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Multistage stochastic programs
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Let {&}1 | be a discrete-time stochastic data process defined on
some probability space (2, F, IP) and with & deterministic. The — [lmerse ]
stochastic decision x; at period t is assumed to be measurable with

respect to F; := o(&1, ..., &) (nonanticipativity). S
4« 44

Multistage stochastic optimization model:

T v € Xyt =1,...,T, A1 px1 = 1(&),)
min <K [Z(bt(&), x4) | |z is Fy — measurable,t =1,...,T,

t=1 Aoz + Apixey = (&), t=2,.,T _ Paeory |
where the sets X;, t = 1,...,T, are polyhedral cones, the vectors

Go Back I

Full Screen I
If the process {&;}]_; has a finite number of scenarios, they exhibit
a scenario tree structure. Close |

b:(-) and hy(-) depend affine linearly on &;.

Typical applications: Power production planning, revenue and Que |
portfolio management models.



Data process approximation by scenario trees

The process {&;}1 | is approximated by a process forming a scenario
tree being based on a finite set A/ C IV of nodes.

Scenario tree with 7' =15, N = 22 and 11 leaves

n = 1 root node, n_ unique predecessor of node n, path(n) =
{1,...,n_,n}, t(n):= |path(n)|, Ni(n) set of successors to n,
Nr:={n e N : N (n) = 0} set of leaves, path(n), n € Nr,
scenario with (given) probability 7", 7" := > -, ™ probability
of node n, £" realization of &;(,).
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Tree representation of the optimization model

min {Z 7" (by(n) ")

" € Xyny,n €N, Alox = hy(&Y)

— Ai(ny 02" —I— Ay 12" =y (§7),n € N| el
How to solve the optimization model ? | » ]
- Standard software (e.g., CPLEX) I

Poge s or 17|

- Decomposition methods for (very) large scale models

(Ruszczynski/Shapiro (Eds.): Stochastic Programming, Handbook, 2003) SR I

Open question: Fanl sceen |

How to model and incorporate risk into multiperiod models ?
Close I
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Risk functionals
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Let z be a real random variable on some probability space (X2, F, IP).
Assume that z = z(x) is the revenue depending on a decision x in
some stochastic optimization model. The traditional objective of

Title Page
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such models consists in maximizing the expected revenue, i.e., e ]
max IF[z(z))]. « | »
T

However, the revenue z(x) of some or many decisions x might have o
fat tails, in particular, to the left. Looking only at the expectation

of z hides any tail information. Poge 5o 17|
Examples of risk functionals: GoBack |

Upper semivariance: Fanl sceen |
sVi(z) = E[[E[2] — 2]2] = Emax{[E[z] — z,0}"] -

Quit I

Value-at-Risk:
VaRy(z) = —inf{r e R: P(z <r)>p} (pe(0,1))



Conditional Value-at-risk:

CVaR,(z) := mean of the tail distribution function F,

1 t>—=VaR,(z),
PO ¢ < —VaR,(2)
F(t) .= IP({z < t}) is the distribution function of z.

A

where F,(t) :=

1

0 /
0 /

-CVvaR -VaR

|

VaRy(z) and CVaR,(z) for a continuously distributed z



Axiomatic characterization of risk:

Let Z = L,(Q0, F, IP) for 1 <p < +oo. Amapping A: Z2 — R
is called acceptability functional if it is concave on Z and satisfies
the following two conditions for all z, z € Z:

(i) If z < Z, then A(z) < A(2) (monotonicity).

(i) For each r € IR and z € Z we have A(z +71) = A(2) +r
(translation equivariance).

An acceptability functional A is called positively homogeneous if
A(Nz) = MA(z) holds for all A > 0 and z € Z.
A is called strict if A(z) < IF[z] for each z € Z.

Given an acceptability functional A, the mapping p := — A is called
a convex risk functional. p is called a coherent risk functional if A

is positively homogeneous.

References: Artzner/Delbaen/Eber/Heath 99, Follmer/Schied 02
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Conditional risk mappings

Let G C F be o-fields and YV := L, (€2, G, IP) be the corresponding
subspace of Z.

A mapping A : Z — ) is called conditional acceptability mapping
or acceptability mapping with observable information G if it satisfies
the following conditions for all z, z € Z:

(i) AAz+ (1 —A)2) > MA(2) + (1 — N)A(Z) for all X € [0,1]

(((pointwise) concavity)
(ii) If z < Z, then A(z) < A(Z) (monotonicity).

