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Abstract. Given a convex stochastic programming problem with a discrete initial probability distribution,
the problem of optimal scenario reduction is stated as follows: Determine a scenario subset of prescribed
cardinality and a probability measure based on this set that is the closest to the initial distribution in terms of a
natural (or canonical) probability metric. Arguments from stability analysis indicate that Fortet-Mourier type
probability metrics may serve as such canonical metrics. Efficient algorithms are developed that determine
optimal reduced measures approximately. Numerical experience is reported for reductions of electrical load
scenario trees for power management under uncertainty. For instance, it turns out that after 50% reduction of
the scenario tree the optimal reduced tree still has about 90% relative accuracy.
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1. Introduction

Various important real-life decision problems can be formulated as convex stochastic
programs which can be mostly written in the form

min
x∈X

EP f (ω, x) =
∫
�

f (ω, x)P (dω). (1)

Here, X ⊂ R
n is a given nonempty convex closed set, � a closed subset of R

s and
B the Borel σ -field relative to �, the function f from � × R

n to the extended reals
R is measurable with respect to ω and lower semicontinuous and convex with respect
to x, and P a fixed probability measure on (�,B), i.e., P ∈ P(�), with EP denoting
expectation with respect to P . This formulation covers two- and multi-stage stochastic
programs with recourse. In these cases, X is the set of feasible first-stage decisions and
the function values f (ω, x) evaluate the best possible outcomes of decisions x in case
that ω is observed.
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Apparently, (1) is a mathematical program. However, several important problems
concerning its formulation and algorithmic approaches have to be resolved. The prob-
ability measure P does not need to be known precisely, the function f – the random
objective – is given implicitly (e.g. as an (iterated) optimal value), and at the same time,
(1) is often large scale. To solve (1), various problem specific procedures have been de-
signed that approximate the model and exploit its special structure. Many approximation
methods exploit a discrete probability measure having the property that the correspond-
ing optimal value and the set of ε-approximate solutions are close to v(P ) and Sε(P ),
respectively. Here,

v(P ) := inf{EP f (ω, x) : x ∈ X}
Sε(P ) := {x ∈ X : EP f (ω, x) ≤ v(P )+ ε}

for each ε ≥ 0. Consistently, S(P ) := S0(P ) denotes the solution set of (1).
In this context, stability properties of the model (1) with respect to perturbations (ap-

proximations) ofP become important (see e.g. the surveys [6, 21] and references therein,
and [10, 19, 22]). In Section 2 we present a quantitative stability result for optimal values
and ε-approximate solution sets of (1) that is based on the general perturbation analysis
in [1, 18], and we demonstrate that probability (semi-) metrics with ζ -structure (cf. [15,
24]), i.e.,

dF (P,Q) = sup
f∈F

|
∫
�

f (ω)P (dω)−
∫
�

f (ω)Q(dω)| (2)

with F being a class of measurable functions from� to R and P,Q belonging to P(�),
appear as natural and suitable distances of probability distributions for stability analysis.
Furthermore, it is explained there that classes of (continuous) functions having the form

Fc = {f : � → R : f (ω)− f (ω̃) ≤ c(ω, ω̃) for all ω, ω̃ ∈ �} (3)

with a continuous symmetric function c : � × � → R+ having the property that
c(ω, ω̃) = 0 iff ω = ω̃, are highly relevant in the context of convex stochastic program-
ming models. The choice of c depends on the quantitative continuity properties of the
integrand f with respect to ω and is discussed in Section 2. The following estimate is
valid for the corresponding probability (semi-) metric ζc with ζ -structure

ζc(P,Q) := dFc
(P ,Q) ≤ µ̂c(P,Q), (4)

where µ̂c denotes the Kantorovich functional

µ̂c(P,Q) := inf{
∫

�×�
c(ω, ω̃)η(d(ω, ω̃)) : η ∈ P(�×�), η(B ×�) = P(B), (5)

η(�× B) = Q(B) for all B ∈ B}.
Problem (5) is called Monge-Kantorovich mass transportation problem ([15, 17]). In
case that c has the particular form

ch(ω, ω̃) = ‖ω − ω̃‖ max{1, h(‖ω − ω0‖), h(‖ω̃ − ω0‖)} (6)

for all ω, ω̃ ∈ �, where ‖ · ‖ is some norm on R
n, ω0 some fixed element in R

s and
h : R+ → R+ continuous and nondecreasing, the corresponding metric with ζ -structure
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ζh(P,Q) := dFch
(P ,Q)

is often called Fortet-Mourier (type) metric (cf. [15]).
An important instance is that the original probability measure P in (1) is itself dis-

crete with finitely many atoms (or scenarios) or that a good discrete approximation of
P is available. Its support may be very large so that due to computational complex-
ity and running time limitations, this probability measure is further approximated by
a probability measure Q carried by a (much) smaller number of atoms. In this case,
the distance ζc(P,Q) and its upper bound, the Kantorovich functional µ̂c(P,Q), rep-
resent optimal values of certain linear programs. To be more precise, let P and Q be
probability measures with scenarios {ω1, . . . , ωN } and {ω̃1, . . . , ω̃M}, and probability
weights {p1, . . . , pN } and {q1, . . . , qM}, respectively. Thus, P = ∑N

i=1 piδωi andQ =∑M
j=1 qj δω̃j , where δω ∈ P(�) denotes the Dirac measure placing unit mass at ω. Then

the Kantorovich functional has the primal-dual representation

µ̂c(P,Q) = min{
N∑
i=1

M∑
j=1

c(ωi, ω̃j )ηij : ηij ≥ 0,
N∑
i=1

ηij = qj ,

M∑
j=1

ηij = pi∀i, j}

= max{
N∑
i=1

piui +
M∑
j=1

qjvj : ui + vj ≤ c(ωi, ω̃j )∀i, j},

i.e., µ̂c(P,Q) represents the optimal value of a linear transportation problem. In partic-
ular, the functional µ̂c can be used to evaluate distances of specific probability measures
obtained during a scenario-reduction process, i.e., in case that {ω̃1, . . . , ω̃M} is a sub-
set of {ω1, . . . , ωN }. Various reduction rules appear in the context of recent large-scale
real-life applications. There are purely heuristic and ad hoc rules, e.g. [2, 3], heuristic
rules inspired by the contamination technique, cf. [7], and various sampling schemes.
In [5] deletion is based on criteria for the expected value of perfect information (EVPI).
A rule based on a uniform approximation of the random objective function f over the
whole scenario space and independently on the decision vector is designed in [23]. A
deletion rule based on maintaining first and second order moments is used in [4]. For
more information on recent work for scenario generation and reduction we refer to [9].

