler}@math.hu-berlin.de

Transient noise analysis means time domain simulation of noisy electronic
circuits. We consider mathematical models where the noise is taken into ac-
count by means of sources of Gaussian white noise that are added to the
deterministic network equations, leading to systems of stochastic differential
algebraic equations (SDAEs). A crucial property of the arising SDAEs is the
large number of small noise sources that are included. As efficient means of
their integration we discuss adaptive linear multi-step methods, in particu-
lar stochastic analogues of the trapezoidal rule and the two-step backward
differentiation formula, together with a new step-size control strategy. Test
results including real-life problems illustrate the performance of the presented
methods.

1 Transient Noise Analysis in Circuit Simulation

The increasing scale of integration, high clock frequencies and low supply volt-
ages cause smaller signal-to-noise ratios. Reduced signal-to-noise ratio means
that the difference between the wanted signal and noise is getting smaller.
A consequence of this is that the circuit simulation has to take noise into ac-
count. In several applications the noise influences the system behaviour in an
essentially nonlinear way such that linear noise analysis is no longer satisfac-
tory and transient noise analysis, i.e., the simulation of noisy systems in the
time domain, becomes necessary (see [4, 16]). For an implementation of an
efficient transient noise analysis in an analog simulator, both an appropriate
modelling and integration scheme is necessary (see [3]).

Here we deal with the thermal noise of resistors as well as the shot noise
of semiconductors that are modelled by additional sources of additive or mul-
tiplicative Gaussian white noise currents that are shunt in parallel to the
noise-free elements. Thermal noise ith of resistors is caused by the thermal
motion of electrons and is described by Nyquist’s theorem. Shot noise ishot of
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pn-junctions, caused by the discrete nature of currents due to the elementary
charge, is modelled by Schottky’s formula and inherits noise intensities that
depend on the deterministic currents:

ith =

√
2kT
R

ξ(t) , ishot =
√
qe|idet(u)|ξ(t) . (1)

Here ξ(t) is a standard Gaussian white noise process, R denotes the resistance,
T is the temperature, k = 1.38 · 10−23 is Boltzmann’s constant, idet(u) is
the characteristic of the noise-free current through the pn-junction and qe =
1.60 · 10−19 is the elementary charge.

Combining Kirchhoff’s current law with the element characteristics and
using the charge-oriented formulation yields a stochastic differential-algebraic
equation (SDAE) of the form (see e.g. [15], or for the deterministic case [6])

A
d

dt
q(x(t)) + f(x(t), t) +

m∑
r=1

gr(x(t), t)ξr(t) = 0 , (2)

where A is a constant singular incidence matrix determined by the topology
of the dynamic circuit parts, the vector q(x) consists of the charges and the
fluxes, and x is the vector of unknowns consisting of the nodal potentials
and the branch currents through voltage-defining elements. The term f(x, t)
describes the impact of the static elements, gr(x, t) denotes the vector of
noise intensities for the r-th noise source, and ξ is an m-dimensional vector of
independent Gaussian white noise sources (see e.g. [4, 16]). One has to deal
with a large number of equations as well as of noise sources, where one can
and has to exploit the fact that compared to the other quantities the noise
intensities gr(x, t) are small.

Though the system (2) formally differs only by the additional noise term
from the deterministic system, a completely different mathematical framework
has to be applied. A serious mathematical description begins by introducing
the Brownian motion or the Wiener process that is caused by integrating the
white noise “W (t) =

∫ t

0
ξ(s)ds =

∫ t

0
dW (s)” (see e.g. [1]). Problem (2) is then

understood as a stochastic integral equation

A q(X(s))
∣∣∣t
t0

+
∫ t

t0

f(X(s), s)ds +
m∑

r=1

∫ t

t0

gr(X(s), s)dWr(s) = 0, t ∈ [t0, T ] ,

(3)
where the second integral is an Itô-integral, and W denotes an m-dimensional
Wiener process (or Brownian motion) given on the probability space (Ω,F , P )
with a filtration (Ft)t≥t0 . The solution is a stochastic process depending on
the time t and on the random sample ω. The value at fixed time t is a random
variable X(t, ·) = X(t) whose argument ω is usually dropped. For a fixed
sample ω representing a fixed realization of the driving Wiener process, the
function X(·, ω) is called a realization or a path of the solution. Due to the
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influence of the Gaussian white noise, typical paths of the solution are nowhere
differentiable.