(iii) If 2 € YV, we have A(z + 2) = A(z) + Z ((predictable) trans-
lation equivariance).

Notation: A(-,G) or Azg.

The mapping p = pr|g ;== —Az|g is called conditional convex risk
mapping.

References: Detlefsen/Scandolo, Finance Stochast. 05, Ruszczynski/Shapiro, Math. OR 06
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Multiperiod risk functionals

Let a filtration of o-fields F;, t = 1,...,7T, and (real) random
variables {z}/_; with 2, € L,(Q, F;, IP), 1 < p < +00, be given.
Then it may become necessary to measure their risk by multiperiod
functionals. We assume F; C F;.1 C F and F; = {0,Q}, i.e. 2

is deterministic.

A functional A : Z = x],L,(Q,F,P) — IR is called mul-
tiperiod acceptability functional if it is concave and satisfies the
following two conditions for all z, z € x/_,L,(Q, F;, IP):

(YIfz < Z,t=1,...,T, then A(z1,...,21) < A(Z,..., 2p)
(monotonicity),

(i) If 2, € Ly(Q,Fi1,P), then A(z1,...,2t + Z,...,21) =
E[Z] + A(z1, ..., 2r) ((predictable) translation equivariance).
Notation: A(z,...,2r;F1,...,Fr).

The mapping p := —A is called a multiperiod convex risk func-
tional.
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Dual representations and properties

Let Z* denote the topological dual of Z for p € [1,+00), i.e.,
Z* = X Ly(Q, Fi, IP) with 2+ = 1, and let

(z,2) = ) Elz =)

be the dual pairing between Z* and Z.

An acceptability functional A is called proper if A(z) < 400 for
all z € Z and its domain dom(A) .= {Z € Z: A(z) > —oco} is
nonempty. If A is proper and upper semicontinuous, its domain is
closed and convex.

The conjugate A* : Z* — IR of A is given by
A() = i {(,2) — AV}

The Fenchel-Moreau theorem of convex analysis then implies the
representation

Alz) = inf {(z,2) — A"}
if A is proper and upper semicontinuous.
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Theorem:
Let A: Z — IR be a proper multiperiod acceptability functional.
Then the representation

A(z) = inf {ZEZtZt A*(2") 2z 20, Elzf|Fi-1] =1,

zreZ*
t:2,...,T}

is valid for every z € Z if A is upper semicontinuous.

Conversely, if A can be represented in the above form for some
function A* : Z* — IR, then A is an upper semicontinuous multi-
period acceptability functional.

Moreover, A is locally Lipschitz continuous, superdifferentiable and
Hadamard directionally differentiable on int dom(.A). Its directional
derivative at z € intdom(.A) satisfies

Az, z) = Z*Eig£<2><z*,z>, Vz e Z,

0A(Z) = {7 e Z": Alz) S A(Z)+ (2", 2 — Z),Vz € Z}.

Reference: Ruszczynski/Shapiro, Math. OR 06 (to appear)
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Multiperiod polyhedral risk functionals

It is a natural idea to introduce acceptability and risk functionals
as optimal values of certain stochastic programs.

Definition:

A multiperiod acceptability functional A on X[, L,(Q, F;, IP) is
called polyhedral if there are k; € IN, ¢; € RF ¢ = 1,...,T,
wy; € R t=1,...,T, 7=0,...,t — 1, a polyhedral set ¥
and polyhedral cones Y; € IR*, t =2,...,T, such that

T

A(z)=—inf {JE[ S (e )]

t=1

Yt < Lp(Qaf'lHP? Rkt)a Yt S 5/15
Zf——:l()<wt,7'7yt—7'> = Zt, t = 17 00C 7T

A mapping p := — A is called multiperiod polyhedral risk functional.

Remark: A convex combination of the expectation and of a mul-
tiperiod polyhedral acceptability functional is again a multiperiod
polyhedral acceptability functional.

Polyhedral risk functionals preserve linearity and decomposition struc-

tures of optimization models. (Eichhorn/Rsmisch, SIAM J. Optim. 05)
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Theorem:
Let A be a functional on x/_,L,(Q, F;, IP) (p € [1,+00)) having
the form in the previous definition. Assume
(i) complete recourse: (wy,Y;) = IR, t =2,...,T,
T
(ii) dual feasibility: {u e R" : ¢, + > upwy —y € Yt*} £ (),

v=t

where the sets Y," are the (polyhedral) polar cones of Y;.

