
QUANTITATIVE STABILITY FORSCENARIO-BASED STOCHASTIC PROGRAMSJitka Dupa�cov�aDepartment of Probability and Mathematical Statistics, Charles UniversitySokolovsk�a 83, 186 75 Prague, Czech Republice-mail: dupacova@karlin.m�.cuni.czWerner R�omischInstitute of Mathematics, Humboldt University, Unter den Linden 6, D-10099 Berlin, Germanye-mail: romisch@mathematik.hu-berlin.deAbstractGeneral quantitative stability results for stochastic pro-grams are formulated in terms of probability metrics, spec-i�ed to scenario-based stochastic programs and applied toa bond portfolio management problem.AMS classi�cation: 90C15, 90C31, 60K30, 90C08Key words : Probability metrics, stochastic programs, sta-bility wrt. probability measure, random recourse, discretedistributions, application1 INTRODUCTIONStability and sensitivity studies for stochastic programshave been motivated by an incomplete information aboutthe probability measure through which the stochastic pro-gram is formulated and also by the e�orts in designingvarious discretization and approximation schemes neededin connection with the development and evaluation of al-gorithms. The solved real life stochastic programs arevery complex; in numerical procedures, one uses their spe-ci�c structure and is interested in robust solutions: Smallchanges in the input (in our case mainly perturbationsof the probability measure) are supposed to cause onlysmall changes of the output (the optimal value, the set ofoptimal solutions). Evidently, such requirements can becast under quantitative stability analysis, see for instance[1], [3] and references therein, [6], [10], [11] and [15]:For a general stochastic program with a �xed con-straint setminimize EP f(x; !) on a set X � Rn (1)where P is a �xed probability measure on (
;B) belong-ing to a class P , with EP the corresponding expecta-tion operator, X � Rn a given nonempty closed set and

f : X � 
! R1 a given function, denote'(P ) = infx2X EP f(x; !) (2)the optimal value and (P ) = argminx2X EP f(x; !) fx 2 Xjf(x; P ) = '(P )g (3)the solution set. To adapt the general quantitative sta-bility approaches means to select a metric distance d ofprobability measures which is suitable from the point ofview of the structure of the considered stochastic pro-gram and/or of the particular type of approximation ofprobability measure P for to get a Lipschitz (or H�older)property of the optimal valued(P; P 0) < � ) j'(P ) � '(P 0)j < K�and possibly also a Lipschitz (or H�older) property of theHausdor� distance of the corresponding solution sets withrespect to perturbations of P measured by d; naturally,the Lipschitz (or H�older) constants depend on the chosenmetric d.The �rst results concerning the optimal value can befound in [12]. Special assumptions are needed for to ex-tend these results to the optimal solutions. A H�older sta-bility result for solution sets of two-stage stochastic pro-grams with random right-hand side is obtained in [10]. Itis formulated in terms of Wasserstein metric on all prob-ability measures having �nite �rst moments (and appear-ing as metric �1 in Section 2). The result is essentiallybased on a strong convexity property of the expected re-course function which is now well understood, cf. [14].Later it has been clari�ed in [15] and [11] that second or-der growth conditions for the objective function aroundthe solution set lead to (upper) Lipschitzian stability re-sults for two-stage models. Unfortunately, such growth