In Section 3 we study a novel scenario reduction approach that is based on best ap-
proximations in terms of the functional µ̂c. We show that the Kantorovich functional of
a discrete original probability distribution P and the optimal reduced measure Q based
on a given subset of scenarios of P as well as the optimal weights ofQ can be computed
explicitly, i.e., without solving a transportation problem. Furthermore, we derive two
heuristic algorithms for determining the optimal subset of scenarios of P with given
cardinality. Here, optimality always means closeness in terms of µ̂c.

In Section 4 we report on numerical experience for the reduction of a scenario tree
that represents an approximation of the electrical load process in a power management
model under uncertainty. It turns out that both algorithmic approaches for determining
recursively the scenario subset to be deleted (backward reduction) and the set of remain-
ing scenarios (forward selection), respectively, work reasonably well and efficient. The
reduced subtrees obtained by forward selection are slightly better, but their computation
requires higher CPU times. Somewhat surprisingly, a reduction of the scenario tree by
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50% of the scenarios only implies a loss of about 10% relative accuracy. Furthermore,
it is possible to determine a subtree containing less than 2% of the original number of
scenarios that still carries about 50% relative accuracy.

2. On stability results and probability metrics

Given the original probability measure P of (1) and an approximation Q we derive
quantitative estimates of the closeness of v(Q) and Sε(Q) to v(P ) and Sε(P ) in terms
of a certain probability metric. This distance of probability measures is associated to the
model (1) in a natural way. Namely, with the closed unit ball B := {x ∈ R

n : ‖x‖ ≤ 1}
in R

n, we consider the following set of probability measures and distances

Pf := {Q ∈ P(�) : −∞ <

∫
�

inf
x∈X∩ρB

f (ω, x)Q(dω) ≤

sup
x∈X∩ρB

∫
�

f (ω, x)Q(dω) < ∞ , for each ρ > 0}

df,ρ(P,Q) := sup
x∈X∩ρB

|
∫
�

f (ω, x)P (dω)−
∫
�

f (ω, x)Q(dω)|

for eachρ > 0 andP,Q ∈ Pf . Note that, for anyQ ∈ Pf , the functionx 
→ EQf (ω, x)

is lower semicontinuous (by appealing to Fatou’s lemma), proper (since |EQf (ω, x)| <
∞ for each x ∈ X) and convex on R

n. Next we give a quantitative stability result for
optimal values and (ε-approximate) solution sets.

Theorem 1. Let P ∈ Pf and S(P ) be nonempty and bounded.
Then there exist constants ρ > 0 and ε̄ > 0 such that

|v(P )− v(Q)| ≤ df,ρ(P,Q) and ∅ �= S(Q) ⊂ S(P )+	(df,ρ(P,Q))B

whenever Q ∈ Pf with df,ρ(P,Q) < ε̄, and that it holds for any ε ∈ (0, ε̄)

dl∞(Sε(P ), Sε(Q)) ≤ 2ρ

ε
df,ρ+ε(P,Q) whenever Q ∈ Pf , df,ρ+ε(P,Q) < ε.

Here 	(η) := η + ψ−1(2η), η ≥ 0, where ψ(τ) := min{EP f (ω, x) − v(P ) :
d(x, S(P )) ≥ τ }, τ ≥ 0, is the conditioning function of model (1), dl∞(C,D) :=
supx∈Rn |d(x, C) − d(x,D)| is the Pompeiu-Hausdorff distance of nonempty closed
sets C,D ⊆ R

n and d(x, C) := infy∈C ‖x − y‖ the distance of x ∈ R
n to C ⊆ R

n.

Proof. Since the function EP f (ω, ·) is lower semicontinuous, proper and convex, we
may apply Theorem 7.64 in [18]. Let ρ̄ > 0 be chosen such that S(P ) ⊂ ρ̄B and
v(P ) ≥ −ρ̄. Let ρ > ρ̄ and ε̄ be chosen such that 0 < ε̄ < min{ 1

2 (ρ − ρ̄),
1
2ψ(

1
2 (ρ − ρ̄))}. Then Theorem 7.64 in [18] says that

|v(P )− v(Q)| ≤ d̂l
+
ρ (EP f (ω, ·),EQf (ω, ·)) and

∅ �= S(Q) ⊂ S(P )+	(d̂l
+
ρ (EP f (ω, ·),EQf (ω, ·)))B

holds for any Q ∈ Pf with d̂l
+
ρ (EP f (ω, ·),EQf (ω, ·)) < ε̄.
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Here, d̂l
+
ρ denotes the auxiliary epi-distance (cf. Prop. 7.61 in [18])

d̂l
+
ρ (EP f (ω, ·),EQf (ω, ·)) = inf{η ≥ 0 : for all x ∈ ρB it holds

inf
y∈x+ηB

EQf (ω, y) ≤ max{EP f (ω, x),−ρ} + η and

inf
y∈x+ηB

EP f (ω, y) ≤ max{EQf (ω, x),−ρ} + η}.

