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ANDREAS EICHHORN1, WERNER RÖMISCH1, AND ISABEL WEGNER1

ABSTRACT. We present a multistage stochastic programming model for mean-risk optimization of electricity portfolios containing physical
components and energy derivative products. We consider a medium-term time horizon of up to one year. Stochasticity enters the model via
the uncertain (time-dependent) prices, electricity demand, and heat demand. The objective is to maximize the expected overall revenue and,
simultaneously, to minimize a multiperiod risk measure, i.e., a risk measure that takes into account the intermediate time cash values. We
compare the effect of different multiperiod risk measures taken from the class of polyhedral risk measures which was suggested in our earlier
work. Furthermore, we discuss how such a mean-risk optimization problem can be solved by dual decomposition techniques (Lagrangian
relaxation). Hence, the scope of this presentation, beside the model itself, is the impact of polyhedral risk measures on stochastic programming
models with respect to both, results and decomposition structures.

1. INTRODUCTION

The deregulation of energy markets has lead to an increased awareness of the need for profit maximization with simultaneous
consideration of risk management, adapted to individual risk aversion of market participants. Mathematical modeling of such
problems with uncertain input data results in mixed-integer large-scale stochastic programming models. We refer to a wide range
of literature dealing with power management in a hydro-thermal system and simultaneous optimization of power production and
electricity trading, e.g. [6, 9, 15, 14, 3, 5].

We present a model tailored to the needs of the sales and trading department of a municipal power utility, i.e., our considerations
are from the perspective of a small player at the electricity market. It is assumed that there is a combined heat and power (CHP)
facility that serves for the heat demand and partly for the electricity demand. Further, we consider the possibility of trading
electricity at the electricity spot market of the European Energy Exchange (EEX) in Leipzig, Germany. This spot market is a
day-ahead auction. We allow only for price independent bids, hence, there is 100% volume safety on the one hand, and spot price
risk on the other hand. Finally, within our model it is possible to participate in the electricity future market at EEX which provides
a means for hedging spot price risk. In addition, it would be possible to evaluate the benefit of electricity delivery contracts offered
by larger power concerns by incorporating them into the model, but we won’t focus on this possibility here.

We suppose that each historical observation at time t of electricity demand De
t , spot price Cst , and heat demand Dh

t is a real-
ization of certain trivariate random variables. The joint distribution of this stochastic process will be characterized by a time series
model consisting of separate models for intra daily behavior and average daily behavior. The latter is modeled by an multivariate
ARMA model with additional trend components and a jump-diffusion model. In addition, future prices are assumed as so-called
fair prices with respect to the spot prices of the corresponding time period.

We generate a large number of Monte-Carlo scenarios from this time series model. By means of scenario reduction techniques
according to [10] we generate from this initial approximation of the underlying probability distribution a specific form of an
approximation - a scenario tree - representing the information structure of the optimization problem. Thus, spot prices and electrical
load as well as most of the decision variables are defined on this tree and, hence, can be understood as random processes with
discrete distribution.
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FIGURE 1. Scenario tree structure (left) and Scenario tree for spot prices (right).

2. POLYHEDRAL RISK MEASURES

The risk of high losses of uncertain outcomes is quantified with so-called risk measures, i.e., mappings from some space of
random variables (or random processes) to the real numbers that have certain properties (cf. [1, 7, 12]). In particular, in the case
that the risk of long or medium term activities is to be considered, multiperiod risk measures are needed that take also intermediate
cash values into account (cf. [2, 11]).
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However, stochastic programs incorporating risk measures are usually harder to solve. Therefore, one has to restrict the choice
of the risk measure to those with favorable properties for the structure of the respective stochastic program. To this end, the class
of polyhedral risk measures was introduced in [4] for which theses favorable properties are guaranteed.

Consider a finite number T ′ of time periods, a probability space (Ω,F , P), and a filtration F1 ⊆ F2 ⊆ ... ⊆ FT ′ of σ-fields,
e.g., Ft′ = σ(ξ1, ..., ξt′) with some random process ξ. Suppose the (uncertain) value process is represented by random variables
z1, z2, ..., zT ′ with zt′ ∈ Lp(Ω,Ft′ ,P) (p ≥ 1) for which large outcomes are preferred to lower ones.

