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Summary. Dynamic stochastic optimization techniques are highly relevant for ap-
plications in electricity production and trading since there are uncertainty factors
at different time stages (e.g., demand, spot prices) that can be described reasonably
by statistical models. In this paper, two aspects of this approach are highlighted:
scenario tree approximation and risk aversion. The former is a procedure to replace
a general statistical model (probability distribution), which makes the optimization
problem intractable, suitably by a finite discrete distribution. Our methods rest
upon suitable stability results for stochastic optimization problems. With regard to
risk aversion we present the approach of polyhedral risk measures. For stochastic
optimization problems minimizing risk measures from this class it has been shown
that numerical tractability as well as stability results known for classical (non-risk-
averse) stochastic programs remain valid. In particular, the same scenario approxi-
mation methods can be used. Finally, we present illustrative numerical results from
an electricity portfolio optimization model for a municipal power utility.
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1 Introduction

The deregulation of energy markets has led to several new challenges for elec-
tric power utilities. Electric power has to be generated in a competitive en-
vironment and, in addition, coordinated with several trading activities. Elec-
tricity portfolios for spot and derivative markets become important, and the
electrical load as well as electricity prices become increasingly unpredictable.
Hence, the number of uncertainty sources and the financial risk for electric
utilities have increased. These facts initiated the development of stochastic
optimization models for producing and trading electricity. We mention, for
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example, stochastic hydro-electric and trading models [13, 32] and stochastic
hydro-thermal production and trading models [12, 18, 19, 28, 37, 38, 39]. For
an overview on stochastic programming models in energy we refer to [40].

Typical stochastic optimization models for producing and trading electric-
ity, however, are focused on (expected) profit maximization while risk man-
agement is considered as an extra task. Power utilities often separate the
planning of their hydro-thermal electricity production versus a preliminary
and simplified trading model from the risk management. However, alterna-
tively, risk management may be integrated into the (hydro-thermal) power
production and trading planning by maximizing expected profit and mini-
mizing (or bounding) a certain risk functional simultaneously [3, 9, 26]. Such
integrated risk management strategies promise additional overall efficiency for
power utilities.

Mathematical modeling of integrated risk management of an electricity
producing and trading utility leads to multi-stage stochastic programs with
risk objectives or risk constraints. In the present paper, we discuss two basic
aspects of implementing such models: (i) the approximate representation of
the underlying probability distribution by a finite discrete distribution, i.e.,
by a finite number of scenarios with their probabilities, and (ii) modeling and
minimization of risk.

The first is typically an indispensable first step towards a solution of a
stochastic optimization model. On the other hand, this is a highly sensitive
concern, in particular, if dynamic decision structures are involved (multi-
stage stochastic programming [36]). Then, the scenarios of the approximate
distribution must exhibit tree structure. Moreover, it is of interest to get
by with a moderate number of scenarios to have the resulting problem
tractable. We refer to the overview [6] and to several different approaches
[4, 5, 23, 20, 25, 27, 31] for scenario tree generation.

In section 4 we assume that scenarios of the underlying stochastic load-
price process are available, e.g., by sampling from a properly developed
stochastic (time series) model or by some other approximation scheme. We
desribe a methodology based on clustering and scenario reduction that pro-
duces a tree of scenarios and represents a good approximation of the stochastic
process. The approach is based on suitable stability results ensuring that the
obtained approximate problems are indeed related to the original (infinite di-
mensional) ones. For interested readers these stability results are presented
in section 3. The methodology as well as the stability arguments are based
on distances of random vectors that allow to decide about their closeness.
Moreover, since multi-stage stochastic programs look for decisions that do
not anticipate, but depend at each time period t only on information that
is available at t, a distance measure for the information flow is needed. It is
expressed by a distance of filtrations, since the information increase over time
is modeled by σ-fields forming a filtration that is associated to the stochastic
process.
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The second topic requires the selection of appropriate risk functionals that
allow to quantify risk in a meaningful way and preserve tractability of the
optimization model. We argue that polyhedral risk functionals satisfy both
demands. These are given as (the optimal values of) certain simple linear
stochastic programs. Well-known risk functionals such as Average Value-at-
Risk AVaR and expected polyhedral utility belong to this class and, more-
over, multi-period risk functionals for multi-stage stochastic programs are
suggested. For stochastic programs incorporating polyhedral risk functionals
it has been shown that numerical tractability as well as stability results known
for classical (non-risk-averse) stochastic programs remain valid. In particular,
the same scenario tree approximation methods can be used.

In a case study, we present illustrative numerical results from an electricity
portfolio optimization model for a municipal power utility. In particular, it is
shown that the use of different risk objectives leads to different risk aversion
strategies by trading at derivative markets. They require less than additional
1% of the optimal expected revenue.

2 Mathematical framework

Let a finite number of time steps T ∈ N as well as a multivariate discrete-
time stochastic process ξ = (ξ1, ..., ξT ) be given. This means that each ξt is
a d-dimensional random vector (with some fixed dimension d ∈ N) whose
realization can be observed at time step t = 1, ..., T , respectively. Since t = 1
represents the present we require that ξ1 is deterministic, i.e., ξ1 ∈ R

d. For t ≥
2 we require that each ξt has statistical moments of oder r with some number
r ≥ 1 (that will be specified later on), i.e., E[|ξt|r] < ∞ for t = 1, ..., T where
E[ . ] denotes the expected value functional and | . | refers to the Euclidean
norm in R

d.
Mathematically, these requirements are typically expressed by means of

the so-called Lr-spaces: ξt ∈ Lr(Ω,F , P; Rd) where (Ω,F , P) is a given proba-
bility space. Now, in multi-stage stochastic programming, decisions xt can be
made at each time step t = 1, ..., T based on the observations until time t,
respectively. This means that xt may depend and may only depend on (the
concrete realization of) ξt := (ξ1, ..., ξt), respectively. This nonanticipativity
requirement can be expressed by xt ∈ Lr′(Ω, σ(ξt), P; Rmt) with some moment
order r′ ≥ 1 (specified later on) and some dimensions mt ∈ N (t = 1, ..., T ).
In other words: xt must be a σ(ξt)-measurable random element where σ(ξt) is
the sub-σ-field of the original σ-field F generated by ξ1, ..., ξt. The sequence
of all σ-fields is increasing, i.e., {∅, Ω} = σ(ξ1) ⊆ σ(ξ2) ⊆ ... ⊆ σ(ξT ) = F
and thus forms a so-called filtration. Assume for the moment that the input
random vector ξ is represented in the form of a scenario tree, where d real
variables are associated to each node of the tree. Then the σ(ξt)-measurability
of xt for every t ∈ {1, . . . , T} means that the decision vector x is represented
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by the same tree (as ξ), but with mt real variables associated to each node at
time t.

