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We present a mathematical model with stochastic input data for meangpiskization of electricity portfolios containing
several physical components and energy derivative productsnitidel is designed for the optimization horizon of one year
in hourly discretization. The aim consists in maximizing the mean book valtleegiortfolio at the end of the optimization
horizon and, at the same time, in minimizing the risk of the portfolio decisidre risk is measured by the conditional
value-at-risk and by some multiperiod extension of CVaR, respectiVelpresent numerical results for a large-scale realistic
problem adapted to a municipal power utility and study the effects of varyeighting of risk.
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1 Introduction

The deregulation of energy markets has led to an increaseckagss of the need for profit maximization with simultarseou
consideration of risk management, adapted to individisM aversion of market participants. Mathematical modellir
such problems with uncertain input data results in mixedgar large-scale stochastic programming models. We tefer
wide range of literature dealing with power management igdrdrthermal system and simultaneous optimization of powe
production and electricity trading, e.g. [7] and [10]. Weppase that each historical observation of electrical lazdi spot
price is a realization of certain bivariate random variablEhe joint distribution of the stochastic process will bamacterized
by a time series model. To ensure the numerical tractaloitiie optimization problem we generate a large number oftieton
Carlo scenarios from this time series model. By means of@rsa@ scenario reduction procedure, cf. [6], we generaia f
this initial approximation of the underlying probabilitysttibution a specific form of an approximation - a scename taking
into account the information structure of the optimizatpoblem. For the mathematical description of scenaricsirsee
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Fig. 1 Scenario tree structure Monthly mean spot prices

Fig.1, we serially number the nodes of the tree. Except ferdot noder = 1, every noder € N has a unique predecessor
n— but possibly several successors forming the\éetn). By A+ we denote the set of leafs of the scenario tree. Further let
path(n) be the set of nodes from the root node to the nodehereas(n) denotes the time period relatedrtoA unique node
probability 7, is assigned to every nodeby settingr,, = ZZEN+(n)7Tl andm,, for n € N being the scenario probabilities.

2 Modelling stochastic processes

Based on earlier studies, e.g. [7], and [10] we suggest andgasition strategy for the original load and spot priceeseri
{(L, CtSp), t = 1,...,T} in hourly discretization and a separate modelling of ideély behavior and average daily be-
havior. We generate intra-daily scenarios by using a 8igtion-free resampling procedure based on a cluster asallyer
the description of modelling the bivariate average dailycgss letl.;, denote the load and,fp the spot price at dag. The
model comprises a deterministic functiofi (k), f2(k)) representing a yearly trend with seasonal patterns, aasticltom-
ponent(X!(k), X2(k)) modelled by a bivariate autoregressive moving-averagegss) whereas extreme spot price outliers
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are modelled by a discretized jump-diffusion proc@gswith time-varying jump parameters. For details we refei@ [

(&) =( 30 ) (%) + (o) r=tom =21 @

In addition to physical components the electricity pordaontains energy derivative products represented by EEXds of
various load and delivery types. Futures are standardahfd transactions. Both buyer and seller agree on themudate

to call-off respectively to supply a certain quantity ofalecity at a delivery period in the future for a certain @rior to effect
respective payments. In order to generate arbitrage fteesfprices as an input for the optimization model we cateulair
prices, adjusted to EEX rules. The settlement price for imduttures on the last trading day is the mean spot price for the
delivery month and the associated load type. Disregardamgaction fees the fair price for a base load month fututienatt

with delivery period(T7, T3) in a liquid market related to the underlying spot pr(éép is defined as:

ol = E(ZRLCTICT), T<t<T )

3 Risk measure

The risk of losses of a position or a portfolio is assessed &gma of risk measures. Risk measuyrese real-valued mappings
defined on linear spaces of random variables. In [1] degrpldperties of risk measures were suggested from an economi
point of view, in particular, their convexity and coherené@ important example of a one-period coherent risk meaisute
Conditional-Value-at-Risk [9] at level € (0, 1) given by

reR

p(z) := CVaR,(z) := min {r + lE [max{0, —r — z}]} (3)

Here, one-period refers tobeing a real-valued random variable. A significant advaatefg”'V a R consists in its polyhedra-
lity if = has finitely many scenarios. Hence, it may be incorporateddptimization models by introducing some additional
variables and linear constraints. The latter property @éexh by the multiperiod risk measures studied in [3]. Theegeral
multiperiod extensions o2V aR are suggested, that measure the risk of random vetters. ., zz). An example is the
coherent risk measure

p(21,...,27) = Tl mf{ Z { (1)}

We refer to [4] for further examples and some numerical @gpee with mean-risk electricity portfolio management relsd