Hence, the first part of the result is a consequence of the estimate

d̂l
+
ρ (EP f (ω, ·),EQf (ω, ·)) ≤ df,ρ(P,Q)

(cf. Example 7.62 in [18]). Noting that the function 	 is increasing, completes the first
part of the proof.
For the second part let ε ∈ (0, ε̄) and Q ∈ Pf be such that df,ρ+ε(P,Q) < ε. Then

∅ �= S(Q) ⊂ (ρ̄ +	(ε̄))B and v(Q) ≥ −(ρ̄ + ε̄).

With ρ > ρ̂ = min{ρ̄ + 	(ε̄), ρ̄ + ε̄} and ε̄ ≤ ρ − ρ̂ it follows from Theorem 7.69 in
[18] that

d̂lρ(Sε(P ), Sε(Q)) ≤ d̂l
+
ρ+ε(EP f (ω, ·),EQf (ω, ·)),

where d̂lρ is the set distance d̂lρ(C,D) := inf{η ≥ 0 : C ∩ ρB ⊂ D + ηB,D ∩ ρB ⊂
C + ηB} for nonempty subsets C and D of R

n. Using the same argument as above,
we may estimate the auxiliary epi-distance d̂l

+
ρ+ε(EP f (ω, ·),EQf (ω, ·)) from above

by df,ρ+ε(P,Q). Moreover, since the functions EP f (ω, ·) and EQf (ω, ·) are lower
semicontinuous and convex, their level sets Sε̄(P ) and Sε̄(Q) are also bounded. Hence,
we may choose the constant ρ such that

d̂lρ(Sε(P ), Sε(Q)) = dl∞(Sε(P ), Sε(Q)).

This completes the proof. ��
Theorem 1 is taken from the paper [20] which also contains more general results (e.g.
allowing for unbounded solution sets S(P )). Its proof is included for convenience of the
reader. The theorem illuminates the role of the distances df,ρ(P,Q) for some ρ > 0, as
minimal information (m.i.) probability metrics implying stability of optimal values and
(approximate) solutions to (1). Here, m.i. means that the distance df,ρ(P,Q) processes
the minimal information of problem (1) implying stability.

Clearly, the result remains valid when bounding df,ρ(P,Q) from above by another
distance d(P,Q) and reducing Pf to a subset of P(�) on which d is well defined. Such
a distance d will be called a canonical or ideal probability metric associated with (1) if
it has the form (2) with a class F of functions from � to R that contains the integrands
f (·, x) for each x ∈ X ∩ ρB and some relevant ρ > 0, as well as further functions
carrying important analytical properties of f (·, x) without becoming too large. Typical
analytical properties defining relevant classes F in the theory of probability metrics
are: Hölder or Lipschitz continuity andm-th order differentiability together with Hölder
or Lipschitz continuity of the m-th derivative (see [15]). Hence, the problem arises to
explore analytical properties of integrands f in stochastic programming.



498 J. Dupačová et al.

Typical integrands f (·, x), x ∈ X, in convex stochastic programming problems are
nondifferentiable but locally Lipschitz continuous on �. More precisely, they
often satisfy the following property: There exists a continuous symmetric function
c : � × � → R+ having the property that c(ω, ω̃) = 0 holds iff ω = ω̃, and a
nondecreasing function g : R+ → R+ \ {0} such that for each x ∈ X and ω, ω̃ ∈ �,

|f (ω, x)− f (ω̃, x)| ≤ g(‖x‖)c(ω, ω̃). (7)

From now we require that the function c is measurable and satisfies the properties
(C1) c(ω, ω̃) = 0 iff ω = ω̃;
(C2) c(ω, ω̃) = c(ω̃, ω) ∀ω, ω̃ ∈ � (symmetry);
(C3) sup{c(ω, ω̃) : ω, ω̃ ∈ B, ‖ω − ω̃‖ ≤ δ} tends to 0 as δ → 0 for each bounded

subset B of � (‖ · ‖ denoting a norm on R
s);

(C4) there exists a measurable function λ : � → R+ that is bounded on bounded
sets and has the property c(ω, ω̃) ≤ λ(ω)+ λ(ω̃) ∀ω, ω̃ ∈ �.

If c is a metric on � metrizing the norm topology, (C3) and (C4) are satisfied. If
� is compact, (C4) is satisfied. (C3) is satisfied if c is continuous. An important exam-
ple of a function c satisfying the conditions (C1)–(C4) is a function of the form (6). It
clearly satisfies (C1)–(C3) and also (C4) by considering the function λh(ω) := 2‖ω −
ω0‖ max{1, h(‖ω−ω0‖)}. A typical choice for ω0 is ω0 = EPω. If c : �×� → R+ is
continuous and satisfies (C1)–(C4), the following duality result is valid for all probability
measures P,Q ∈ Pc(�) := {Q ∈ P(�) :

∫
�

λ(ω)Q(dω) < ∞} (see Sect. 5.3 in [15]).

ζc(P,Q) = ◦
µc (P,Q) = inf{

∫

�×�
c(ω, ω̃)η(d(ω, ω̃)) : η finite measure on �×�,

η(B ×�)− η(�× B) = P(B)−Q(B) for each B ∈ B}.
◦
µc is called Kantorovich-Rubinstein or Wasserstein functional (cf. [15]). It holds

◦
µc

(P,Q) ≤ µ̂c(P,Q) for all P,Q ∈ Pc(�) and equality is valid if and only if c is a
metric (Theorem 6.1.1 in [15]).