In this presentation, we consider linear multi-stage stochastic program of
the form

min
x1,...,xT















E

[

T
∑

τ=1

〈bt(ξt), xt〉

]

∣

∣

∣

∣

∣

∣

∣

∣

xt ∈ Lr′(Ω, σ(ξt), P; Rmt),
xt ∈ Xt P-almost surely (a.s.),
At,0xt + At,1(ξt)xt−1 = ht(ξt) a.s.
(t = 1, ..., T )















(1)

with some numbers mt, nt ∈ N, given polyhedral sets Xt ⊆ R
mt , recourse

matrices At,0 ∈ R
nt×mt , technology matrices At,1 ∈ R

nt×mt−1 (where we
assume A1,1 ≡ 0), and vectors ht ∈ R

nt and bt ∈ R
mt (cost factors). The

items At,1, ht, and bt may depend on ξt (t = 1, ..., T ). It is assumed that this
dependence is affinely linear. This allows, for example, to model that some
components of bt, ht and/or some elements of the matrix At,1 are stochastic
and ξ denotes the vector of all such stochastic inputs.

Note that in (1) optimality of the stochastic costs 〈bt(ξt), xt〉 is determined
in terms of the expected value, i.e., the objective is linear (risk-neutral). In
section 5 and 6 we will consider the risk-averse alternative

min
x1,...,xT























γ · ρ(zt1 , ..., ztJ
)

−(1 − γ) · E [zT ]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xt ∈ Lr′(Ω, σ(ξt), P; Rmt),
xt ∈ Xt a.s.,
At,0xt + At,1(ξt)xt−1 = ht(ξt) a.s.

zt := −
∑t

τ=1〈bτ (ξτ ), xτ 〉 a.s.
(t = 1, ..., T )























(2)

where the objective is supplemented with a (multi-period) risk functional ρ
(risk measure). The number γ ∈ [0, 1] is a fixed weighting parameter. The
random values zt represent the accumulated revenues at each time t. Clearly,
it holds that zt ∈ Lp(Ω, σ(ξt), P) with p ∈ [1,∞] given by

1

p
=

{

1
r′

, if all bt are non-random
1
r + 1

r′
, otherwise.

The risk functional ρ is applied to a subset of J time steps 1 < t1 < t2 <
... < tJ = T . Note that, since risk functionals are essentially nonlinear by
nature, problem (2) is no longer linear. However, we will concentrate on the
employment of risk functionals from the class of polyhedral risk functionals
which exhibit a favorable sort of nonlinearity; cf. section 5.

3 Stability of multi-stage problems

Studying stability of the multi-stage stochastic programs (1) consists in re-
garding it as an optimization problems in the infinite dimensional linear space
×T

t=1Lr′(Ω,F , P; Rmt). This is a Banach space when endowed with the norm
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‖x‖r′ :=
(

∑T
t=1 E

[

|xt|r
′
]

)1/r′

for r′ ∈ [1,∞),

‖x‖∞ := maxt=1,...,T ess sup |xt|,

where | . | denotes some norm on the relevant Euclidean spaces and ess sup |xt|
denotes the essential supremum of |xt|, i.e., the smallest constant C such
that |xt| ≤ C holds P-almost surely. Analogously, ξ can be understood as an
element of the Banach space ×T

t=1Lr(Ω,F , P; Rd) with norm ‖ξ‖r. For the
integrability numbers r and r′ it will be imposed that

r :=







∈ [1,∞) , if only costs or only right-hand sides are random
2 , if only costs and right-hand sides are random
T , if all technology matrices are random

r′ :=







r
r−1 , if only costs are random

r , if only right-hand sides are random
∞ , if all technology matrices are random

(3)

with regard to problem (1). The choice of r and the definition of r′ are moti-
vated by the knowledge of existing moments of the input process ξ, by having
the stochastic program well defined (in particular, such that 〈bt(ξt), xt〉 is inte-
grable for every decision xt and t = 1, ..., T ), and by satisfying the conditions
(A2) and (A3) (see below).

Since r′ depends on r and our assumptions will depend on both r and
r′, we will add some comments on the choice of r and its interplay with
the structure of the underlying stochastic programming model. To have the
stochastic program well defined, the existence of certain moments of ξ has
to be required. This fact is well known for the two-stage situation (see, e.g.,
[36, Chapter 2]). If either right-hand sides or costs in a multi-stage model
(1) are random, it is sufficient to require r ≥ 1. The flexibility in case that
the stochastic process ξ has moments of order r > 1 may be used to choose
r′ as small as possible in order to weaken the condition (A3) (see below) on
the feasible set. If the linear stochastic program is fully random (i.e., costs,
right-hand sides and technology matrices are random), one needs r ≥ T to
have the model well defined and no flexibility w.r.t. r′ remains.

3.1 Assumptions

Next we introduce some notation. We set s := Td and m :=
∑T

t=1 mt. Let

F (ξ, x) := E
[
∑T

t=1〈bt(ξt), xt〉
]

denote the objective function defined on Lr(Ω,F , P; Rs) × Lr′(Ω,F , P; Rm)
and let

X (ξ) :=
{

x ∈ ×T
t=1Lr′(Ω, σ(ξt), P; Rmt) |xt ∈ Xt(xt−1; ξt) a.s. (t = 1, ..., T )

}

denote the set of feasible elements of (1) with x0 ≡ 0 and
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Xt(xt−1; ξt) :=
{

xt ∈ R
mt : xt ∈ Xt, At,0xt + At,1(ξt)xt−1 = ht(ξt)

}

denoting the t-th feasibility set for every t = 1, ..., T . That allows to rewrite
the stochastic program (1) in the short form

min
{

F (ξ, x) : x ∈ X (ξ)
}

(4)

In the following, we need the optimal value

v(ξ) = inf
{

F (ξ, x) : x ∈ X (ξ)
}

for every ξ ∈ Lr(Ω,F , P; Rs) and, for any ε ≥ 0, the ε-approximate solution
set (level-set)

Sε(ξ) :=
{

x ∈ X (ξ) : F (ξ, x) ≤ v(ξ) + ε
}

of the stochastic program (4). Since, for ε = 0, the set Sε(ξ) coincides with the
set solutions to (4), we will also use the notation S(ξ) := S0(ξ). The following
conditions will be imposed on (4):

(A1) The numbers r, r′ are chosen according to (3) and ξ ∈ Lr(Ω,F , P; Rs).
(A2) There exists a δ > 0 such that for any ξ̃ ∈ Lr(Ω,F , P; Rs) satisfying ‖ξ̃−

ξ‖r ≤ δ, any t = 2, ..., T and any xτ ∈ Lr′(Ω, σ(ξ̃τ ), P; Rmτ ) (τ = 1, ..., t−
1) satisfying xτ ∈ Xτ (xτ−1; ξ̃τ ) a.s. (where x0 = 0), there exists xt ∈
Lr′(Ω, σ(ξ̃t), P; Rmt) satisfying xt ∈ Xt(xt−1; ξ̃t) a.s. (relatively complete
recourse locally around ξ).