In this framework, multiperiod polyhedral risk measures were defined in [4] as optimal values of certain simple multistage
stochastic programs:

(1) ρ(z1, ..., zT ′) = inf

(
E
hPT ′

t′=1〈ct′ , yt′〉
i ˛̨˛̨
˛
yt′ ∈ Lp(Ω,Ft′ ,P;Rkt′ ), yt′(ω) ∈ Yt′ ,Pt′−1
τ=0 〈wt′,τ , yt′−τ (ω)〉 = zt′(ω)

(t′ = 1, . . . , T ′)

)

with some kt′ ∈ N, ct′ ∈ Rkt′ , t′ = 1, . . . , T ′,wt′τ ∈ Rkt′−τ , t′ = 1, . . . , T ′, τ = 0, ..., t′−1, and polyhedral cones Yt′ ⊆ Rkt′ ,
t′ = 1, . . . , T ′.

Instances of this class were suggested in [4] for the multiperiod case. All these examples are multiperiod coherent, they can
be understood as multiperiod extentions of the one-period Conditional-Value-at-Risk CV aRα(z) = infr∈R

˘
r + 1

α
E[(z + r)−]

¯

with 0 < α� 1 (cf. [12]), e.g. ρ(z1, ..., zT ′ ) = infr∈R{r+ 1
T ′−1

PT ′
t′=2

1
α(T ′−1)

E[(r+zt′)
−]}. Another instance was suggested

in [11] based on the value of perfect information (VPI).

3. OPTIMIZATION MODEL

3.1. Trees. The model is a multistage stochastic program with a finite number T of timesteps. The input scenario tree consists of a
set on nodes N = {1, ..., N} with node probabilities (πn)n∈N , the tree structure (every node n has a unique predecessor n− and
an associated time step t(n)), and the random data ξ = (ξn)n∈N , ξn = (De

n, D
h
n, C

s
n). For the description and implementation

of the dynamics of the decisions (e.g. “day-ahead”) it is useful to define trees related to the input scenario tree. Decision variables
will be defined on the node of these trees. This guarantees non-anticipativity of the decisions in the required manner.

(1) Trading day tree: based on original scenario tree, branching at any node is delayed in time until the beginning of the next
trading day (mon-fri and not a holiday). Each node n ∈ N of the original scenario tree has a unique corresponding node
j(n) ∈ N trade such that for the timesteps of the nodes it holds that t(n) = t(j(n).

(2) Future tree: Based on the original scenario tree, the number of timesteps and, hence, the number of nodes is reduced such
that there is one timestep at each trading day at 12 am. In addition, there are timesteps (and nodes) for the final billing of
the futures at the end of each month (11 pm).

(3) Risk tree: Based on the original scenario tree, the number of timesteps is reduced to the subset of timesteps t′ = 1, ..., T ′

in the same manner as for the future tree.

3.2. Decision variables. Decision variables will be denoted by the letter x. All of them are defined on one of the trees described
in the previous paragraph. They will be indexed by the node number of the respective tree.
Future stock for month m (base): xfb,md , d ∈ N fut, m = 1, ..., 12

Future stock for month m (peak): xfp,md , d ∈ N fut, m = 1, ..., 12

Spot market volumes: xsj , j ∈ N trade

Contract volumes: xcj , j ∈ N trade.
Power production, electricity: xpen , heat: xphn , xpn := (xpen , x

ph
n ), n ∈ N

with restrictions |xpen − xpen−| ≤ δmax, A · xpn ≤ b, with some b ∈ Rk, k ∈ N, A ∈ Rk×2, and xphn ≥ Dh
n, n ∈ N .

The collectivity of all these variables will be denoted by x and all the (non-coupling) constraints will be symbolized by the
notation x ∈ X .