conditions are only available in special situations (cf. alsoSection 2). Therefore it is expedient to investigate alsoquantitative stability for the sets of "-optimal solutions "(P ) = "� argminx2X EP f(x; !)= fx 2 XjEP f(x; !) � '(P ) + "g (4)which hold true under more general circumstances (cf.[2]), an idea suggested in [13].For the purposes of an algorithmic solution, the pre-vailing approximation technique is discretization of theinitial probability measure: It is replaced by a discreteprobability measure concentrated in a �nite numbers ofatoms, called scenarios. To design an approximation whichis representative enough and such that the obtained so-lution enjoys plausible robustness properties is of a greatimportance. Quantitative stability results for these scena-rio-based programs may help to quantify the desirable ro-bustness properties also in rather complicated instancesof stochastic programs with random recourse.The success and applicability of the quantitative sta-bility results depend essentially on an appropriate choiceof the probability metric used to measure the perturba-tions in the model input.Example. Consider the well known newsboy problem:The newsboy sells newspapers for the cost c each. Be-fore he starts selling, he has to buy the daily supply atthe cost b a paper, c > b > 0: The demand is randomand the unsold newspapers are returned without refundat the end of the day. How many newspapers should hebuy?Assume that the demand is random with a known dis-crete distribution P concentrated at S points !1; : : : ; !Sof a closed interval [D1; D2]; D1 > 0 with probabilitiesps > 0; s = 1; : : : ; S;Ps ps = 1. The problem isminx�0 EP f(x; !) := [(b� c)x+ cXs ps(x� !s)+]Let an additional scenario !� 2 [D1; D2] be taken intoaccount; it corresponds to the degenerated probabilitymeasure Q = �!� . The considered perturbed problemis related to a probability measure carried by the ini-tial scenarios !s; s = 1; : : : ; S and by !�. Assuming thatthe proportions between the initial probabilities ps; s =1; : : : ; S are kept we can specify this probability mea-sure as P� = (1 � �)P + �Q where � 2 (0; 1) is theprobability of !�. Evidently, the di�erence between theinitial and the perturbed objective values EP f(x; !) �EP�f(x; !) = �(EP f(x; !)�EQf(x; !)) can be non-zeroonly on the interval [D1; D2] and at each x 2 [D1; D2], itsvalue depends on the probability � of the additional sce-nario and on the di�erence of the two objective functions

EP f(x; !); EQf(x; !) = f(x; !�). It is easy to boundthe di�erences of the values of the random objectivesf(x; !) := (b � c)x + c(x � !)+ for two di�erent real-izations:jf(x; !)�f(x; !0)j = cj(x�!)+�(x�!0)+j � cj!�!0j 8x(5)so that the di�erence of the two considered objective func-tionsjEP f(x; !)�EQf(x; !)j = cjXs ps(x�!s)+� (x�!�)+j� cXs psj!s � !�j (6)The di�erence between the function values dependsobviously on the position of the additional scenario withrespect to the initial ones. Let us have a look how is thisfact reected by common distances of the one-dimensionalprobability measures.Let F;G denote the distribution functions associatedwith P;Q. The Kolmogorov (or uniform metric)dK(P;Q) := supt2R jF (t)�G(t)jequalsmax[ sXj=1 pj ; 1� sXj=1 pj ] if !� 2 (!s; !s+1) for some sand equals 1 otherwise.Contrary to our expectations and the above resultsthe Kolmogorov distance does not distinguish the magni-tude of the (positive) distance of the additional scenariofrom the convex hull of the initial ones! The least inu-ential additional scenario !� 2 (!1; !S) should minimizethe maximal value of [Psj=1 pj ; 1�Psj=1 pj ], a conditionwhich is ful�lled for median ~! of the distribution P .An important class of probability metrics in our con-text, are the Fortet-Mourier metrics �p; p � 1; which arede�ned in Section 2. Here we use the explicit formulaswhich are available for �p in the one-dimensional case.With the notation from above, it holds that (cf. Chapter5 in [7])�p(P;Q) = Z +1�1 maxf1; jtjp�1gjF (t)�G(t)jdtThe metric �1 forms the L1-counterpart of the Kolmogo-rov metrics and is called (L1-) Wasserstein or Kantorovichmetric. Similarly as for the Kolmogorov metric we have�1(P; P�) = ��1(P;Q) and�1(P;Q) = SXj=1 pj j!j � !�j