(A3) The optimal values v(ξ̃) of (4) with input ξ̃ are finite for all ξ̃ in a
neighborhood of ξ and the objective function F is level-bounded locally
uniformly at ξ, i.e., for some ε0 > 0 there exists a δ > 0 and a bounded
subset B of Lr′(Ω,F , P; Rm) such that Sε0(ξ̃) is contained in B for all
ξ̃ ∈ Lr(Ω,F , P; Rs) with ‖ξ̃ − ξ‖r ≤ δ.

For any ξ̃ ∈ Lr(Ω,F , P; Rs) sufficiently close to ξ in Lr, condition (A2) implies
the existence of some feasible x̃ in X (ξ̃) and (3) implies the finiteness of the
objective F (ξ̃, .) at any feasible x̃. A sufficient condition for (A2) to hold is the
complete recourse condition on every recourse matrix At,0, i.e., At,0Xt = R

nt ,
t = 1, ..., T . The locally uniform level-boundedness of the objective function F
is quite standard in perturbation results for optimization problems (see, e.g.,
[35, Theorem 1.17]). The finiteness condition on the optimal value v(ξ) is not
implied by the level-boundedness of F for all relevant pairs (r, r′). In general,
the conditions (A2) and (A3) get weaker for increasing r and decreasing r′,
respectively.

3.2 Optimal values

The first stability result for multi-stage stochastic programs represents a quan-
titative continuity property of the optimal values. Its main observation is that
multi-stage models behave stable at some stochastic input process if both its
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probability distribution and its filtration are approximated with respect to
the Lr-distance and the filtration distance

Df(ξ, ξ̃) :=sup
ε>0

inf
x∈Sε(ξ)

x̃∈Sε(ξ̃)

T−1
∑

t=2

max
{

∥

∥xt − E[xt|σ(ξ̃t)]
∥

∥

r′
,
∥

∥x̃t − E[x̃t|σ(ξt)]
∥

∥

r′

}

(5)

where E[ . |σ(ξt)] and E[ . |σ(ξ̃t)] (t = 1, ..., T ) are the corresponding condi-
tional expectations, respectively. Note that for the supremum in (5) only
small ε’s are relevant and that the approximate solution sets are bounded
for ε ∈ (0, ε0] according to (A3).

The following stability result for optimal values of program (4) is taken
from [24, Theorem 2.1].

Theorem 1. Let (A1), (A2) and (A3) be satisfied and the sets X1 be nonempty
and bounded. Then there exist positive constants L and δ such that the esti-
mate

∣

∣v(ξ) − v(ξ̃)
∣

∣ ≤ L
(

‖ξ − ξ̃‖r + Df(ξ, ξ̃)
)

(6)

holds for all random elements ξ̃ ∈ Lr(Ω,F , P; Rs) with ‖ξ̃ − ξ‖r ≤ δ.

The result states that the changes of optimal values are at most proportional
to the errors in terms of Lr- and filtration distance when approximating ξ.
The corresponding constant L depends on ‖ξ‖r (i.e. the r-th moment of ξ),
but is not known in general.

3.3 Approximate Solutions

To prove a stability result for (approximate) solutions of (4) a stronger version
of the filtration distance Df is needed, namely,

D∗
f (ξ, ξ̃) := sup

x∈B∞

T
∑

t=2

∥

∥E[xt|σ(ξt)] − E[xt|σ(ξ̃t)]
∥

∥

r′
, (7)

where B∞ := {x : Ω → R
m : x is F -measurable, |x(ω)| ≤ 1, P-almost surely}.

Notice that the sum is extended by the additional summand for t = T and that
the former infimum is replaced by a supremum with respect to a sufficiently
large bounded set. If we require, in addition to assumption (A3), that for
some ε0 > 0 there exist constants δ > 0 and C > 0 such that |x̃(ω)| ≤ C
for P-almost every ω ∈ Ω and all x̃ ∈ Sε0(ξ̃) with ξ̃ ∈ Lr(Ω,F , P; Rs) and
‖ξ̃ − ξ‖r ≤ δ, we have

Df(ξ, ξ̃) ≤ C D∗
f (ξ, ξ̃). (8)

Sometimes it is sufficient to consider the unit ball in Lr′ rather than B (cf.
[23, 22]). However, in contrast to Df the distance D∗

f always satisfies the
triangle inequality.

Now, we state the second stability result that represents a Lipschitz prop-
erty of approximate solution sets ([22, Theorem 2.4]).
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Theorem 2. Let (A1), (A2) and (A3) be satisfied with r′ ∈ [1,∞) and the set
X1 be nonempty and bounded. Assume that the solution set S(ξ) is nonempty.
Then there exist L̄ > 0 and ε̄ > 0 such that

dl∞
(

Sε(ξ), Sε(ξ̃)
)

≤
L̄

ε

(

‖ξ − ξ̃‖r + D∗
f (ξ, ξ̃)

)

(9)

holds for every ξ̃ ∈ Lr(Ω,F , P; Rs) with ‖ξ − ξ̃‖r ≤ δ (with δ > 0 from
(A3)) and S(ξ̃) 6= ∅, and for any ε ∈ (0, ε̄). Here, dl∞ denotes the Pompeiu-
Hausdorff distance of closed bounded subsets of Lr′ = Lr′(Ω.F , P; Rm), which
is given by

dl∞(B, B̃) = sup
x∈Lr′

∣

∣dB(x) − dB̃(x)
∣

∣

with dB(x) denoting the distance of x to B, i.e., dB(x) = infy∈B ‖x − y‖r′.