The theory of stochastic differential equations distinguishes between the
concepts of strong, i.e., pathwise solutions and weak, i.e., the distribution law
of solutions. We decided to aim at the simulation of solution paths, i.e., strong
solutions that reveal the phase noise that is of particular interest in case of
oscillating solutions. From the solution paths statistical data of the phase as
well as moments of the solution can be computed in a post-processing step.
We therefore use the concept of strong solutions and strong (mean-square)
convergence of approximations.

By the implicitness of the systems (2) or (3) and the singularity of the
matrix A the model is not an SDE, but an SDAE. We refer to [15] for analytical
results as well as convergence results for certain drift-implicit methods.

In this paper we discuss adaptive linear multi-step methods, in particu-
lar stochastic analogues of the trapezoidal rule and the two-step backward
differentiation formula, see Sect. 2. The applied step-size control strategy is
described in Sect. 3. Here we extensively use the smallness of the noise. In
Sect. 4 new ideas for the control both of time and chance-discretization are
discussed. Test results including real-life problems that illustrate the perfor-
mance of the presented methods are given in Sect. 5.

2 Adaptive Numerical Methods

The key idea to design methods for SDAEs is to force the iterates to fulfill the
constraints of the SDAE at the current time-point. Here we consider stochas-
tic analogues of methods that have proven very useful in the deterministic
circuit simulation. Paying attention to the DAE structure, the discretization
of the deterministic part (drift) is implicit, whereas the discretization of the
stochastic part (diffusion) is explicit.

We consider stochastic analogues of the variable coefficient two-step back-
ward differentiation formula (BDF2) and the trapezoidal rule, where only the
increments of the driving Wiener process are used to discretize the diffusion
part. Analogously to the Euler-Maruyama scheme we call such methods multi-
step Maruyama methods. The variable step-size BDF2 Maruyama method for
the SDAE (3) has the form (see [11] and, for constant step-sizes, e.g. [2])

A
q(X�) + α1,�q(X�−1) + α2,�q(X�−2)

h�
+ β0,�f(X�, t�)

+
m∑

r=1

gr(X�−1, t�−1)
ΔW �

r

h�
− α2,�

m∑
r=1

gr(X�−2, t�−2)
ΔW �−1

r

h�
= 0, (4)

� = 2, . . . , N . Here, X� denotes the approximation to X(t�), h� = t� − t�−1,
and ΔW �

r = Wr(t�) −Wr(t�−1) ∼ N(0, h�) on the grid 0 = t0 < t1 < · · · <
tN = T . The coefficients α1,�, α2,�, β0,� depend on the step-size ratio κ� =
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h�/h�−1 and satisfy the conditions for consistency of order one and two in the
deterministic case. By construction the scheme has order 1/2 in the stochastic
case (see [11]). A correct formulation of the stochastic trapezoidal rule for
SDAEs requires more structural information (see [12]). It should implicitly
realize the stochastic trapezoidal rule for the so called inherent regular SDE
of (3) that governs the dynamical components. Both the BDF2 Maruyama
method and the stochastic trapezoidal rule of Maruyama type have only an
asymptotic order of strong convergence of 1/2, i.e.,

‖X(t�)−X�‖L2(Ω) := max
�=1,...,N

(E|X(t�)−X�|2)1/2 ≤ c · h1/2, (5)

where h := max�=1,...,N h� is the maximal step-size of the grid. For additive
noise the order may be 1. This holds true for all numerical schemes that
include only information on the increments of the Wiener process.

However, the noise densities given in Section 1 contain small parameters
and the error behaviour is much better. In fact, the errors are dominated by
the deterministic terms as long as the step-size is large enough [2, 11]. In more
detail, the error of the given methods behaves like O(h2+εh+ε2h1/2), when ε
is used to measure the smallness of the noise, i.e., gr(x, t)=εĝr(x, t), r=1,...,m
where ε�1. Thus we can expect order 2 behaviour if h	ε. Higher numerical
effort for higher deterministic order pays off only if the noise is very small.

3 Local Error Estimates

The smallness of the noise allows special estimates of the local error terms,
which can be used to control the step-size. We aim at an efficient estimate
of the mean-square of local errors by means of a number of simultaneously
computed solution paths. This leads to an adaptive step-size sequence that
is identical for all paths. For the drift-implicit Euler-Maruyama scheme this
step-size control has been presented in [10], see also [4, 16].