Notice that the distance between the additional scenario!� and all original ones is taken into account and that theleast inuential additional scenario coincides again withthe median ~! of P: For !� 2 [D1; D2],Xj pj j!j�~!j � �1(P;Q) � max fEP! �D1; D2 �EP!g :The next section summarizes the general quantita-tive stability results and provides their speci�cation toscenario-based programs. The last section is devoted toan application to a bond portfolio management problem.2 QUANTITATIVE STABILITYRESULTSWe assume that the constraint set X is convex and closed,and that the function f : X �
 �! R1 has the propertiesthat f(�; !) is convex for each ! and f(x; �) is measurablefor each x. Then the objective functionx 7! EP f(x; !) := Z
 f(x; !)P (d!) (7)is convex on Rn for any probability measure P (on (
;B))such that (7) is �nite. Later we only consider probabilitymeasures having this property.The structure of the convex program (1) suggests toconsider a probability semimetric of the formdF(P;Q) := supfj Z
 f(!)(P (d!)�Q(d!))j : f 2 Fg(8)whereF := ff(x; �) : x 2 Xg is the class of all measurablefunctions from 
 to R1 that appear as integrands in (7).The probability distance dF(P;Q) is �nite whenever Pand Q belong to the setPF(
) := fQ : supf2F j Z
 f(!)Q(d!)j <1gof probability measures (on (
;B)) satisfying a uniformmoment condition with respect to F .Now, (1) is regarded as a convex parametric programwith parameter P belonging to the semimetric space(PF(
); dF ): The following stability result is a conse-quence of a more general perturbation theorem in [8].Theorem 1. In addition to the general assumptions, let (P ) be nonempty and bounded, P 2 PF(
) and thefunction x 7! EP f(x; !) be locally Lipschitzian on X .Then the solution set mapping  is (Berge) upper semi-continuous at P and there exist constants L > 0; � >0 such that  (Q) is nonempty and j'(P ) � '(Q)j �LdF(P;Q) whenever Q 2 PF(
) and dF (P;Q) < �:

Upper semicontinuity of  at P means that for any� > 0 there exists a � = �(�) > 0 such that wheneverQ 2 PF(
) and dF (P;Q) < �; supx2 (Q) d(x;  (P )) < �:Of course, it would be desirable to quantify the semiconti-nuity behavior of  , i.e., to derive an explicit representa-tion of the function �(�) (e.g. of the form �(�) = (�=K)kwith constants k � 1 and K > 0). To obtain such quanti-tative stability results, it is well known that growth con-ditions for the objective function EP f(�; !) near  (P )play an important role. So far growth conditions havebeen explored only for stochastic programs with linearrecourse and random right-hand sides or certain situa-tions of random technology matrices ([14], [11]). Besidesfurther conditions, the existence of a density to P be-ing positive on certain sets related to  (P ) is decisivefor growth conditions in two-stage models. Since we areinterested in models with random recourse and also inpurely atomic measures P , these results do not apply.Fortunately, the set of "-optimal solutions  "(P ) of (1)enjoys a much better stability behavior when perturbingthe probability measure P .Theorem 2. Adopt the setting of Theorem 1. Then, forany "0 > 0; there exists a constant L̂ > 0 such that foreach " 2 (0; "0) the estimatedH( "(P );  "(Q)) � (L̂=")dF(P;Q)holds whenever Q 2 PF(
) and dF(P;Q) < ":(Here dH denotes the Hausdor� distance on subsets ofRn.)The result is taken from [13]. Its proof is based onestimates for "-optimal solution sets of convex programs(cf. Theorem 7.69 of [9] or [2]) and on further propertiesof level sets. It is worth mentioning that the Lipschitzianstability result for  " at P is valid without assuming agrowth condition for EP f(�; !) and, hence, applies tomany convex stochastic programs.It is also useful to note that both theorems remainvalid true if the class F of measurable functions from(
;B) to R1 is replaced by a suitable larger class F̂ � Fleading to favorable properties of the distances dF (e.g.to nice representations or explicit formulas). For two-stage stochastic programs, classes of locally Lipschitzianfunctions with a prescribed growth of Lipschitz moduliare of particular interest. We assume in the followingthat 
 is a subset of a Euclidean space and B is the �-algebra of Borel sets relative to 
. We denote by Fp withp � 1 the class of real-valued functions f on 
 satisfyingthe Lipschitzian propertyjf(!)� f(~!)j � maxf1; k!kp�1; k~!kp�1gk! � ~!kfor all !; ~! 2 
; and by Pp(
) the class of all proba-bility measures Q on (
;B) having p-th order moments,