The most restrictive assumption in Theorem 2 is the existence of solutions to
both problems. Notice that solutions always exist if the underlying random
vector has a finite number of scenarios or if r′ ∈ (1,∞). For a more thorough

discussion we refer to [22, Section 2]. Notice that the constant L̄
ε gets larger

for decreasing ε and that, indeed, Theorem 2 does not remain true for the
Pompeiu-Hausdorff distance of solution sets S(ξ) = S0(ξ) and S(ξ̃) = S0(ξ̃),
respectively.

4 Construction of scenario trees

In this section we want to introduce a general approach to generate appropri-
ate scenario trees by making use of the stability theory of the previous section.
To this end we assume that r ≥ 1 and r′ are selected such that ξ has a finite
r-th moment and according to (3), respectively. Then we aim at generating a
scenario tree ξtr such that the distances

‖ξ − ξtr‖r and D∗
f (ξ, ξtr) (10)

are small, where the latter is given by (7). We conclude that the optimal values
v(ξ) and v(ξtr), and the approximate solution sets Sε(ξ) and Sε(ξtr) are close
to each other according to Theorem 1 and Theorem 2, respectively.

4.1 General Approach

The scenario tree construction method starts with a good initial scenario ap-
proximation consisting of a finite number of scenarios. These scenarios might
be obtained by quantization techniques [16] or by sampling or resampling tech-
niques based on parametric or nonparametric stochastic models of the input
process ξ. Let us denote the initial approximation of ξ by ξ̂ having scenarios
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ξi = (ξi
1, ..., ξ

i
T ) ∈ R

Td with probabilities pi > 0, i = 1, ..., N , and a common
root, i.e., ξ1

1 = ... = ξN
1 =: ξ∗1 .

In the following we assume that

‖ξ − ξ̂‖r + D∗
f (ξ, ξ̂) ≤ ε (11)

holds for some given (initial) tolerance ε > 0. For example, condition (11)

may be satisfied for D∗
f and any tolerance ε > 0 if ξ̂ is obtained by sampling

from a finite set with sufficiently large sample size (see [23, Example 5.3]).
A more general case is discussed in [20], where the only assumption is that
the initial set of scenarios provides a good approximation with respect to the
Lr-distance.

Next we describe an algorithmic procedure that starts from ξ̂ and ends
up with a scenario tree process ξtr having the same root node ξ∗1 , less nodes

than ξ̂ and allowing for constructive estimates of ‖ξ̂ − ξtr‖r . The idea of the
algorithm consists in forming clusters of scenarios based on scenario reduction
on the time horizon {1, ..., t} recursively for increasing time t. To this end, the
seminorm ‖ . ‖r,t on Lr(Ω,F , P; Rs) (with s = Td) given by

‖ξ‖r,t :=
(

E
[

|ξ|rt
])1/r

(12)

is used at step t, where | . |t is a seminorm on R
s which, for each ξ =

(ξ1, ..., ξT ) ∈ R
s, is given by |ξ|t := |(ξ1, ..., ξt, 0, ..., 0)|.

The scenario tree construction algorithm determines recursively stochastic
processes ξ̂t having scenarios ξ̂t,i endowed with probabilities pi, i ∈ I :=
{1, ..., N}, and, in addition, partitions Ct = {C1

t , ..., CKt

t } of the index set I,
i.e.,

Ck
t ∩ Ck′

t = ∅ (k 6= k′) and

Kt
⋃

k=1

Ck
t = I. (13)

The index sets Ck
t ∈ Ct, k = 1, ..., Kt, represent clusters of scenarios (see

Figure 1 for an illustration). To define these clusters we aim at aggregating
similar scenarios at each time step.

The initialization of the scenario tree generation procedure consists in
setting ξ̂1 := ξ̂, i.e., ξ̂1,i = ξi, i ∈ I, and C1 = {I}. At step t (with t > 1) we

consider each cluster Ck
t−1, i.e., each scenario subset {ξ̂t−1,i}i∈Ck

t−1
, separately

and delete scenarios {ξ̂t−1,j}j∈Jk
t

by the forward selection algorithm of [21]
(see also [23, Section 2]) such that





Kt−1
∑

k=1

∑

j∈Jk
t

pj min
i∈Ik

t

∣

∣ξ̂t−1,i − ξ̂t−1,j
∣

∣

r

t





1/r

is bounded from above by some prescribed tolerance. Here, the index set Ik
t

of remaining scenarios is given by
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1 2 3 4t t t t= = = =

Fig. 1. Illustration of the tree construction by recursive scenario clustering

Ik
t = Ck

t−1 \ Jk
t .

As in the general scenario reduction procedure in [21], the index set Jk
t is

subdivided into index sets Jk
t,i, i ∈ Ik

t such that

Jk
t =

⋃

i∈Ik
t

Jk
t,i and Jk

t,i := {j ∈ Jk
t : i = ikt (j)}

with ikt (j) ∈ argmini∈Ik
t
|ξ̂t−1,i − ξ̂t−1,j |rt .

Next we define a mapping αt : I → I such that

αt(j) =

{

ikt (j) , j ∈ Jk
t , k = 1, ..., Kt−1

j , otherwise.
(14)

Then the scenarios of the stochastic process ξ̂t = {ξ̂t
τ}

T
τ=1 are defined by

ξ̂t,i
τ =

{

ξ
ατ (i)
τ , τ ≤ t
ξi
τ , otherwise

(15)

with probabilities pi for each i ∈ I. The processes ξ̂t are illustrated in Figure
2, where ξ̂t corresponds to the t-th picture for t = 1, ..., T . The partition Ct

at t is defined by

Ct = {α−1
t (i) : i ∈ Ik

t , k = 1, ..., Kt−1}, (16)

i.e., each element of the index set Ik
t defines a new cluster and the new partition

Ct is a refinement of the former partition Ct−1.
The scenarios of the final scenario tree ξtr := ξ̂T and their probabilities

are given by the structure of the final partition CT , i.e., they have the form

ξk
tr =

(

ξ∗1 , ξ
α2(i)
2 , ..., ξ

αt(i)
t , ..., ξ

αT (i)
T

)

and πk
T =

∑

j∈Ck
T

pj if i ∈ Ck
T (17)

for each k = 1, ..., KT . The index set It of realizations of ξtr
t is given by
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It :=

Kt−1
⋃

k=1

Ik
t .