In [13, 14] the authors extended this strategy to stochastic linear multi-step
methods with deterministic order 2 and provided a reliable error estimate. Let
L̃� approximates the dominating local error in AX� by

L̃� = c�h� ·
[

2κ�

κ� + 1
f(X�, t�)− 2κ�f(X�−1, t�−1) +

2κ2
�

κ� + 1
f(X�−2, t�−2)

]
, (6)

where c� is the error constant of the related deterministic scheme. This esti-
mate is based on already computed values of the drift term. Recall that L̃� is
a vector valued random variable as is the solution X�. For the measurement
of errors we use the mean-square norm in L2(Ω). In dependence on the small
parameter ε and the step-size h� the L2-norm of the local error behaves like
O(h3

� + εh
3/2
� + ε2h�). The term of order O(h3

� ) dominates the local error be-
haviour as long as h3

� is much larger than εh
3/2
� , i.e., ε2/3 � h�. Under this

condition also the expression ‖L̃�‖L2 approximates the local error.
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Depending on the available information we will monitor different quantities
to satisfy accuracy requirements,

i) control ‖(A + h�β0,�J�)−1L̃�‖L2 to match a given tolerance for X�,
ii) control ‖L̃�‖L2 to match a given tolerance for AX�, or

iii) control ‖A−L̃�‖L2 to match a given tolerance for PX�.

Here J� is the Jacobian of the drift function f w.r.t. the first variable, and
A− denotes the pseudo inverse of A, and P is an appropriate projector. Since
(A/h�+β0,�J�) = 1/h�·(A+h�β0,�J�) is the Jacobian of the discrete scheme (4)
this matrix (or a good approximation to it) and its factorization are usually
available. In case of M sampled paths, the L2-norm in i)–iii) is estimated by
using the M values L̃i

�, i = 1, . . . ,M . For example, in case i) we use

∥∥∥(A + h�β0,�J�)−1L̃�

∥∥∥
L2

≈
(

1
M

M∑
i=1

∣∣∣(A + h�β0,�J
i
�)

−1L̃i
�

∣∣∣2)1/2

. (7)

4 A Solution Path Tree Algorithm

In the analysis so far, the number M of sample paths has not been specified
yet. It influences the sampling error in the approximation of the L2-norm in the
error estimate (7). We have ‖L̃�‖L2 = η̂� + ϑ�, where η̂� is the approximation
of the dominating local error term based on M sample paths and ϑ� is the
sampling error.

Our aim in tuning the number of paths is to balance the local error and
the sampling error. Let d� be a given upper bound for the sampling error ϑ� at
time t�, e.g. calculated as an approximation of the higher deterministic error
term of order O(h4

� ). We then derive the best number M� of paths by

M� =
⌊

1
d2

�

μ̂2
� · σ̂2

�

μ̂2
� + σ̂2

�

⌋
, (8)

where μ̂� and σ̂2
� are estimates of the mean and the standard deviation of the

error estimate at time-point t�, respectively. Here �x� denotes the smallest
integer greater or equal to x.

The best number of paths M� depends on the time-point t� and is realized
by approximate solutions generated on a tree of paths that is extended, re-
duced or kept fixed adaptively. In [9] the authors describe the construction of
a solution path tree in detail. The method uses probabilities πi

� (� = 1, . . . , N ;
i = 1, . . . ,M�) to weight the solution paths. Figure 1 gives an impression,
how a solution path tree looks like. At each time-step the optimal expansion
or reduction problem is formulated by means of combinatorial optimization
models. The path selection is modelled as a mass transportation problem in
terms of the L2-Wasserstein metric (see [5] in context of scenario reduction in
stochastic programming). The algorithm has been implemented in practice.
The results presented in the next section show its performance.
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Fig. 1. A solution path tree: Variable time-points t�, solution states xi� and path
weights πi�

5 Numerical Results

Here we present numerical experiments for the stochastic BDF2 applied to
two circuit examples. The first one is a small test problem, for which we have
used an implementation of the adaptive methods discussed in the previous
sections in Fortran code. To be able to handle real-life problems, a slightly
modified version of the schemes has been implemented in Qimonda’s in-house
analog circuit simulator TITAN. The second example shows the performance
of this industrial implementation.

A MOSFET Inverter Circuit

We consider a model of an inverter circuit with a MOSFET transistor, under
the influence of thermal noise. The related circuit diagram is given in Fig. 2.
The MOSFET is modelled as a current source from source to drain that is
controlled by the nodal potentials at gate, source and drain.

The thermal noise of the resistor and of the MOSFET is modelled by
additional white noise current sources that are shunt in parallel to the original,

Fig. 2. Thermal noise sources in a MOSFET inverter circuit
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Fig. 3. Simulation results for the noisy inverter circuit: (left) 1 path 127(+29 re-
jected) steps; (right) 100 paths 134(+11 rejected) steps

noise-free elements. To highlight the effect of the noise, we scaled the diffusion
coefficient by a factor of 1000.