In the special case h(r) = rp−1 for r ∈ R+ and ω0 = 0 in (6) we use the notation

cp, ζp = ◦
µp, µ̂p and Pp(�) for the corresponding function of the form (6), the poly-

nomial Fortet-Mourier metric, Kantorovich functional and set of probability measures,

respectively. In this case, both functionals
◦
µp and µ̂p generate the same topology on

Pp(�). The corresponding convergence is equivalent to weak convergence and conver-
gence of p-th order moments. This fact and further relations between both functionals
can be found in Sect. 6.2 of [15]. In particular, for each 1 ≤ p < ∞ the quantitative
estimate

|
∫

�

‖ω‖p(P −Q)(dω)| ≤ p
◦
µp (P,Q)

is valid. ζ1 = ◦
µ1= µ̂1 is also called Kantorovich or L1-Wasserstein metric.
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Condition (7) motivates to consider the class (3) and the metric ζc on the set Pc(�)
as a canonical probability metric in convex stochastic programming, since it holds
(g(ρ))−1f (·, x) ∈ Fc for each x ∈ X ∩ ρB and, hence,

df,ρ(P,Q) ≤ g(ρ)ζc(P,Q) ≤ g(ρ)µ̂c(P,Q).

Remark 1. (Choice of c for multistage stochastic programs)
It is shown in [16] that linear two-stage stochastic programs with fixed recourse enjoy
quantitative stability properties with respect to the Fortet-Mourier metric ζ2 (i.e., the cor-
responding integrand f satisfies condition (7) when setting c = c2 where c2(ω, ω̃) :=
‖ω − ω̃‖ max{1, ‖ω‖, ‖ω̃‖},∀ω, ω̃ ∈ �). This result is extended in [20] to the case
of linear multi-stage stochastic programming models with fixed recourse in all stages
under additional assumptions on the underlying discrete-time stochastic process. The
corresponding result asserts quantitative stability with respect to the metric ζK where
K denotes the number of stages of the model. The result also says that such models are
even quantitatively stable with respect to ζ1 if only right-hand sides are random. Hence,
polynomial Fortet-Mourier metrics serve as canonical distances for multistage models.

Let us now consider a stochastic program (1), and assume that the integrand f sat-
isfies the condition (7) for some function c having the properties (C1)–(C4) and that
the original probability measure belongs to Pc(�). If the solution set S(P ) of (1) is
nonempty and bounded, Theorem 1 applies and we may conclude Lipschitz stability
properties of the optimal value v and the ε-approximate solution set Sε at P with respect

to the Fortet-Mourier metric ζc = ◦
µc.

This motivates to take one of the functionals
◦
µc and µ̂c as basis for approximating

the original measure P . Let µc denote any of the functionals
◦
µc and µ̂c. For instance,

the principle of optimal scenario generation or selection for (1) may be formulated
in the following way: Determine a discrete probability measureQ∗ having a prescribed
number M of scenarios in � such that

µc(P,Q
∗) = min{µc(P,

M∑
j=1

qj δωj ) :
M∑
j=1

qj = 1, qj ≥ 0, ωj ∈ �,∀j}. (8)

Further constraints can be incorporated into (8), e.g., implying that the scenarios exhibit
a certain prescribed tree structure.

Similarly, the principle of optimal scenario reduction of a given discrete approxima-
tionQ = ∑M

j=1 qj δωj to P may be written as: Determine an index set J∗ ⊂ {1, . . . ,M}
of given cardinality #J∗ = k and weights q∗

j for j �∈ J∗ which are a solution of

min{µc(P,
M∑
j=1
j �∈J

qj δωj ) : J ⊂ {1, . . . ,M}, #J = k,
∑
j �∈J

qj = 1, qj ≥ 0}. (9)

We note that problem (8) represents a nondifferentiable nonconvex program that is large
scale in many practical situations. Its algorithmic solution appears to be hopeless for
general measures P , supports �, functions c and “large” numbers M of scenarios. An
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attempt for solving (8) is made in [14] in case of c = c1 and� = R
s , where the scenar-

ios {ωj : j = 1, . . . ,M} are in addition tree-structured. The author of [14] develops a
deterministic iteration scheme in case P is completely known and a stochastic approx-
imation method based on empirical approximations of P . So far numerical experience
is available for low dimensional test problems.

When assuming thatP is discrete with finite support or replaced by a good discrete ap-

proximation, the situation becomes quite different. Then the functionalµc(P,
M∑
j=1
j �∈J

qj δωj )

is the optimal value of a (large scale) linear program with weights qj and scenarios ωj
entering right-hand sides of linear constraints and the cost function, respectively. When
looking at problem (9) and using µc := µ̂c, the situation becomes quite comfortable, as
will be shown in the next section.

3. Scenario reduction

Assume that the original probability distribution P is discrete and carried by finitely
many scenarios ωi ∈ � with weights pi > 0, i = 1, . . . , N , and

∑N
i=1 pi = 1, i.e.,

P = ∑N
i=1 piδωi . Let J ⊂ {1, . . . , N} and consider the probability measure Q having

scenarios ωj with probabilities qj , j ∈ {1, . . . , N} \ J , i.e., compared to P the measure
Q = ∑

j �∈J qj δωj is reduced by deleting all scenarios ωj , j ∈ J and by assigning new
probabilistic weights qj to each scenario ωj , j �∈ J . The optimal reduction concept
described in Section 2 (see (9)) advices to consider the functional

D(J ; q) := µ̂c(

N∑
i=1

piδωi ,
∑
j �∈J

qj δωj ), (10)

where the function c is chosen such that the underlying stochastic program behaves
stable with respect to the Fortet-Mourier metric ζc and, hence, with respect to the Kan-
torovich functional µ̂c. We assume throughout this section that c satisfies (C1)–(C4). The
reduction concept (9) says that the index set J is selected such that the distanceD(J ; q)
of the original and the reduced measure is optimal subject to all index sets with given
cardinality. We distinguish two cases: optimal or prescribed weights qj , j �∈ J . Our first
result provides an explicit representation of D(J ; q) in case of optimal weights q.