For each t ∈ {1, ..., T} and each i ∈ I there exists an unique index kt(i) ∈

{1, ..., Kt} such that i ∈ C
kt(i)
t . Moreover, we have C

kt(i)
t = {i} ∪ J

kt−1(i)
t,i for

each i ∈ It. The probability of the i-th realization of ξtr
t is πi

t =
∑

j∈C
kt(i)
t

pj .

The branching degree of scenario i ∈ It−1 coincides with the cardinality of

I
kt(i)
t .

The next result quantifies the relative error of the t-th construction step
and is proved in [23, Theorem 3.4].

Theorem 3. Let the stochastic process ξ̂ with fixed initial node ξ∗1 , scenarios
ξi and probabilities pi, i = 1, ..., N , be given. Let ξtr be the stochastic process

with scenarios ξk
tr = (ξ∗1 , ξ

α2(i)
2 , ..., ξ

αt(i)
t , ..., ξ

αT (i)
T ) and probabilities πk

T for
i ∈ Ck

T , k = 1, ..., KT . Then we have

∥

∥ξ̂ − ξtr

∥

∥

r
≤

T
∑

t=2





Kt−1
∑

k=1

∑

j∈Jk
t

pj min
i∈Ik

t

|ξi
t − ξj

t |
r





1/r

. (18)

4.2 Flexible algorithm

Summarizing the above ideas yields the following scenario tree construction
algorithm that allows to control the tree structure as well as the approximation
tolerance with respect to the Lr-distance.

Algorithm 1 (forward tree construction)
Let N scenarios ξi with probabilities pi, i = 1, ..., N , fixed root ξ∗1 ∈ R

d, r ≥ 1

and tolerances εr, εt, t = 2, ..., T , be given such that
∑T

t=2 εt ≤ εr.

Step 1: Set ξ̂1 := ξ̂ and C1 = {{1, ..., N}}.

Step t: Let Ct−1 = {C1
t−1, ..., C

Kt−1

t−1 }. Determine disjoint index sets Ik
t and

Jk
t such that Ik

t ∪ Jk
t = Ck

t−1, the mapping αt( . ) according to (14) and a

stochastic process ξ̂t having N scenarios ξ̂t,i with probabilities pi according
to (15) and such that

∥

∥ξ̂t − ξ̂t−1
∥

∥

r

r,t
=

Kt−1
∑

k=1

∑

j∈Jk
t

pj min
i∈Ik

t

|ξi
t − ξj

t |
r ≤ εr

t .

Set Ct = {α−1
t (i) : i ∈ Ik

t , k = 1, ..., Kt−1}.
Step T+1: Let CT = {C1

T , ..., CKT

T }. Construct a stochastic process ξtr having

KT scenarios ξk
tr such that ξk

tr,t := ξ
αt(i)
t , t = 1, ..., T , if i ∈ Ck

T with

probabilities πk
T according to (17), k = 1, ..., KT .
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Fig. 2. Stepwise scenario tree construction for an example

While the first picture in Figure 2 illustrates the process ξ̂, the t-th picture
corresponds to the situation after Step t, t = 2, 3, 4, 5 of the algorithm. The
final picture corresponds to Step 6 and illustrates the final scenario tree ξtr.
The proof of the following corollary is also given in [23].

Corollary 1. Let a stochastic process ξ̂ with fixed initial node ξ∗1 , scenarios
ξi and probabilities pi, i = 1, ..., N , be given. If ξtr is constructed by Algorithm
1, we have

‖ξ̂ − ξtr‖r ≤
T

∑

t=2

εt ≤ εr.

The next results states that the distance |v(ξ)− v(ξtr)| of optimal values gets
small if the initial tolerance ε in (11) as well as εr are small (cf. [22, Theorem
3.4].

Theorem 4. Let (A1), (A2) and (A3) be satisfied with r′ ∈ [1,∞) and the set
X1 be nonempty and bounded. Let L > 0, δ > 0 and C > 0 be the constants

appearing in Theorem 1 and (8), respectively. If (ε
(n)
r ) is a sequence tending to
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0 such that the corresponding tolerances ε
(n)
t in Algorithm 1 are nonincreasing

for all t = 2, ..., T , the corresponding sequence (ξ
(n)
tr ) has the property

lim sup
n→∞

|v(ξ) − v(ξ
(n)
tr )| ≤ L max{1, C}ε, (19)

where ε > 0 is the initial tolerance in (11).

5 Polyhedral risk functionals

The results and methods from section 3 and section 4 rest upon the linearity
of problem (1) to some extent. Hence, in general they are not valid for the risk-
averse problem (2) incorporating a general (nonlinear) risk functionals ρ such
as, e.g., Value-at-Risk (ρ = VaRα) or standard deviation. Also algorithmic
approaches for (1) might be destroyed by the incorporation of general risk
functionals. However, in this section we consider the risk-averse problem (2)
with ρ being chosen as a so-called polyhedral risk functional. This class of risk
functionals has been introduced in [8, 7]. The key feature of these functionals
is that they, though being non-linear, do not destroy mathematical structures
of stochastic programs such as linearity or convexity.

5.1 Definition

The reason for the favorable behavior of polyhedral risk functionals in (2) is
obvious from their definition: a polyhedral risk functional ρ is given by (the
optimal value of) a linear stochastic minimization problem of the form

ρ(z) = inf















E





J
∑

j=0

〈cj , yj〉





∣

∣

∣

∣

∣

∣

∣

∣

y ∈ ×J
j=0Lp(Ω, σ(ξtj ), P; Rkj )

yj ∈ Yj P-almost surely (a.s.) (j = 0, ..., J),
∑j

τ=0〈wj,τ , yj−τ 〉 = ztj
a.s. (j = 1, ..., J),

∑j
τ=0 Vj,τyj−τ = rj a.s. (j = 0, ..., J)















(20)

for every z = (zt1 , ..., ztJ
) ∈ ×J

j=1Lp(Ω, σ(ξtj ), P) with some p ∈ [1,∞). The

numbers kj ∈ N0, dj ∈ N0 (j = 0, ..., J), vectors cj ∈ R
kj , rj ∈ R

dj (j =
0, ..., J), wj,τ ∈ R

kj−τ (j = 1, ..., J , τ = 0, ..., j), matrices Vj,τ ∈ R
dj×kj−τ

(j = 0, ..., J , τ = 0, ..., j), and polyhedral cones Yj ⊆ R
kj (j = 0, ..., J) have

to be chosen in advance such that the resulting functional exhibits suitable
risk functional properties. Clearly, if definition (20) is inserted into (2) with1

