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We present a mathematical model with stochastic input data for mean-riskoptimization of electricity portfolios containing
several physical components and energy derivative products. The model is designed for the optimization horizon of one year
in hourly discretization. The aim consists in maximizing the mean book value ofthe portfolio at the end of the optimization
horizon and, at the same time, in minimizing the risk of the portfolio decisions.The risk is measured by the conditional
value-at-risk and by some multiperiod extension of CVaR, respectively.We present numerical results for a large-scale realistic
problem adapted to a municipal power utility and study the effects of varyingweighting of risk.
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1 Introduction

The deregulation of energy markets has led to an increased awareness of the need for profit maximization with simultaneous
consideration of risk management, adapted to individual risk aversion of market participants. Mathematical modelling of
such problems with uncertain input data results in mixed-integer large-scale stochastic programming models. We referto a
wide range of literature dealing with power management in a hydro-thermal system and simultaneous optimization of power
production and electricity trading, e.g. [7] and [10]. We suppose that each historical observation of electrical load and spot
price is a realization of certain bivariate random variables. The joint distribution of the stochastic process will be characterized
by a time series model. To ensure the numerical tractabilityof the optimization problem we generate a large number of Monte-
Carlo scenarios from this time series model. By means of a recursive scenario reduction procedure, cf. [6], we generate from
this initial approximation of the underlying probability distribution a specific form of an approximation - a scenario tree taking
into account the information structure of the optimizationproblem. For the mathematical description of scenario trees, see
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Fig. 1 Scenario tree structure Monthly mean spot prices

Fig.1, we serially number the nodes of the tree. Except for the root noden = 1, every noden ∈ N has a unique predecessor
n− but possibly several successors forming the setN+(n). By NT we denote the set of leafs of the scenario tree. Further let
path(n) be the set of nodes from the root node to the noden, whereast(n) denotes the time period related ton. A unique node
probabilityπn is assigned to every noden by settingπn =

∑

l∈N+(n)πl andπn for n ∈ NT being the scenario probabilities.

2 Modelling stochastic processes

Based on earlier studies, e.g. [7], and [10] we suggest a decomposition strategy for the original load and spot price series
{(Lt, C

Sp
t ), t = 1, . . . , T} in hourly discretization and a separate modelling of intra-daily behavior and average daily be-

havior. We generate intra-daily scenarios by using a distribution-free resampling procedure based on a cluster analysis. For
the description of modelling the bivariate average daily process letLk denote the load andCSp

k the spot price at dayk. The
model comprises a deterministic function(f1(k), f2(k)) representing a yearly trend with seasonal patterns, a stochastic com-
ponent(X1(k),X2(k)) modelled by a bivariate autoregressive moving-average process, whereas extreme spot price outliers
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are modelled by a discretized jump-diffusion processO2
k with time-varying jump parameters. For details we refer to [8].
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In addition to physical components the electricity portfolio contains energy derivative products represented by EEX futures of
various load and delivery types. Futures are standardized forward transactions. Both buyer and seller agree on the current date
to call-off respectively to supply a certain quantity of electricity at a delivery period in the future for a certain price or to effect
respective payments. In order to generate arbitrage free future prices as an input for the optimization model we calculate fair
prices, adjusted to EEX rules. The settlement price for month futures on the last trading day is the mean spot price for the
delivery month and the associated load type. Disregarding transaction fees the fair price for a base load month future attime t

with delivery period〈T1, T2〉 in a liquid market related to the underlying spot priceCSp
t is defined as:

Cf,M
t,T2

= E

(

∑T2

j=T1
CSp

j | CSp
t

)

, T0 ≤ t ≤ T2 (2)

3 Risk measure

The risk of losses of a position or a portfolio is assessed by means of risk measures. Risk measuresρ are real-valued mappings
defined on linear spaces of random variables. In [1] desirable properties of risk measures were suggested from an economic
point of view, in particular, their convexity and coherence. An important example of a one-period coherent risk measureis the
Conditional-Value-at-Risk [9] at levelα ∈ (0, 1) given by

ρ(z) := CV aRα(z) := min
r∈R

{

r +
1

α
E [max{0,−r − z}]

}

. (3)

Here, one-period refers toz being a real-valued random variable. A significant advantage of CV aR consists in its polyhedra-
lity if z has finitely many scenarios. Hence, it may be incorporated into optimization models by introducing some additional
variables and linear constraints. The latter property is shared by the multiperiod risk measures studied in [3]. There,several
multiperiod extensions ofCV aR are suggested, that measure the risk of random vectors(z1, . . . , zT ). An example is the
coherent risk measure

ρ(z1, . . . , zT ) :=
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y1 ∈ R × R, yT ∈ R+ × R+, yt ∈ R+ × R
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}

. (4)

We refer to [4] for further examples and some numerical experience with mean-risk electricity portfolio management models.