3.3. Cash value. The wealth at time t depends on the scenario and the decisions up to time t. Therefor we define auxiliary scalar
variables zn at each node n ∈ N of the input scenario tree that will be called cash value. Of course, the cash value zn at node
n ∈ N , i.e., at time t(n) in scenario s(n), is additively composed of the cost of each component of the portfolio at node n:

zn = zsn + zpn + zcn +
P
m=1,...,12

`
zf,b,mn + zf,p,mn

´
+
P
ñ∈path(n)

`
P pe ·De

ñ + P ph ·Dh
ñ

´

with zfn, zsn, zpn, and zcn denoting cash values originating only from future trading, spot market, power production, and supply
contract, respectively. The last term represents the revenue for satisfying the heat and electricity demand, respectively, with path(n)
denoting the set of all nodes between node n and the root node of the tree. Note that z = z(x, ξ), i.e., cash values depend
(non-anticipatively) on the decisions and the stochastics. Note further that, of course, component separability (zs = zs(xs, ξ),
zp = zp(xpe, xph, ξ), zf,b,mn = zf,b,mn (xf,b,mn , ξ) ...) holds.

3.4. Stochastic Program. The optimization problem representing our model can be written in the following form:

(2) min


ρ ((zn(x))n∈N )

˛̨
˛̨ x ∈ X
xsj(n) + xpen + xcj(n) ≥ De

n, n ∈ N

ff
.

Inserting (1) into (2) leads to an expectation based stochastic program with additional variables y (i.e., an additional component)
and additional (coupling) constraints:

(3) min

8
<
:

T ′X

t′=1

E
h
(ylct′ )l∈N risk

t′

i
˛̨
˛̨
˛̨
x ∈ X , y ∈ Y
xsj(n) + xpen + xcj(n) ≥ De

n, n ∈ N
zn(l)(x) =

P
k∈pathrisk(l) wt′(l),t′(l)−t′(k)yk, l ∈ N risk

9
=
;
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with Y = {(yl)l∈N risk |yl ∈ Yt′(l) ∀ l ∈ N risk} denoting the feasible variables originating from the risk measure definition.

4. EFFECT OF RISK MEASURES

4.1. Cash value curves. Optimizing without risk in the objective or with CV aR applied to the value at the last time step only,
leads to high spreading and to very low intermediate values for a considerably high number of scenarios. This may lead to serious
liquidity problems. The usage of a multiperiod risk measure that takes intermediate time steps into account corrects both, spreading
and negativity of values. The way how this is achieved, however, differs among the risk measures. Some risk measures tend to
make the curves run closer together. Other risk measures in the objective try to find an maximal level such that cash values do not
fall below that level at any time with high probability (cf. Fig. 2). Further, the VPI based risk measure according to [11] tends to
reduce the uncertainty of two consecutive timesteps.
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FIGURE 2. Cash value curves over time (one year) when optimization was carried out with expectation (top
left) and Conditional-Value-at-Risk (top right) of the final value and with two different multiperiod risk mea-
sures (bottom) taking intermediate values into account.

4.2. Decomposition structure. Problem (2) is almost decomposable with respect to the portfolio components. The demand sat-
isfaction restriction however couples the components additively. Moreover, since the risk measure ρ is not linear, there is further
coupling induced by the cash values. Due to the special form (1) of ρ the latter coupling is transformed into another coupling con-
straint in (3). Hence, component decomposition, a dual decomposition technique based on Lagrangian relaxation of these coupling
constraints (cf. [13, Chapter 3] and [9]), can be applied similarly to the case when ρ is linear, e.g. ρ(z) = E[−zT ]. Namely, to
relax these coupling constraints, one has to penalize their violation by introducing a suitable set of Lagrangian multipliers, thus, the
minimization with respect to the remaining constraints can be carried out componentwise. Finally, one has to maximize over these
multipliers in order to get (good) lower bounds for (3). However, it is shown in [4] that the latter maximization has to consider
linear equality constraints (beside box constraints), which is not the case for the traditional situation ρ(z) = E[−zT ].
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