(1) (1) (2) (2)

y1€]R><R yT€R+xR+yt€R+xR
(4)
Y Am = — Y1, t>1

4 Optimization model

As the optimization problem is solvable only for a limitednmioer of scenarios, it does not seem too restrictive to natinew
branching structure of the originAl'-tree. We branch in the existing model once a month and rettheceby future trading
activities. A portfolio switching is made at the end of a nforiflathematically, we model this restricted structure bgeosid
scenario tree with a node s&t c N. The M-tree comprises all nodes from thé-tree coinciding with the last hour of every
month andn = 1 corresponds ta = 1.

In view of medium-term optimization horizon, modelling difetthermal units of the power plant is reduced to upper and
lower bounds for the power production and a maximum poweatian velocity during one hour. So the model comprises
only two integer variables among a large number of real iéega Hence, the problem is for a limited number of scenarios
solvable with commercial solvers (CPLEX). Modelling of Hidhavior in the auction trade system of EEX spot market is not
an essential aim of the existing model. Hence, spot volumes@ated like balance energy with spot prices.

In the first years following the deregulation of energy méskeunicipal power utilities normally placed long- or meah-
term supply contracts with large power companies in additiocustomer generation. The form of supply contract censid
erably differs with respect to flexibility and charges. Téfere, we modelled two types of contracts: a fixed and a flexibl
supply contract. The former is placed with a term of one yeagffixed price. Delivery will be made as agreed, subsequent
changes of supply quantities are not possible.

The form of the flexible supply contract allows for an adjustiiof agreed quantities within certain bounds during $jseti
time periods. Equations (5) and (5) reflect the readjustineraden of monthly scheduled quantitigd?-* based on the fixed
yearly supply schedul® t(n) at timet(n) and the correction of daily supply scheduféS-T based on the monthly quantities.

(1=a)-u® P, < PPM<(1+a)-u® P,  (1-0) PPM<PPT <(1+p) PPN (5)

Hereu® denotes the binary decision variable for the flexible sugplgtract. Note that for the final daily quantities holds
POT = 0if u© = 0. The declaration of monthly supply quantities takes placthe previous month, i.e., the information
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structure of the associated decision variable is not inra@ecwe with the data scenario tree. Therefore, we add éxpdin-
anticipativity restrictions for monthly supply quantgi€ the model. For the flexible supply contract the custorasrth pay
an energy rate depending on time and on actual power voluntea demand rate depending on maximum annual power.

All these physical components of the portfolio are coupledhe load constraint, wher@®! denotes the power production
and PSP volumes traded on the spot market at nadzs well ast(‘f) a fixed portion of renewal energies at tirt{e,).

Ly = Py + PP +uV Py + PP + Pl (6)

Within the optimization model we allow for free future tradiwithout any artificial time restrictions. In interactiarith the
risk measure a moderate future trading may be expectedehemccan understand this financial portfolio component as a
hedging instrument. At the European Energy Exchange (EBXiyés for various delivery periods, month, quarter and,yea
are traded. With regard to the optimization horizon of onaryee model the former two and in each case the load types base
and peak. Tradable are the next six months and the curremégeimonth and the respectively next seven quarters. @uart
contracts are fulfilled by cascading. Cascading means aitcaily splitting into three month contracts of the regpec
quarter contract on the last trading day before the tramstt the delivery period takes place. Month contracts af@éléal
by cash settlement. Futures are characterized by a dailiy @nal loss equation and by the obligation to deposit seearit

For the sake of clarity, we by way of example describe thertulbalance for a month future taking into account a cascading
quarter future of the same load type. The variafig§:**, F,\',*** andF,M/;c* are auxiliary variables. Letk) = t(m) + 1,
t(l) = t(k) + 1, t(r) = t(I) + 1 correspond to three consecutive months &hd H,;, H,. denote the number of delivery hours
of the respective month futures. In equation (7) the num‘b%’gf of a month future with delivery perio#dl in a nodem is

updated. The balance contains the number of futures inquevhonth#)"_,, the number of purchased futurﬁg[”,f and
the number of sold futureﬁﬁ’,j in nodem as well as month futureEf’;f“S stemming from a cascading quarter future, where
F,‘;f,ym denotes the remaining number of quarter futures cascatiimgex(m).