γ = 1, one ends up with the problem

1 The choice γ = 1 is not restrictive at all since the so-called mean-risk objective
γ · ρ(zt1 , ..., ztJ

) − (1 − γ) · E [zT ] can be expressed as another polyhedral risk
functional of the form (20); cf. [8, 7].
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min































E





J
∑

j=0

〈cj , yj〉





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x ∈ ×T
t=1Lr′(Ω,At, P; Rmt), xt ∈ Xt a.s. (t ≥ 1),

y ∈ ×J
j=1Lp(Ω,Atj

, P; Rkj ), yj ∈ Yj a.s. (j ≥ 0),
At,0xt + At,1(ξt)xt−1 = ht(ξt) a.s. (t = 2, ..., T ),

zt = zt(x, ξ) := −
∑t

τ=1〈bτ (ξτ ), xτ 〉 (t = 1, ..., T ),
∑j

τ=0〈wj,τ , yj−τ 〉 = ztj
a.s. (j = 1, ..., J),

∑j
τ=0 Vj,τyj−τ = rj a.s. (j = 0, ..., J)































(21)

i.e., the non-linearity of the functional ρ is transformed into a problem of
the form (1) with additional decision variables yj and additional linear con-
straints. This fact is not only useful for stability analysis (see below), it is also
appreciated with regard to algorithmic issues. Note that this transformation
is also possible if integer variables are incorporated into (1).

Most well-known risk functionals (e.g., VaRα and standard deviation which
are both not polyhedral) depend on a single random variable z only rather
than on a finite sequence zt1 , ..., ztJ

. In the framework of (2) this means J = 1
and t1 = T . Several coherence axioms for such single-period risk functionals
have been suggested in [1, 14, 30] which are broadly accepted. For medium-
and long-term economic activities (such as the model in section 6) one may
want to use multi-period risk functionals (J > 1) that take into account the
temporal development of profits and losses, e.g., to avoid liquidity problems
at intermediate time steps. Also for this case coherence axioms are suggested
[2, 15, 33]. In both the single- and the multi-period case such axioms give
directions for the choice of the vectors and matrices in (20).

5.2 Properties

Because the arguments ztj
in (20) appear on the right-hand sides of the con-

straints, it can be concluded that the functional ρ is always convex [8, 7].
Hence, the theory of convex duality can be applied. This yields dual rep-
resentations for ρ which can be useful for interpretation and verification of
coherence axioms, and for algorithmic approaches, too.

Theorem 5. ([8, 33, 7]) Let ρ be a polyhedral risk functional of the form (20)
and let the following conditions be satisfied for Yj , cj, wj,τ , and Vj,τ :

• complete recourse:

(

Vj,0

w′
j,0

)

Yj = R
dj+1 (j = 1, ..., J),

• dual feasibility:
⋂J

j=0 Dρ,j 6= ∅ with

Dρ,j :=

{

(uv, uw) ∈ R
J × R

P

dj :

cj +
∑J

ν=max{1,j} uv,νwν,ν−j +
∑J

ν=j V ∗
ν,ν−juw,ν ∈ −Y ∗

j

}

.

Then the functional ρ is finite, convex, and continuous on ×J
j=1Lp(Ω, σ(ξtj ), P)

and it is representable by
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ρ(z) = sup















−E

[

∑J
j=1

(

λjztj
+ 〈µj , rj〉

)

]

∣

∣

∣

∣

∣

∣

∣

∣

λj ∈ Lp′(Ω, σ(ξtj ), P),
µj ∈ Lp′(Ω, σ(ξtj ), P; Rdj),
(E [λ|ξtj ] , E [µ|ξtj ]) ∈ Dρ,j a.s.
(j = 0, ..., J)















with p′ ∈ (1,∞] being defined by 1/p + 1/p′ = 1.

The above dual representation can be read as follows: the supremum oper-
ator aims at making λ large where z is small (in compliance with the respective
constraints). Hence, ρ(z) can be understood as a worst case weighted expecta-
tion of z (possibly biased by 〈µj , rj〉). If ρ satisfies the coherence axioms from
[2], then (and only then) the constraints in the dual representation are such
that all the λ multipliers are probability densities and 〈µj , rj〉 is always zero.

5.3 Single-period examples

For J = 1 and t1 = T , i.e., for the single-period situation, polyhedral risk
functionals can be found in economic literature.

Example 1. The Conditional or Average Value-at-Risk at level α ∈ (0, 1)
(CVaRα or AVaRα, cf. [34] and [14, Chapter 4.4]) is given by

AVaRα(z) := 1
α

∫ α

0

VaRᾱ(z)dᾱ = inf
y0∈R

{

y0 + 1
αE

[

(y0 + z)−
]}

(22)

where the representation on the right is due to [34]. By introducing variables
for positive and negative parts of y0 +z, respectively, AVaRα can be rewritten
in the form (20) with J = 1, d0 = d1 = 0, k0 = 1, k1 = 2, c0 = 1, c1 =
(

0, 1
α

)

, w1,0 = (1,−1), w1,1 = −1, Y0 = R, and Y1 = R
2
+. Hence, AVaRα is

a polyhedral risk functional. Moreover, complete recourse and dual feasibility
are satisfied and the dual representation of Theorem 5 reads

AVaRα(z) = sup
{

−E[λz] : λ ∈ Lp′(Ω,F , P), λ ∈ [0, 1
α ] a.s., E[λ] = 1

}

where the λ multipliers can be interpreted as densities. We note that AVaRα

is known to be a convex risk functional in the sense of [14], a coherent risk
functional in the sense of [1], and it is 1st and 2nd order stochastic dominance
consistent [30].

Example 2. Consider expected utility as a risk functional, i.e., ρu(z) = −E[u(z)]
with some concave and non-decreasing utility function u : R → R. This ap-
proach goes back to [29]. Typically, non-linear utility functions u : R → R

are used within this framework. Of course, in this case ρu cannot be repre-
sented by a linear stochastic program. However, in cases when the domain of
the outcome z can be bounded a priori, it makes sense to consider piecewise
linear utility functions u. In that case, −u is convex and piecewise linear,
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hence, according to [35, Example 3.54] there exist k ∈ N, w ∈ R
k, c ∈ R

k, and
v ∈ {0, 1}k such that

−u(µ) = inf
{

〈c, y〉
∣

∣ y ∈ R
k, y ≥ 0 〈w, y〉 = µ, 〈v, y〉 = 1

}

for all µ ∈ R. For this case, the expected utility risk functional reads

ρu(z) = inf

{

E
[

〈c, y1〉
]

∣

∣

∣

∣

y1 ∈ Lp(Ω,A, P; Rk), y1 ≥ 0 a.s.
〈w, y1〉 = z a.s., 〈v, y1〉 = 1 a.s.