Theorem 2. (optimal weights)
Given J ⊂ {1, . . . , N} we have

DJ = min{D(J ; q) : qj ≥ 0,
∑
j �∈J

qj = 1} =
∑
i∈J

pi min
j �∈J

c(ωi, ωj ). (11)

Moreover, the minimum is attained at q̄j = pj + ∑
i∈Jj

pi, for each j �∈ J, where

Jj := {i ∈ J : j = j (i)} and j (i) ∈ arg min
j �∈J

c(ωi, ωj ) for each i ∈ J (optimal

redistribution rule).

Proof. We set cij := c(ωi, ωj ) for i, j ∈ I := {1, . . . , N} and make use of the primal
as well as the dual representation of D(J ; q) for given J , i.e.,
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D(J ; q) = min{
∑
i,j

cij ηij : ηij ≥ 0,
∑
j �∈J

ηij = pi, i ∈ I,
N∑
i=1

ηij = qj , j �∈ J }

= max{
N∑
i=1

piui +
∑
j �∈J

qj vj : ui + vj ≤ cij , i ∈ I, j �∈ J }.

First, we show that the expression
∑
j∈J

pj min
i �∈J

cij provides a lower bound ofD(J ; q) for

any feasible q. We set ui := min
k �∈J

cik for each i ∈ I and vj := 0 for each j �∈ J . We show

that this choice of ui and vj is feasible for the dual representation of D(J ; q). Noting
that ui = 0 for any i �∈ J we obtain ui + vj = ui ≤ cij for all i ∈ J and j �∈ J , and
ui + vj = 0 ≤ cij for all i, j �∈ J . Hence, it holds

N∑
i=1

piui +
∑
j �∈J

qj vj =
∑
i∈J

pi min
k �∈J

cik ≤ D(J ; q) for any feasible q.

Next, we define elements η̄ij :=


pi, i ∈ Jj ,
pi, i = j �∈ J,
0, otherwise,

for each i ∈ I and j �∈ J ,

and set q̄j :=
N∑
i=1

η̄ij = pj + ∑
i∈Jj

pi for each j �∈ J . We obtain that the η̄ij are feasible

for the primal representation of D(J ; q̄). Hence, it holds

D(J ; q̄) ≤
∑
i,j

cij η̄ij =
∑
i∈J

pi min
j �∈J

cij .

We conclude that q̄ is optimal and that D(J ; q̄) = ∑
i∈J

pi min
j �∈J

cij . ��

The theorem provides an explicit formula for the optimal weights when the index set
J of deleted scenarios is given. Its interpretation is that the new probability of a kept
scenario is equal to the sum of its former probability and of all probabilities of deleted
scenarios that are closest to it with respect to c.

When fixing the redistribution of the deleted weight pJ = ∑
i∈J pi of P by a rule

of the form
qj = pj + λjpJ for each j �∈ J, (12)

where the redistribution weights λj ≥ 0, j �∈ J , with
∑
j �∈J λj = 1, are given, the

following upper bound for D(J ; q) is valid.

Theorem 3. (prescribed redistribution)
When the index set J ⊂ {1, . . . , N} is given and q is redistributed by (12), we have

D(J ; q) ≤
∑
i∈J

pi
∑
j �∈J

λj c(ωi, ωj ).

Moreover, equality holds if #J = 1 and c satisfies the triangle inequality.
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Proof. We use the primal representation of D(J ; q) (see the preceding proof) and set

ηij :=


piλj , i ∈ J, j �∈ J,
pi, i = j �∈ J,
0, otherwise.

Then we have
∑
j �∈J

ηij = pi for i = 1, . . . , N , and
N∑
i=1

ηij = pj + λjpJ = qj for j �∈ J .

Hence, we obtain with cij := c(ωi, ωj )

D(J ; q) ≤
∑
i,j

cij ηij =
∑
i∈J

pi
∑
j �∈J

λj cij .

Finally, let J = {l} and assume that c satisfies the triangle inequality. We set ui =
−cil = −vi, i = 1, . . . , N , and note that ui + vj = cjl − cil ≤ cij holds for all
i, j ∈ {1, . . . , N}, j �= l. Hence, we obtain from the dual representation ofD(J ; q) that

D(J ; q) ≥
N∑
i=1

(qi − pi)cil = pl

N∑
i=1
i �=l

λicil .

��
Simple examples show that equality is lost in Theorem 3 in general if #J ≥ 2 and also
if #J = 1 and c does not satisfy the triangle inequality. We stress here that the latter
property of c is not needed for the optimal redistribution in Theorem 2.

Next we discuss the optimal choice of an index set J for scenario reduction with
optimal weights and fixed cardinality #J , i.e., the solution of the problem

min{DJ =
∑
i∈J

pi min
j �∈J

c(ωi, ωj ) : J ⊂ {1, ..., N}, #J = k} (13)

for given k ∈ N, 1 ≤ k < N . First we consider the extremal cases of problem (13):
deleting a single scenario and all but one scenarios.

Example 1. (single scenario deletion)
In case #J = 1 the optimal deletion problem (13) takes the form

min
l∈{1,...,N}

pl min
j �=l

c(ωl, ωj ). (14)

If the minimum is attained at l∗ ∈ {1, ..., N}, i.e., the scenario ωl∗ is deleted, the optimal
redistribution rule is q̄l = pl for each l �∈ {l∗, j (l∗)} and q̄j (l∗) = pj(l∗) + pl∗ , where
j (l∗) ∈ arg minj �=l∗ c(ωl∗ , ωj ). Of course, the optimal deletion of a single scenario
may be repeated recursively until a prescribed number k of scenarios is deleted (as in
Algorithm 1).

Example 2. (keeping only one scenario)
In case #J = N − 1 the problem (13) has the form

min
u∈{1,...,N}

N∑
i=1

pic(ωi, ωu). (15)
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If the minimum is attained at u∗ ∈ {1, ..., N}, the scenario ωu∗ is kept and the optimal
redistribution rule provides q̄u∗ = pu∗ + ∑

i �=u∗ pi = 1.