i.e., R
 k!kpQ(d!) < 1: Then the distance �p(P;Q) :=dFp(P;Q) is called Fortet-Mourier metric and (�p;Pp(
))forms a metric space. The metric �p enjoys a well devel-oped duality theory and convergence analysis (cf. [7]). Inparticular, the following dual representation of �p is valid:�p(P;Q) = inffZ
�
maxf1; k!kp�1; k~!kp�1gk! � ~!kR(d!; d~!)gover all Borel probability measures R on 
�
 such thatR(B�
)�R(
�B) = P (B)�Q(B)8B 2 B (cf. Chapter5 in [7]). A consequence of this result for 
 := R1 is theexplicit formula for �p that is used in Section 1.The next result is a conclusion from Theorem 2 in caseof discrete probability measures and of integrands f(x; �)that satisfy a certain Lipschitz property.Theorem 3. Adopt the setting of Theorem 2 and letP be a discrete probability measure on (
;B) having theform P =PSi=1 pi�!i : Assume that there exist constantsp � 1 and Lf > 0 such that the function (Lf )�1f(x; �)belongs to Fp for each x 2 X . Then, for any "0 > 0; thereexists a constant L > 0 such that for each " 2 (0; "0) theestimate dH( "(P );  "(Q)) �L" inf8<: SXi=1 ~SXj=1 �ijk!i � ~!jkmaxf1; k!ikp�1; k~!jkp�1g9=;(9)subject to �ij 2 [0; 1]; SXi=1 ~SXj=1 �ij = 1;and SXi=1;!i2B( ~SXj=1 �ij � pi) = ~SXj=1;~!j2B( SXi=1 �ij � qj)8B 2 Bholds whenever Q is a probability measure on (
;B) hav-ing the formQ =P ~Sj=1 qj�~!j and the property �p(P;Q) <"Lf :Pro o f: Let "0 > 0: We choose L̂ > 0 as in Theorem 2and select some " 2 (0; "0): Then Theorem 2 implies thatdH( "(P );  "(Q)) � L̂Lf" �p(P;Q)whenever �p(P;Q) < "Lf ; where we used that dF(P;Q) �Lf�p(P;Q): Due to the duality result for �p, we have that�p(P;Q) � Z
�
maxf1; k!kp�1; k~!kp�1gk!�~!kR(d!; d~!)

holds for any probability measure R on 
�
 of the formR =PSi=1P ~Sj=1 �ij�!i�~!j such that for any B 2 BR(B � 
)�R(
�B) = SXi=1 ~SXj=1 �ij(�!i(B)� �~!j (B))= P (B)�Q(B) = SXi=1 pi�!i(B)� ~SXj=1 qj�~!j (B):Taking the in�mum subject to all such �ij 2 [0; 1] andputting L := L̂Lf completes the proof. 2The theorem provides an estimate for the Hausdor�distance of "-optimal sets to (1) associated with two dis-crete probability measures in terms of the optimal value ofa certain linear program. This estimate can be exploitedto develop procedures for deleting scenarios of a given dis-crete probability measure or for studying the inuence ofcertain scenarios to changes of the problem. To discussthis in more detail, let P = PSi=1 pi�!i play the role ofa discrete approximation to a certain original probabilitymeasure. P might be obtained by a suitable statistical es-timation procedure based on a �nite (but large) sample.Hence, one might wish to reduce that large number S ofscenarios !1; : : : ; !S in order to obtain moderately sizedprograms in practical applications. Deleting the scenario!k of P could be done if the distance dH( "(P );  "(Qk))is small, where Qk = PSj=1;j 6=k qj�!j with properly cho-sen probabilities qj . Theorem 3 indicates that minimizingthe optimal value of the linear program in the right-handside of the estimate (9) (with ~S = S�1; f~!1; : : : ; ~!S�1g =f!1; : : : ; !k�1; !k+1; : : : ; !Sg) subject to all weights qj 2[0; 1];Pj qj = 1; is such an appropriate choice. A strat-egy for deleting scenarios could then be based on repeat-ing this argument successively. Finally, we study the in-uence of an additional scenario !� 2 
 by looking at theprobability measure P� = (1� �)P + �Q; where Q = �!�and � 2 (0; 1), cf. [4]. For small � > 0; Theorem 3provides the estimatedH( "(P );  "(P�)) � L" �p(P; P�) = L�" �p(P;Q)� L�" SXi=1 pik!i � !�kmaxf1; k!ikp�1; k!�kp�1g; (10)where (10) contains the explicit solution of the linear pro-gram in (9). The least inuential additional scenario !�then corresponds to the minimizer of the function in (10)subject to !� 2 
:



3 AN APPLICATIONThe main purpose of the considered bond portfolio man-agement problem is to preserve the value of a bond port-folio of a risk averse or risk neutral institutional investorover time. It has been formulated as a multiperiod two-stage scenario-based stochastic program with completerandom recourse (e.g., [5]). The main random elementis the evolution of the short interest rate over time whichis regarded as the only factor that drives the prices of theconsidered default free government bonds:Given a sequence of equilibrium future short term in-terest rates rt valid for the time interval (t; t + 1]; t =0; : : : ; T � 1; the fair price of the j-th bond at time tjust after the coupon was paid equals the total cashowfj� ; � = t+1; : : : ; T generated by this bond in subsequenttime instances discounted to t:�jt(r) = TX�=t+1 fj� ��1Yh=t (1 + rh)�1 (11)where T is greater or equal to the time to maturity.In formulation of the stochastic program one workswith a suitable discrete distribution of the T - dimensionalvector r of the short rates rt; t = 0; : : : ; T � 1, where r0(the rate valid in the �rst period) is known. The possi-ble �nitely many realizations of r are called scenarios; weshall index them as rs; s = 1; : : : ; S and assign them prob-abilities ps > 0; s = 1; : : : ; S; Ps ps = 1. Generation ofscenarios is a rather demanding estimation, callibrationand sampling procedure. The applied input distributionis thus burdened by various inherent errors and our pri-mal goal is to analyze the inuence of these errors on theobtained optimal decisions and on the optimal value ofthe portfolio.We denotej = 1; : : : ; J indices of the considered bonds and Tjthe dates of their maturities; T = maxj Tj .t = 0; : : : ; T0 the considered discretization of the plan-ning horizon;bj � 0 the initial holdings (in face value) of bond j;b0 � 0 the initial holding in riskless asset;fsjt cashow generated from bond j at time t underscenario s expressed as a fraction of its face value;�sjt and �sjt are the selling and purchasing prices ofbond j at time t for scenario s obtained from the corre-sponding fair prices (8) by adding the acrued interest Asjtand by subtracting or adding scenario independent trans-action costs and spread; the initial prices �j0 and �j0 areknown, i. e., scenario independent;xj=yj are face values of bond j purchased/sold at thebeginning of the planning period, at t = 0; xsjt=ysjt arethe corresponding values for period t under scenario s.

zj0 is the face value of bond j held in portfolio afterthe initial decisions xj ; yj have been made; zsjt are thecorresponding holdings for period t under scenario s.The �rst-stage decision variables xj ; yj ; zj0 are non-negative, yj + zj0 = bj + xj 8j; (12)y+0 +Xj �j0xj = b0 +Xj �j0yj (13)where the auxilliary nonnegative variable y+0 denotes thesurplus.Provided that an initial trading strategy determinedby feasible scenario independent �rst-stage decision vari-ables xj ; yj ; y+0 (and zj0) for all j has been accepted,the subsequent second-stage scenario dependent decisionshave to be made in an optimal way regarding the goal ofthe model, i. e., to maximize the �nal wealth subject toconstraints on conservation of holdings and rebalancingthe portfolio:maximize V sT0 :=Xj �sjT0zsjT0 + y+sT0 � �y�sT0 (14)subject tozsjt + ysjt = zsj;t�1 + xsjt 8j; 1 � t � T0; (15)Xj �sjtysjt +Xj fjtzsj;t�1 + (1� �1 + rst�1)y+st�1 + y�st =Xj �sjtxsjt + (1 + �2 + rst�1)y�st�1 + y+st ; 1 � t � T0; (16)xsjt � 0; ysjt � 0; zsj;t � 0; y�st � 0; y+st � 08j; 1 � t � T0(17)with y�s0 = 0; y+s0 = y+0 ; zsj0 = zj0 8j; the auxilliary vari-ables y+st =y�st describe the (unlimited) lending /borrow-ing possibilities for period t under scenario s and withparameters �1 � 0; �2 > 0; � � 1 �xed according to thebackground of the solved problem.With VT0(x;y; z0; y+0 ; rs) the corresponding maximalvalue of the second-stage scenario subproblem (14)-(17),the full stochastic program can be now written in theform which allows to apply the general results of Section2: The probability measure P = PSs=1 ps�rs , the vec-tor of the original decision variables x  ! [x;y; z0; y+0 ],the set of feasible solutions X is de�ned by nonnegativityconstraints on all �rst-stage variables and by constraints(12){(13), the random objective function f(x; !)  !U(VT0(x;y; z0; y+0 ; r)) with U a concave nondecreasingutility function. (The symbol  ! relates the notationused in Section 2 to that used in the application.) No-tice that set of feasible �rst-stage solutions is nonemptyand bounded and that the function VT0(�; r) is concave