}

where [35, Theorem 14.60] is used to justify the interchange of infimum and
expectation. Hence, ρu is a polyhedral risk functional with k0 = d0 = 0,
k1 = k, d1 = 1, c1 = c, w1,0 = w, V1,0 = v′, and Y1 = R

k1
+ . The special case of

the expected regret (expected loss), i.e., the case that ρ(z) = E[(z − γ)−] with
some target γ ∈ R, is obtained by setting k = 3, w = (γ, 1,−1), v = (1, 0, 0),
and c = (0, 0,−1).

5.4 Multi-period examples

For J > 1, i.e., for the multi-period situation, only few (polyhedral) risk
functionals are suggested in economic literature. However, the framework of
polyhedral risk functionals is constructive: various multi-period polyhedral
risk functionals have been proposed in [8, 7, 33] that can be understood as
multi-period extentions of AVaRα. They all satisfy the basic risk coherence
axioms from [2], but they differ with respect to the incorporation of the infor-
mation dynamics. We present a selection of those in the following (keeping the
original index numbers). It is assumed that the random variables zt represent
accumulated revenues as in problem (2).

Example 3. The functional

ρ2(zt1 , ..., ztJ
) := infy0∈R

{

y0 + 1
α

1
J

∑J
j=1 E

[

(

ztj
+ y0

)−
]}

.

from [8] can be understood as AVaRα applied to a compound lottery, i.e.,
applied to z0 given by z0(ω) := zι(ω)(ω) with ι being uniformly distributed
on {t1, ..., tJ} and independent of zt1 , ..., ztJ

. Clearly, ρ2 can be represented
through (20) by introducing (stochastic) variables for the positive and the
negative part of ztj

+y0, respectively, for j = 1, ..., J . Hence, it is a polyhedral
risk functional. It satisfies complete recourse and dual feasibility. The dual
representation according to Theorem 5 given by

ρ2(z) = sup

{

−E

[

∑J
j=1 λjztj

]

∣

∣

∣

∣

λ ∈ ×J
j=1Lp(Ω, σ(ξtj ), P),

∑J
j=1 E [λj ] = 1

λj ∈ [0, 1
α ] a.s. (j = 1, ..., J),

}

aims at placing the available probability mass of λ to stages where z =
(zt1 , ..., ztJ

) attains low values.
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Example 4. The polyhedral risk functional ρ4 from [8], though being defined
via an infimum representation of the form (20), is easier to catch by its dual
representation according to Theorem 5 given by

ρ4(z) = sup







−E

[

∑J
j=1 λjztj

]

∣

∣

∣

∣

∣

∣

λ ∈ ×J
j=1Lp(Ω, σ(ξtj ), P),

λj ∈ [0, 1
α ] a.s., E [λj ] = 1

J (j = 1, ..., J)
λj = E[λj+1|σ(ξtj )] a.s. (j = 1, ..., J − 1)







with z = (zt1 , ..., ztJ
). Here, the multiplier process λ has to be a martingale

and, hence, all time steps are weighted equally.

Example 5. In [2] it was suggested to apply a single-period risk functional
to the pointwise minimum of z = (zt1 , ..., ztJ

), i.e., to z0 given by z0(ω) :=
min{zt1(ω), ..., ztJ

(ω)}. Doing so by using AVaRα yields the functional

ρ6(z) = infy0∈R

(

y0 + 1
αE

[

(y0 + z0)
− ])

= infy0∈R

(

y0 + 1
αE

[

max{0,−y0 − zt1 , ...,−y0 − ztJ
}
])

which can also be represented in the form (20) by introducing (stochastic)
variables yj,2 = max{0,−y0 − zt1 , ...,−y0 − ztj

} = max{yj−1,2,−y0 − ztj
} for

j = 1, ..., J ; cf. [7]. Then, complete recourse and dual feasibility are satisfied
and there is also a dual representation according to Theorem 5.

5.5 Stability

At the first glance it seems as if stability of problem (2) with ρ being chosen
as a polyhedral risk functional (20) were covered by the results from section
3 due to the reformulation (21). However, a closer look to the latter problem
reveals that it is not completely of the form (1): the resulting recourse matrices
become stochastic when the dynamic constraints in (21) are integrated. Hence,
Theorem 1 and Theorem 2 are not valid for problem (21) and cannot be
suitably modified easily.

For this reason, stability of (2) is analyzed in [10, 7] systematically. Starting
with the finding of further continuity properties of ρ (stronger than plain
continuity as stated in Theorem 5), a stability theorem for the optimal values
(corresponding to Theorem 1) can be proven. However, the filtration distance
there is even more involved than Df in (5) from Theorem 1.

For the justification of the scenario tree generation methods in section 4,
it is necessary to estimate these problem dependent objects by problem in-
dependent ones as in (8). In order to get a similar estimate for the involved
filtration distance for problem (2), it turns out to be necessary to impose fur-
ther technical conditions on ρ (beside complete recourse and dual feasibility).
However, these conditions can be shown to be satisfied for all known polyhe-
dral risk functionals from [8, 7, 33] as long as the integrability number p is
set to 1. We conclude that there is a theoretical basis for the scenario tree
approximation methods from section 4 also in the situation of the risk-averse
problem (2) if ρ is chosen as a suitable polyhedral risk functional.
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Fig. 3. Schematic diagram for the optimization model components

6 Case study

In this final section we demonstrate the use of the above theoretical results by
presenting some simulation results from a power portolio optimization model;
cf. Fig. 3. For motivation and for a detailed technical description of this model
see [11, 9]; in the following, we describe its components on a more abstract
level only. Its numerical output shall then illustrate the usage of scenario trees
as well as the effect of different polyhedral risk functionals.