Since (13) represents a special combinatorial optimization problem, efficient solution
algorithms like for the cases k = 1 and k = N − 1 are hardly available in general.
However, the next result provides lower and upper bounds for the optimal value of (13)
that correspond to recursive extensions of the strategies (14) for #J = 1 and (15) for
#J = N − 1. Moreover, as shown in [12], the lower bound is attained under additional
assumptions.

Theorem 4. (bounds)

k∑
i=1

pli min
j �=li

c(ωli , ωj ) ≤ min{DJ : J ⊂ {1, ..., N}, #J = k} ≤
∑
i∈Ju

pi min
j �∈Ju

c(ωi, ωj )

where Ju := {1, . . . , N} \ {u1, . . . , uN−k} and the indices li and uj are chosen recur-
sively such that they are solutions of the minimization problems

min
l∈{1,...,N}\{l1,...,li−1}

pl min
j �=l

c(ωl, ωj ), i = 1, . . . , k, and (16)

min
u�∈{u1,...,uj−1}

N∑
i=1

i �∈{u1,...,uj−1,u}

pi min
l∈{u1,...,uj−1,u}

c(ωl, ωi), j = 1, . . . , N − k, (17)

respectively. Moreover, the index set {l1, . . . , lk} is a solution of (13) if for each i =
1, . . . , k the set arg minj �=li c(ωli , ωj ) \ {l1, . . . , li−1, li+1, . . . , lk} is nonempty.

Proof. For any index set J = {j1, . . . , jk} ⊂ {1, . . . , N} with #J = k we have from
Theorem 2 that

DJ =
k∑
i=1

pji min
j �∈{j1,...,jk}

c(ωji , ωj ) ≥
k∑
i=1

pji min
j �=ji

c(ωji , ωj )

≥
k∑
i=1

pli min
j �=li

c(ωli , ωj )

where the last estimate is a consequence of the definition of the numbers li , i = 1, . . . , k.
If arg minj �=li c(ωli , ωj ) \ {l1, . . . , li−1, li+1, . . . , lk} �= ∅ holds for each i = 1, . . . , k,
we obtain

min
j �=li

c(ωli , ωj ) = min
j �∈{l1,...,lk}

c(ωli , ωj )

for each i = 1, . . . , k. Hence, the above estimate may be continued to

DJ ≥
k∑
i=1

pli min
j �∈{l1,...,lk}

c(ωli , ωj ) = D{l1,...,lk}.
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Hence, the index set {l1, . . . , lk} is a solution of (13). Finally, the obvious estimate

min{DJ : J ⊂ {1, ..., N}, #J = k} ≤ DJu =
∑
i∈Ju

pi min
j �∈Ju

c(ωi, ωj )

completes the proof. ��
Theorem 4 suggests two different heuristic algorithms for the optimal reduction of

the N original scenarios to N − k scenarios. The first one determines the k scenarios
that have to be deleted by exploiting the lower bound technique (16). It will be called
backward reduction, while the second one is called forward selection, because it selects
the remaining N − k scenarios by using the upper bound technique (17).

Algorithm 1. (backward reduction)
In the first step, an index k1 with 1 ≤ k1 ≤ k is determined such that J1 = {l(1)1 , . . . , l

(1)
k1

}
is a solution of (13) for k = k1 by using the strategy described in Theorem 4. Next, the
optimal redistribution rule of Theorem 2 is used and the probability measure P1 is con-
sidered where the scenarios indexed by J1 are deleted. If k1 < k, then the measure
P1 is reduced in a second step by deleting all scenarios in some index set J2 with
1 ≤ k2 = #J2 ≤ k − k1 that is obtained in the same way using Theorem 4. This pro-
cedure is continued until in step r we have

∑r
i=1 ki = k and J = ∪ri=1Ji . Finally, the

optimal redistribution rule is used again for the index set J .

A particular variant of Algorithm 1 consists in the case ki = 1 for i = 1, . . . , k
(backward reduction of single scenarios). This variant (without the final optimal redis-
tribution) is already announced in [8, 11].

Algorithm 2. (forward selection)
The indices uj , j = 1, . . . , N − k, are determined recursively as in (17). Finally, set
J := {1, . . . , N} \ {u1, . . . , uN−k} and redistribute for the index set J according to
Theorem 2.

Both algorithms provide an approximate solution of problem (13) and hence lower
and upper bounds for its optimal value. The performance of both algorithms is evaluated
for a real-life test example in Section 4.

According to Theorem 3 the optimal choice of an index set J for scenario deletion
with prescribed redistribution and fixed cardinality #J may be formulated as follows:

min{
∑
i∈J

pi
∑
j �∈J

λj c(ωi, ωj ) : J ⊂ {1, ..., N}, #J = k} (18)

for given k ∈ N, 1 ≤ k < N and weights λj , j �∈ J . Let us consider the particular case
k = 1.

Example 3. (deleting a single scenario with prescribed redistribution)
In case #J = 1 problem (18) takes the form

min
i∈{1,...,N}

pi
∑
j �=i

λj c(ωi, ωj ).

When P is a uniform discrete distribution, i.e., pi = 1
N

for each i, it might be desirable
that the reduced measureQ has uniform weights as well, i.e., qj = 1

N−1 for j �∈ J . This

corresponds to the choice λj = 1
N−1 for j �∈ J .
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Although prescribing the weights for the reduced distribution might sometimes be
useful, our theoretical results tend to preferring the optimal redistribution rule. For the
latter rule no additional assumptions on c are needed, setwise reduction algorithms are
available and Kantorovich functionals can be evaluated without solving transportation
problems.