Then A is finite, continuous and concave on x/_; L,(Q, F;, IP) and

the following dual representation holds whenever ]1? + ]% = 1:

A(z) = inf

( T

FE [Z z;‘zt] 2zt € Ly(Q, F, IP)
T

— inf <C1 + Z]E[ o) W yl> v=t+1

( V1I€EY]

o+ S B2 F] wy e~V

/
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Idea: Determine the parameters k;, ¢;, wy and Y; such that

T Home Page I
a+ ) wyEy] € -V = Elg]=1,

t:2 Title Page I
T
o+ Y wEBlEF] € Y = El,|F]=1andz >0 i
T=t+1
cr +wrozp € =Yy = 2zp > 0. “« /| »

We assume k1 > 2, k;, >3, t=2,...,T — 1, and kp > 2.
Page 14 of 17 |

Furthermore, let the sets Y, be of the form
Yl:E%xf/l,Yt:E%xﬂ%Jr Xtht:Qa---aT_LYT:BJF XYT, GoBack |

where Y7 is polyhedral and the sets Y;, t = 2, ..., T, are polyhedral Funseeen |
cones. Finally, we set

C1 — (—1761), Ct — (—1707675), t = 2,.. . 7TV — 1, Crr = (O,éT), Close I
’LU171 = (1,2@1’1), wt’t = (O,’UAJH), t = 2, “ e ,T, wm = (1,UAJT71)
W1 = (Ovlth,1)1 W1 = (1707wt,1)1 Wy r = (O,O,wt,r), T = #

2 ... T—tt=1,....T—1.



Corollary:
Let A be a functional on x/_,L,(Q2, F;, IP) (p € [1,+00)) with Home Page |

parameters chosen as above. Assume complete recourse and dual
Title Page

feasibility. Then A is a finite, continuous and multiperiod accept-
ability functional having the representation
Contents I

A(z) mf{ZEztzt — inf (&1, 91|z} € Ly(Q, F, IP), 25 > 0, |l

J1€Y]

[Zt ‘ft—l] = 1, Ct +wt712t—|— € —Y;*, t = 2, .. ,T}, Qy

where ¢ = ¢ + Zwtt 1 €Y, 6 =G+ z Wrry, t = HEEEEE |
t=2 T=t+1
27 C 7T - 11 CT = CT Go Back I
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Example: (value-of-information approach)
Let kit = 3 fort = 1,....7T, ¢ = (0,0), Y1 = R, x IR,
Gt= o p=—landYi=R,, t=1,....,T -1, ET:(O,é),

Yy = R, x IRy and wp; = (0, —1), where a; € (0,1). Then we
obtain the following acceptability functional

T
Alz) = inf{Z]E[zfzt} 2 € Ly(Q, Fi, P), El2|Fio] = 1,
=2

1
zz‘e[O,gt],t:Z...,T}.

Alz) = E[iinf{z;‘zt E2f|Fi1] =1, 2] € [0, ozit]}]
p(z) = E[ - AVaRat(zt,}"t_l)]

Reference: Pflug/Ruszczynski 04, 05
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Iterated conditional risk mappings
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Let Ar 7 ,. t = 2,...,T, be conditional acceptability mappings
and we define an acceptability functional A on xlthle(Q,ft, IP) Tite Poge |

A(Z) =<1 -+ Afg‘fl Z9 R AfT—l’fT—Z[ZT_l + AfT‘fT—l (ZT)} Contents I
- A}"Q\fl 00 'AfT—l\fT—Q © AfT\fT—l(Zl +-- ZT)’ «“«

where the latter representation is a consequence of the (predictable)

translation equivariance. [ ]
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Example: (polyhedral conditional acceptability mappings)
Az)F(2) = —inf {<01; y1) +IE((c2, y2)| Fi1] 191 € Lp(2, Fia, IP), ECET
Y1 € )/17 Y2 € Lp(Q, E, P), Yo € YvQ’ <w1’ y1>—|—<fw27 y2> = } Full Screen |

and select the parameters such that Ay, 7 , is a conditional ac- Cose |
ceptability mapping.
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Reference: Ruszczynski/Shapiro, Math. OR 06 (to appear)