4 Optimization model

As the optimization problem is solvable only for a limited number of scenarios, it does not seem too restrictive to narrowthe
branching structure of the originalN -tree. We branch in the existing model once a month and reducethereby future trading
activities. A portfolio switching is made at the end of a month. Mathematically, we model this restricted structure by a second
scenario tree with a node setM ⊂ N . TheM-tree comprises all nodes from theN -tree coinciding with the last hour of every
month andm = 1 corresponds ton = 1.

In view of medium-term optimization horizon, modelling of the thermal units of the power plant is reduced to upper and
lower bounds for the power production and a maximum power variation velocity during one hour. So the model comprises
only two integer variables among a large number of real variables. Hence, the problem is for a limited number of scenarios
solvable with commercial solvers (CPLEX). Modelling of bidbehavior in the auction trade system of EEX spot market is not
an essential aim of the existing model. Hence, spot volumes are treated like balance energy with spot prices.

In the first years following the deregulation of energy markets, municipal power utilities normally placed long- or medium-
term supply contracts with large power companies in addition to customer generation. The form of supply contract consid-
erably differs with respect to flexibility and charges. Therefore, we modelled two types of contracts: a fixed and a flexible
supply contract. The former is placed with a term of one year for a fixed price. Delivery will be made as agreed, subsequent
changes of supply quantities are not possible.

The form of the flexible supply contract allows for an adjustment of agreed quantities within certain bounds during specified
time periods. Equations (5) and (5) reflect the readjustmentin noden of monthly scheduled quantitiesPO,M

n based on the fixed
yearly supply schedulePV

t(n) at timet(n) and the correction of daily supply schedulesPO,T
n based on the monthly quantities.

(1 − α) · uO · PV
t(n) ≤ PO,M

n ≤ (1 + α) · uO · PV
t(n), (1 − β) · PO,M

n ≤ PO,T
n ≤ (1 + β) · PO,M

n (5)

HereuO denotes the binary decision variable for the flexible supplycontract. Note that for the final daily quantities holds
PO,T

n = 0 if uO = 0. The declaration of monthly supply quantities takes place in the previous month, i.e., the information
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structure of the associated decision variable is not in accordance with the data scenario tree. Therefore, we add explicit non-
anticipativity restrictions for monthly supply quantities to the model. For the flexible supply contract the customer has to pay
an energy rate depending on time and on actual power volumes and a demand rate depending on maximum annual power.

All these physical components of the portfolio are coupled by the load constraint, wherePEl
n denotes the power production

andP Sp
n volumes traded on the spot market at noden as well asPRE

t(n) a fixed portion of renewal energies at timet(n).

Ln = PEl
n + PO,T

n + uVPV
t(n) + P Sp

n + PRE
t(n) (6)

Within the optimization model we allow for free future trading without any artificial time restrictions. In interactionwith the
risk measure a moderate future trading may be expected, hence, we can understand this financial portfolio component as a
hedging instrument. At the European Energy Exchange (EEX) futures for various delivery periods, month, quarter and year,
are traded. With regard to the optimization horizon of one year we model the former two and in each case the load types base
and peak. Tradable are the next six months and the current delivery month and the respectively next seven quarters. Quarter
contracts are fulfilled by cascading. Cascading means automatically splitting into three month contracts of the respective
quarter contract on the last trading day before the transition to the delivery period takes place. Month contracts are fulfilled
by cash settlement. Futures are characterized by a daily profit and loss equation and by the obligation to deposit securities.

For the sake of clarity, we by way of example describe the future balance for a month future taking into account a cascading
quarter future of the same load type. The variablesFM,cas

m,k , FM,cas
m,l andFM,cas

m,r are auxiliary variables. Lett(k) = t(m) + 1,
t(l) = t(k) + 1, t(r) = t(l) + 1 correspond to three consecutive months andHk, Hl, Hr denote the number of delivery hours
of the respective month futures. In equation (7) the numberFM

m,k of a month future with delivery periodk in a nodem is

updated. The balance contains the number of futures in previous monthFM
m−,k, the number of purchased futuresFM,p

m,k and

the number of sold futuresFM,s
m,k in nodem as well as month futuresFM,cas

m,k stemming from a cascading quarter future, where

FQ
m−,m denotes the remaining number of quarter futures cascading at time t(m).