In Fig. 3 we present simulation results, where we plotted the input voltage
Uin and values of the output voltage e1 versus time. Moreover, the applied
step-sizes, suitably scaled, are shown by means of single crosses. We compare
the results for the computation of a single path (left picture) with those for
the computation of 100 simultaneously computed solution paths (right pic-
ture). The additional solid lines show two different solution paths, the dashed
line gives the mean of 100 paths and the outer thin lines the 3σ-confidence
interval for the output voltage e1. We observe that using the information of an
ensemble of simultaneously computed solution paths smoothes the step-size
sequence and considerably reduces the number of rejected steps, when com-
pared to the simulation of a single path. The computational cost that is mainly
determined by the number of computed (accepted+rejected) steps is reduced.

We have applied the solution path tree algorithm to this example. The
upper graph in Fig. 4 shows the computed solution path tree together with
the applied step-sizes. The lower graph shows the simulation error (solid line),
its error bound (dashed line) and the used number of paths (marked by×),
vs. time. The maximal number of paths was set to 250.

The results indicate that there exists a region from nearly t=1·10−8 up to
t=1.5·10−8 where we have to use much more than 100 paths. This is exactly
the area in which the MOSFET is active and the input signal is inverted.
Outside this region the algorithm proposes approximately 70 simultaneously
computed solution paths.

A Voltage Controlled Oscillator

As an industrial test application we us a voltage controlled oscillator that is
a simplified version of a fully integrated 1.3 GHz VCO for GSM in 0.25µm
standard CMOS (see [8]). For simulation, the oscillator is embedded in a test
environment. The VCO is tunable from about 1.2 GHz up to 1.4 GHz. The
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Fig. 4. Simulation results for the noisy inverter circuit: Solution path tree and
step-sizes (top), sampling error, its error bound and the number of paths (bottom)

Fig. 5. Noisy transient output signal of a VCO

unknowns of the VCO in the MNA system are the charges of the six capacities,
the fluxes of the four inductors, the 15 nodal potentials and the currents
through the voltage sources. This circuit contains 5 resistors and 6 MOSFETs,
which induce 53 sources of thermal or shot noise. To make the differences
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Fig. 6. Boxplots of the phase noise, scaled by a factor of 500

between the solutions of the noisy and the noise-free model more visible, the
noise intensities had been scaled by a factor of 500.

Numerical results obtained with a combination of the BDF2 and the trape-
zoidal rule are shown in Fig. 5, where we plotted the difference of the nodal
potential V (7)− V (8) of node 7 and 8 versus time. The solution of the noise-
free system is given by a dashed line. Four sample paths (dark solid lines) are
shown. They cannot be considered as small perturbations of the deterministic
solution, phase noise is highly visible.

To analyze the phase noise we performed 10 simultaneous simulations with
different initializations of the pseudo-random numbers. In a postprocessing
step we computed the length of the first 50 periods for each solution path
and then from these the corresponding frequencies. In Fig. 6 the mean μ
of the frequencies (horizontal lines), the smallest and the largest frequencies
(boundaries of the vertical thin lines) and the boundaries of the confidence
interval μ± σ (the plump lines) are presented, where σ was computed as the
empirical estimate of the standard deviation. The mean appears increased and
differs by about +0.25% from the noiseless, deterministic solution.

Further on, the frequencies vacillate from 1.18 GHz (−0.95%) up to 1.21
GHz (+1.55%). So the transient noise analysis shows that the voltage con-
trolled oscillator runs in a noisy environment with increased frequencies and
smaller phases, respectively.



48 G. Denk et al.

6 Conclusions

Quite similar to deterministic circuit simulation, it is essential to have the
application in mind while developing new efficient algorithms. We have pre-
sented variable step-size two-step schemes for SDAEs which require only the
increments of the driving Wiener process. Though these schemes possess only
convergence order 1/2 from a theoretical point of view, they show order 2 in
circuit simulation, as the deterministic terms dominate the errors. This can
be considered in the step-size control. Taking the stochastic properties of the
circuit into account leads to an increased efficiency of the methods.

An important application of transient noise analysis is to get insight into
the statistical properties of the solution paths. We showed that the number of
paths necessary for this purpose varies with the time-points. By implementing
a solution path tree algorithm, it is possible to save computing time or to get
more accurate outputs compared to a naive approach which would require to
calculate all paths over the complete integration interval.

These results allow an efficient transient noise simulation which helps the
designer to cope with challenges due to technology progress. Further improve-
ments may include parallelisation and the handling of flicker noise.
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