4. Numerical results for electrical load scenario trees

The optimization of electric power production in hydro-thermal generation systems for
time horizons of one week or longer is inherently a stochastic decision problem. Indeed,
forecasts on electrical load, flows to hydro reservoirs, and on fuel and electricity prices
cannot be exact. For this reason, the weekly cost-optimal production of electric power in
a hydro-thermal generation system is modeled in [11, 13] as a multistage (mixed-inte-
ger) stochastic program. The optimal scheduling decisions for all power units minimize
the expected production costs subject to the operational requirements of the generation
system. The scheduling decisions for thermal units are: which units to commit in each
period, and at what generating capacity. The decision variables for pumped storage hy-
dro units are the generation and pumping levels for each period. Power contracts for
delivery and purchase are regarded as special thermal units. The basic system require-
ment is to meet the electrical load and the spinning reserve capacity. Further operating
constraints are capacity limits for thermal and hydro units, minimum up/down-time re-
quirements for thermal units and operating ranges and dynamics of hydro storage units.
The scheduling horizon of one week is discretized into hourly intervals. Accordingly,
the stochastic data process is approximated by a discrete-time stochastic process. The
numerical tests of the stochastic model are performed in [11, 13] for a real-life hydro-
thermal generation system consisting of 25 (coal-fired or gas-burning) thermal units
and 7 pumped hydro units, and for stochastic electrical load (i.e., the remaining data
were deterministic). The stochastic load process is approximated by a scenario tree.
The resulting problem to be solved is a large-scale mixed-integer linear program with a
special sparsity structure. The mixed-integer model is large even for a relatively small
number of nodes in the tree. The single scenario model (i.e., 168 nodes) already contains
4200 binary and 6652 continous variables, 13441 constraints and 19657 nonzeros in the
constraint matrix.

In [11], an initial load scenario tree was constructed according to the following
steps:

1. Calibration of a time series model for the load, generation of a large number of load
scenarios.

2. Construction of a (dense) initial load scenario tree using the sample means and
standard deviations of the simulated load scenarios.

The time series model for the load dt in period t was calibrated from a historical load
profile of one year (cf. Figure 1). The time series model for the load process {dt }t∈Z is
the SARIMA(7, 0, 9)× (0, 1, 0)168 model (cf. [11])

dt = φ̂1dt−1 + . . .+ φ̂7dt−7 + dt−168 − φ̂1dt−169 − . . .− φ̂7dt−175

+ Zt + θ̂1Zt−1 + . . .+ θ̂9Zt−9, t ∈ Z. (19)
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Fig. 1. Time plot of the load profile for one year

The estimated model coefficients are

(φ̂1, . . . , φ̂7) = (2.79,−4.35, 5.16,−4.88, 3.67,−1.92, 0.50),

(θ̂1, . . . , θ̂9) = (−1.27, 1.53,−1.35, 0.88,−0.31,−0.06, 0.18, 0.11, 0.07)

and Zt , t ∈ Z, are independent, normally distributed random variables with mean 0 and
standard deviation 108.3.

For the generation system under consideration, the load forecast is reliable for the
time span t = 1, . . . , 24. A large numberM of simulated load scenarios (sample paths)

d̃
� = (d̃

�

t )
168
t=25, � = 1, . . . ,M , is generated from the SARIMA equation (19) using M

i.i.d. realizations of Zt , t = 16, . . . , 168, and starting values dt , t = −150, . . . , 24. The
empirical means d̄t and standard deviations σ̄t of the simulated load scenarios form the
basis of the scenario tree building scheme. Since there exists a fixed daily time when
already observable meteorological and load data provide the opportunity to re-adjust
forecasts, tk = 24k, k = 1, . . . , 6 is a reasonable choice for the branching points. A
balanced ternary tree with branching points tk allows to distinguish the events with
the verbal description “low load”, “medium load” and “high load” in the time period
t = tk + 1, . . . , tk+1, k = 1, . . . , 6. (For convenience of notation set t7 := 168.) Thus,
the tree consists of N := 36 = 729 scenarios di = (dit )

168
t=1, i = 1, . . . , N .

The scenarios of the initial load scenario tree and their probabilities can be assigned
in various ways. The predicted load for the (first stage) planning period t = 1, . . . , 24
yields the first 24 components for all scenarios. To each scenario i, i = 1, . . . , N we as-
sign a vector ωi = (ωik)

7
k=2 with ωik ∈ {−1, 0, 1} for k = 2, . . . , 7. It provides a unique

description of the path in the ternary tree that corresponds to scenario i. In particular, set
ωik := −1 if the values of scenario i for t = tk+1, . . . , tk+1 are realizations of the event
with the verbal description “low load” for this time span. Accordingly, we set ωik := 0
(ωik := 1) to describe the event “medium load” (“high load”) for t = tk + 1, . . . , tk+1.
Then the value of scenario i at t is defined as

dit := d̄t +
k−1∑
j=1

ωij

√
3σ̄tj+1

2(8−j)/2 + ωik

√
3σ̄tk+1

2(8−k)/2
t − tk

tk+1 − tk
(20)

for t = tk + 1, . . . , tk+1, k = 1, . . . , 6. We let all scenarios have equal probabilities
1
N

= 3−6. (Alternative scenario probabilities might be computed from histograms of the
simulated scenarios.) Figures 2 and 3 show the ternary load scenario tree {dit }168

t=1 and
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Fig. 2. Ternary load scenario tree for one week
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Fig. 3. Mean shifted ternary load scenario tree for one week

the corresponding mean shifted tree {dit − d̄t }168
t=1, respectively, where dit is generated

by the scheme (20), with N = 36 = 729 scenarios and branching points tk = 24k,
k = 1, . . . , 6.