6.1 Model

Taking into account uncertainties in power portfolio optimization yields quite
automatically to stochastic programming; see, e.g., [40]. The optimization
model here is a mean-risk multi-stage stochastic program of the form (2). It
is tailored to the one year planning situation of a certain (German) municipal
power utility serving an electricity demand and a heat demand for certain
customers; see Fig. 3. The (German) power market induces an hourly time
discretization, hence, we have T = 365·24 = 8760 time steps. Energy demands
as well as market prices for each hour in the future are unknown at previous
time steps. These uncertainties can be described reasonably by stochastic time
series models; cf. [11]. It is assumed that the power utility is sufficiently small
such that it can be considered as a price-taker, i.e., its decisions do not affect
market prices or demands.

The concrete situation of the power utility is supposed to be as follows: It
features a combined heat and power (CHP) production plant that can serve
the heat demand completely but the electricity demand only in part. Hence,
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Fig. 4. Branching structure of the input scenario tree of 40 scenarios (T = 8760)

additional sources of electricity have to be used. Electricity can be obtained
from the spot market of a power exchange (such as the European Energy
Exchange EEX in Germany), or by purchasing a bilateral supply contract
from a larger power producer. The latter possibility is suspected to be more
expensive, but relying on the spot market only is known to be extremely risky.
Spot price risk, however, may be reduced (hedged) by means of derivative
products. Here, we consider futures from EEX (Phelix-futures, purely financial
contracts).

The original practical purpose of this model was to evaluate given supply
contracts in comparison with the possibility of relying on spot and future mar-
ket only [9, 11]. In the presentation here, however, we focus on the qualitative
output with respect to the effect of the different polyhedral risk function-
als from section 5. Therefore, no such supply contracts are considered in the
portfolio here.

The stochastic input process ξ = (ξ1, ..., ξT ), modeled by an appropriate
time series model (cf. [11]), is approximated by a scenario tree (cf. Fig. 4)
according to the methods from section 4. Each random vector ξt consists
of 27 components: electricity demand ξe

t , heat demand ξh
t , EEX spot prices

ξs
t , as well as base and peak future prices ξfbm

t and ξfpm
t (for each month

m = 1, ..., 12). However, to avoid technical problems related to arbitrage,
the future prices are calculated as fair prices from the spot prices in the
scenario tree, i.e., the methods from section 4 are applied only to the first
three components ξe

t , ξh
t , and ξs

t (t = 1, ..., T ).
The decisions at each time t consist of CHP production amounts, EEX

spot market volumes (electricity may be bought or sold), future stock, and
contract flexibility (if there is any). The CHP production is subject to sev-
eral technical (dynamic) constraints which are slightly simplified such that no
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integer variables come into play, i.e., everything is linear. There are no par-
ticular constraints for spot and future trading, but the pricing rules for EEX
futures (initial margin, variation margin, transaction costs) make it necessary
to introduce some auxiliary variables and constraints. Finally, there are the
demand satisfaction constraints requiring that electricity demand and heat
demand are always met. For further details we refer to [9]. The overall model
(incorporating a polyhedral risk functional) is linear, i.e., it is of the form (2)
resp. (21). Of course, the latter formulation is used for implementation.

6.2 Simulations results

Together with a fixed scenario tree (cf. Fig. 4) the overall optimization model
is a (large-scale) linear program. For the simulation results presented here, we
used a scenario tree of 40 scenarios and approx. 150, 000 nodes. The decision
variables are defined on the nodes of the tree. For solving the linear program
the ILOG CPLEX 9.1 software was employed. We restrict the presentation
here to the case that no additional supply contracts are involved (beside EEX
futures). Then, the different effects of the polyhedral risk functionals from
section 5 can be observed best.

In Fig. 5 the accumulated revenues zt over time for each scenario, i.e., the
temporal developments of the company’s wealth, are shown after optimization
with different polyhedral risk functionals. Of course, the tree structure of the
input scenario tree can also be found in these outputs since the (optimal)
revenues are stochastic in the same manner as the inputs. Optimizing the
expected overall revenue E[zT ] only (without any risk functional) yields large
dispersion (spread) at time T (cf. top of Fig. 5). The incorporation of the
(single-period) AVaR applied to zT reduces this spread considerably, but yields
high spread and very low values for zt at earlier time steps t < T . Clearly,
this behavior is not acceptable for a (small) power utility. The multi-period
polyhedral risk functionals from section 5 are effective such that dispersion is
somehow better distributed over all time steps.

The graphs in Fig. 5 suggest that the effect of ρ2, ρ4, and ρ6 is more or
less the same. However, Fig. 6 reveals that there are further differences among
these multi-period risk functionals. For the calculation of these graphs, the
fuel costs for the CHP plant have been slightly augmented in order to give
the cash value curves a different direction. The difference between the multi-
period functionals is, roughly speaking, that ρ4 aims at equal spread at all
times, whereas ρ2 and ρ6 try to find a maximal level that is rarely underrun.

The different shapes of the cash value curves are achieved by different
policies of future trading. Future trading is revealed through the jumps in
the cash value curves and is explicitely shown in Fig. 7. These graphs display
the overall future stock volumes (in Euro) at each time step. If no risk is
considered then there is no future trading at all since, due to the fair-price
assumption, there is no benefit from futures in terms of the expected revenue.
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Fig. 5. Optimal cash values zt (wealth) over time (t = 1, ..., T ) for each scenario
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Fig. 6. Optimal cash values zt (wealth) over time (t = 1, ..., T ), high fuel costs
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Fig. 7. Overall future stock over time (248 trading days), high fuel costs
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Using AVaR, ρ2, or ρ6 leads to extensive future trading activity, whereas the
application of ρ4 yields more moderate future trading activity.

Finally, we mention that, within this application model, the incorporation
of a polyhedral risk functional into the objective reduces the expected overall
revenue E[zT ] only by approx. 1%. The additional computational effort arising
from the risk measure is also very moderate.

7 Conclusion

We have presented a capacious theory for the framework of multi-stage
stochastic programming. Though appearing rather technical and abstract at
the first glance, these results are highly relevant in practice: Problems become
numerically tractable by finite scenario tree approximation of the underlying
stochastic input data. Moreover, risk-averion requirements can be incorpo-
rated without significant increase of complexity by means of polyhedral risk
functionals. In particular, there is a theoretical basis for the scenario tree
approximation methods in both cases, the risk-neutral and the risk-averse
case. For illustration, we have presented an exemplary model for mean-risk
optimization of an electricity portfolio.
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18. N. Gröwe-Kuska, K. C. Kiwiel, M. P. Nowak, W. Römisch, and I. Wegner.
Power management in a hydro-thermal system under uncertainty by Lagrangian
relaxation. In Greengard and Ruszczyński [17], pages 39–70.
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