File = Bt FUE-E Rl @
Fnl\fkck = Fn(%—,m “Hy /(Hy + H + H,), Fr%—,m = Fg——m + F’I(‘?lf,m _ Fanf,m ©

These balance equations are formulated for all involvedréutypes, month and quarter, and the load types base and peak
Further we added lower and upper bounds for the future stomkstraints for trading periods and time constraints eellat

to cascading quarter futures to the model. When opening d@igusa basic security, the so-called initial margin, must b
deposited. The initial margin is bound for the entire dunatdf the contract. The change in value of the futures pasitio
results from the difference between the settlement pridgdeturrent day and the settlement price of the previous Tlaig
change in value multiplied with the number of contracts $etdaily credit notes or additional payments which areechll
variation margin. Neglecting transaction fees we can agsig following financial transactions to the month futuresidered

in (7).

ZfﬁM _ Zﬂl\f _’_Cf,IM,M(Fnl\i[:l:‘ _ Fnl\i[,]?) + Fl\/I,CaS(CﬂH\/LQ _ Cf,IM,M) + (9)

m m,k
M £,M £,M M, cas / ~f,M £,Q M £,IM,M
me,k(cm,k - Cmf,k) + Fm,k (Cm,k - Cmf,m) + me,mc

The future cash flow in (9) is composed of the previous monthsh value, payment and repayment of initial margins,
correction of initial margins due to cascading, variatioargin of month future, variation margin of cascaded futlard
repayment of initial margin for expired futures. Let najy denote the sum of atif:™ and :f:? for all month and quarter
futures, respectively, that enter in the balance sheetddmo Further letz,, denote the book value of the portfolio at node
m including the whole cash inflow and outflow. In particular, ave to consider total revenue from spot and futures market,
payments from consumers of electricity, expenditures fawgr production, for supply contracts as well as for rendevab
energies. The consumer pri€&’ is a fixed artificial parameter. In addition to periodical pants, a demand rate depending
on maximum annual power must be paid in the leafs of the tre¢mle M with 1 < ¢(m) < T andm— correspond to
I € N andr € N respectively.

t = e A Y (LaC% = CSPPS — CRL PP - CRE PRE — Y Y, PY,) — COTPOT) (20)

t(n) " n
nepath(l),
t(r)<t(n)<t(l)

In order to model a risk-oriented profit maximization, thgeative function appears as a weighted sum of the mean ftiortfo
book value at the end of the optimization horizon and of a m&asure depending on the book value at finitely many time
periods.

f('77 Z) = (1 - W)ZmeMT TmZm — 7,0(2), v e [07 1] (11)

The weighting factory controls the relation between profit maximization and rigéraion. The book value of the portfolio in
a nodem is composed of all monthly debits and credits for the poidfelements: power production, power supply contracts,
EEX power contracts, supply due to legislation on the pijarf renewable energies and futures.
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5 Numerical results

In order to model and solve the optimization problem, we hased GAMS 21.1 and CPLEX 8.1 respectively. Numerical
calculations were run fdz1 scenarios leading 2.4 millions of real variables. The experiments reported heedrgended to
investigate the composition of the portfolio and the dttion function of the book value for the CVaR and the multipe
risk measure defined by (3) and (4), respectively.

In particular, in case of CVaR the book value of the portfaimws a high spread for the scenarios throughout the whole
year except for the end of the time horizon. The portfoliogisinof the same physical components independently. dfie
fixed supply contract, power produced by the own generatistemn and EEX spot market contracts. Further extensivedutu

Mio

trading activities take place which are similar in size ipeledently ofy. Computing times on a machine withGHz Intel
Celeron CPU and12 MB RAM average ouB hours.

Next we proceed to the multiperiod risk measure. This measduces the spread of the book value scenarios throughout
the whole optimization horizon. For smallthe portfolio composition coincides with the former, wheese = 0.5 leads to
a portfolio switching and to higher computing times of ab8utours. The fixed supply contract is replaced by the more

Mio

expensive flexible supply contract. Apparently, due to timals number of branchings in the scenario tree, future trgdi
activities are not able to control the book value taking extaount the constraints for the multiperiod risk measumvéver,
the portfolio switching is associated with quantitativelgreased future trading activities in contrast to the ease0.5.

Further quantitative seasonal differences for the diffephysical portfolio components: volumes from the spotkagr
renewable energies, power production and the volumes dfekible supply contract can be observed. During summer time
power contracts at the spot market are predominantly sdidy @re purchased only during daily peak load times. Thedflexi
supply contract is in use the whole day. During winter timeghuation is different: power contracts are purchasey often
and the flexible supply contract is in use only during peakl lismes and almost never at weekends.
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