in x;y; z0; y+0 for any r 2 RT : In this notation, the con-sidered stochastic program maxx2X EP f(x; !) readsmaximize SXs=1 psU(VT0(x;y; z0; y+0 ; rs)) (18)subject to nonnegativity constraints on all variables andsubject to (12){(13).The stochastic program (18) obviously �ts into thesetting of Section 2. In order to apply the quantitativestability results of Section 2 to study the behavior of (18),we introduce the class F of relevant integrands asF := fU(VT0(x;y; z0; y+0 ; �)) : x;y; z0; y+0 are feasiblegand the semimetric dF on the class PF(RT ) of probabilitymeasures as in Section 2. Moreover, let  "(P ) be the setof "-optimal solutions to (18). Then Theorem 2 appliesand we obtain the following stability result for (18).Theorem 4. For any "0 > 0; there exists a constantL̂ > 0 such that for each " 2 (0; "0) the estimatedH( "(P );  "(Q)) � L̂" dF (P;Q)holds whenever Q is another discrete probability measureon RT and dF (P;Q) < ":For the proof it remains to note that all discrete prob-ability measures having �nite support in RT belong toPF(RT ) and that the assumptions of Theorem 1 are sat-is�ed.Of course, it would be desirable to identify classes offunctions (like the class Fp in Section 2), that containF and allow dual representations for the correspondingmetrics. So far this remains an open problem.4 BIBLIOGRAPHY[1] Artstein, Z., Sensitivity with respect to the underlyinginformation in stochastic programs , JCAM 56 (1994),127{136.[2] Attouch, H. and Wets, R. J.-B., Quantitative stabilityof variational systems: III. �-approximate solutions ,Math. Progr. 61 (1993), 197{214.[3] Dupa�cov�a, J., Stability and sensitivity - analysis forstochastic programming , Annals of Oper. Res. 27(1990), 115{142.[4] Dupa�cov�a, J., Scenario-based stochastic programs: Re-sistance with respect to sample, Annals of Oper. Res.64 (1996), 21{38.[5] Dupa�cov�a, J., Stability properties of a bond portfoliomanagement problem, paper prepared for APMOD98,March 1998, Cyprus.

[6] Ka�nkov�a, V., On stability in two-stage stochastic non-linear programming , in: Asymptotic Statistics (P. Man-dl and M. Hu�skov�a, eds.), Physica Verlag, Heidelberg1994, 329{440.[7] Rachev, S. T., Probability Metrics and the Stability ofStochastic Models . Wiley, Chichester 1991.[8] Rachev, S. T. and R�omisch, W., Quantitative stabilityof stochastic programs: The approach via probabilitymetrics , manuscript, 1998.[9] Rockafellar, R. T. and Wets, R. J.-B., VariationalAnalysis . Springer, Berlin 1997.[10] R�omisch, W. and Schultz, R., Stability analysis forstochastic programs , Annals of Oper. Res. 30(1991), 241{266.[11] R�omisch, W. and Schultz, R., Lipschitz stability forstochastic programs with complete recourse, SIAM J.Optimization 6 (1996), 531{547.[12] R�omisch, W. and Walkobinger, A., Obtaining conver-gence rates for approximations in stochastic program-ming, in: Parametric Optimization and Related Top-ics , J. Guddat et al. (eds.), Akademie-Verlag, Berlin1987, 327{343.[13] R�omisch, W. andWets, R. J.-B., Asymptotics of solu-tion sets in stochastic programming , lecture presentedat the 4th World Congress of the Bernoulli Society,Vienna, Aug. 26{31, 1996.[14] Schultz, R. Strong convexity in stochastic programswith complete recourse, JCAM 56 (1994), 3{22.[15] Shapiro, A., Quantitative stability in stochastic pro-gramming , Math. Progr. 67 (1994), 99{108.Acknowledgement. The �rst author was partly sup-ported by the Grant Agency of the Czech Republic undergrants No. 201/96/0230 and 402/96/0631, the second au-thor by the German Research Foundation under grant No.Ro 1006/5-1 with the joint research held up also withinthe agreement on collaboration between the Charles Uni-versity, Prague and the Humboldt University, Berlin.