This tree is used as (dense) initial scenario tree in order to test the performance of
the reduction algorithms of Section 3. The test runs were performed on an HP 9000
(780/J280) Compute-Server with 180 MHz frequency and 768 MByte main memory
under HP-UX 10.20. We compared the three algorithms backward reduction of scenario
sets (Algorithm 1), backward reduction of single scenarios (variant of Algorithm 1) and
forward selection of scenarios (Algorithm 2), where all of them were implemented inC.
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For computing the distances of the initial probability measure P = 1
N

∑N
i=1 δdi (i.e.

given by the initial tree with identical scanario probabilities) and the reduced probability
measure Q (reduced tree with optimal redistribution) we used the Kantorovich metric
ζ1 = µ̂1 and the explicit formula of Theorem 2. This choice of the metric is justified by
Remark 1 when considering the stochastic power management model with fixed binary
decisions and with electrical load appearing as stochastic right-hand side.

Table 1 displays computing times (in seconds) and (absolute and relative) ζ1-dis-
tances of initial and reduced scenario trees for different numbers of scenarios. Here, the
relative ζ1-distance of P and Q is defined as the quotient

ζ1(P,Q)

ζ1(P, δdi∗ )

where i∗ ∈ {1, . . . , N} denotes the first index obtained by forward selection (see also
Example 2) and δdi∗ is the corresponding Dirac measure. Hence, the distance ζ1(P, δdi∗ )
corresponds to the best possible ζ1-distance of P to one of its scenarios endowed with
unit mass. Thus, the relative ζ1-distance reflects the quality (in percent) of the reduced
scenario tree relative to the best possible deterministic approximation to P . The test runs
showed that the “distances” c1(d

i, dj ) = ‖di −dj‖ (‖ · ‖ denoting the Euclidean norm)
for each pair (di, dj ) of scenarios of the initial load tree are computed within 6s CPU
time. These “distances” are needed in all algorithms.

Table 1 shows that all algorithms work reasonably well, and that backward reduc-
tion algorithms are (much) faster than forward selection. Furthermore, besides the very
simple algorithmic structure, backward reduction of single scenarios is also competitive

Table 1. Results of load scenario tree reduction

Num- Backward reduction of Forward selection of
ber of scenario sets single scenarios scenarios
scena- time ζ1-distance time ζ1-distance time ζ1-distance

rios [s] abs. rel.[%] [s] abs. rel.[%] [s] abs. rel.[%]

600 8 66.63 3.37 8 66.63 3.37 8149 66.64 3.36
500 8 118.34 5.99 8 118.34 5.99 7637 118.32 5.99
400 8 176.24 8.92 8 176.25 8.92 6146 170.48 8.63
300 8 260.66 13.19 8 262.17 13.3 4280 235.76 11.93

200 8 348.77 17.65 8 357.19 18.08 2319 331.34 16.76
100 8 502.90 25.45 8 505.70 25.59 721 483.94 24.49
81 8 546.74 27.67 8 559.89 28.33 498 530.04 26.84
50 8 645.07 32.64 8 664.34 33.62 212 628.31 31.80
27 8 759.88 38.45 8 782.79 39.61 73 749.09 37.91

10 8 989.12 50.05 8 1019.73 51.60 19 951.02 48.13
9 8 1019.90 51.61 8 1049.02 53.09 17 970.23 49.10
8 8 1045.78 52.92 8 1071.23 54.21 15 1010.92 51.16
7 8 1073.14 54.31 8 1122.04 56.78 13 1051.64 53.22
6 8 1107.82 56.06 8 1147.86 58.09 12 1097.48 55.54

5 8 1153.44 58.37 8 1189.47 60.19 11 1143.42 57.86
4 8 1218.29 61.65 8 1290.15 65.29 10 1201.11 60.78
3 8 1303.74 65.98 8 1360.97 68.87 9 1259.25 63.73
2 8 1506.35 76.23 8 1666.22 84.20 9 1618.16 81.89
1 8 1976.07 100.0 8 2027.32 102.59 8 1976.07 100.0
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Fig. 4. Backward deletion of scenario sets: Reduced trees with 10 and 50 scenarios
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Fig. 5. Backward deletion of single scenarios: Reduced trees with 10 and 50 scenarios
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Fig. 6. Forward selection of scenarios: Reduced trees with 10 and 50 scenarios

to backward reduction of scenario sets with respect to computing times and accuracy,
although backward reductions of scenario sets always yield better results. The percent-
age of 102.59% appearing in the last row of Table 1 is due to the fact that the best possible
scenario di∗ has already been deleted in an earlier iteration of the recursive algorithm.
For reduced trees with small scenario numbers ≤ 50 forward selection performs fast
and produces better trees than backward reduction. Table 1 also reflects the surprising
effect that a reduction of the scenario tree by 50% of the original scenarios only implies
a loss of about 10% relative accuracy. Furthermore, it is possible to determine a subtree
containing less than 2% of the original number of scenarios that still carries about 50%
relative accuracy. Figures 4, 5 and 6 show (mean) shifted reduced load trees with 10 and
50 scenarios that are obtained by all three algorithms. The figures display the scenarios
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within the extremal paths of the initial scenario tree indicated by dashed lines and with
grey levels proportional to scenario probabilities.

The different performance of the backward reduction and forward selection with re-
spect to running times is due to the following algorithmic detail. The inner minima and
optimal indices in (14) and (16) are efficiently evaluated by the preprocessing step that
sorts the “distances” c(·, ·) from each scenario to the remaining scenarios and stores the
corresponding permutation vectors of scenario indices (requiring 1s CPU-time). After
selecting the next scenario which enters the index set J the optimal indices of the inner
minimization are updated by shifting pointers along the permutation vectors. Then the
outer minimization for selecting the next scenario for J according to (14) and (16) can be
easily performed. This explains the identical running times for both backward reduction
algorithm for different reduced trees. The algorithm for fast evaluating the inner minima
was adapted for the forward selection methods. However, the computing times indicate
that the adaptation did not work as well since updating the pointers to the permutation
vectors is more costly.
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