FM
m,k = FM

m−,k + FM,p
m,k − FM,s

m,k + FM,cas
m,k (7)

FM,cas
m,k = FQ

m−,m · Hk / (Hk + Hl + Hr), FQ
m−,m = FQ

m−−,m + FQ,p
m−,m − FQ,s

m−,m (8)

These balance equations are formulated for all involved future types, month and quarter, and the load types base and peak.
Further we added lower and upper bounds for the future stock,constraints for trading periods and time constraints related
to cascading quarter futures to the model. When opening a position, a basic security, the so-called initial margin, must be
deposited. The initial margin is bound for the entire duration of the contract. The change in value of the futures position
results from the difference between the settlement price ofthe current day and the settlement price of the previous day.This
change in value multiplied with the number of contracts leads to daily credit notes or additional payments which are called
variation margin. Neglecting transaction fees we can assign the following financial transactions to the month future considered
in (7).

zf,M
m = zf,M

m− + Cf,IM,M(FM,s
m,k − FM,p

m,k ) + FM,cas
m,k (Cf,IM,Q − Cf,IM,M) + (9)

FM
m−,k(Cf,M

m,k − Cf,M
m−,k) + FM,cas

m,k (Cf,M
m,k − Cf,Q

m−,m) + FM
m−,mCf,IM,M

The future cash flow in (9) is composed of the previous month’scash value, payment and repayment of initial margins,
correction of initial margins due to cascading, variation margin of month future, variation margin of cascaded futuresand
repayment of initial margin for expired futures. Let nowzf

m denote the sum of allzf,M
m andzf,Q

m for all month and quarter
futures, respectively, that enter in the balance sheet at nodem. Further letzm denote the book value of the portfolio at node
m including the whole cash inflow and outflow. In particular, wehave to consider total revenue from spot and futures market,
payments from consumers of electricity, expenditures for power production, for supply contracts as well as for renewable
energies. The consumer priceCG is a fixed artificial parameter. In addition to periodical payments, a demand rate depending
on maximum annual power must be paid in the leafs of the tree. Let m ∈ M with 1 < t(m) < T andm− correspond to
l ∈ N andr ∈ N respectively.

zm = zm− + zf
m +

∑

n∈path(l),

t(r)<t(n)≤t(l)

(

LnCG − CSp
n P Sp

n − CEl
t(n)P

El
n − CRE

t(n)P
RE
t(n) − uV CV

t(n)P
V
t(n) − CO,T

t(n)P
O,T
n

)

(10)

In order to model a risk-oriented profit maximization, the objective function appears as a weighted sum of the mean portfolio
book value at the end of the optimization horizon and of a riskmeasureρ depending on the book value at finitely many time
periods.

f(γ, z) = (1 − γ)
∑

m∈MT
πmzm − γρ(z), γ ∈ [0, 1] (11)

The weighting factorγ controls the relation between profit maximization and risk aversion. The book value of the portfolio in
a nodem is composed of all monthly debits and credits for the portfolio elements: power production, power supply contracts,
EEX power contracts, supply due to legislation on the priority of renewable energies and futures.
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5 Numerical results

In order to model and solve the optimization problem, we haveused GAMS 21.1 and CPLEX 8.1 respectively. Numerical
calculations were run for21 scenarios leading to2.4 millions of real variables. The experiments reported here are intended to
investigate the composition of the portfolio and the distribution function of the book value for the CVaR and the multiperiod
risk measure defined by (3) and (4), respectively.

In particular, in case of CVaR the book value of the portfolioshows a high spread for the scenarios throughout the whole
year except for the end of the time horizon. The portfolio consist of the same physical components independently ofγ: the
fixed supply contract, power produced by the own generation system and EEX spot market contracts. Further extensive future
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trading activities take place which are similar in size independently ofγ. Computing times on a machine with2 GHz Intel
Celeron CPU and512 MB RAM average out3 hours.

Next we proceed to the multiperiod risk measure. This measure reduces the spread of the book value scenarios throughout
the whole optimization horizon. For smallγ the portfolio composition coincides with the former, whereasγ = 0.5 leads to
a portfolio switching and to higher computing times of about8 hours. The fixed supply contract is replaced by the more
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expensive flexible supply contract. Apparently, due to the small number of branchings in the scenario tree, future trading
activities are not able to control the book value taking intoaccount the constraints for the multiperiod risk measure. However,
the portfolio switching is associated with quantitativelyincreased future trading activities in contrast to the caseγ < 0.5.

Further quantitative seasonal differences for the different physical portfolio components: volumes from the spot market,
renewable energies, power production and the volumes of theflexible supply contract can be observed. During summer time
power contracts at the spot market are predominantly sold. They are purchased only during daily peak load times. The flexible
supply contract is in use the whole day. During winter time the situation is different: power contracts are purchased very often
and the flexible supply contract is in use only during peak load times and almost never at weekends.
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