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Abstract— We present an applied mathematical model with
stochastic input data for mean-risk optimization of electricity
portfolios containing electricity futures as well as several com-
ponents to satisfy a stochastic electricity demand: electricity spot
market, two different types of supply contracts offered by a large
power producer, and a combined heat and power production
facility with limited capacity. Stochasticity enters the model via
uncertain electricity demand, heat demand, spot prices, and
future prices. The model is set up as a decision support system for
a municipal power utility (price taker) and considers a medium
term optimization horizon of one year in hourly discretization.
The objective is to maximize the expected overall revenue and,
simultaneously, to minimize risk in terms of multiperiod risk
measures. Such risk measures take into account intermediate
cash values in order to avoid uncertainty and liquidity problems
at any time. We compare the effect of different multiperiod risk
measures taken from the class of polyhedral risk measures which
was suggested in our earlier work.

I. INTRODUCTION

The deregulation of energy markets has lead to an increased
awareness of the need for profit maximization with simulta-
neous consideration of financial risk, adapted to individual risk
aversion policies of market participants. Mathematical mode-
ling of such optimization problems with uncertain input data
results in mixed-integer large-scale stochastic programming
models with a risk measure in the objective. For the case that a
medium-term planning horizon is considered, one is faced with
consecutive decisions based on consecutive observations, thus,
the stochastic programs have to be of the multi-stage type,
cf. [1], [2]. We refer to a wide range of literature dealing with
simultaneous optimization of power production and electricity
trading, e.g. [3], [4], [5], [6], [7].

The multi-stage stochastic optimization model presented in
this paper is tailored to the requirements of a typical Germnan
municipal power utility, which has to serve an electricity
demand and a heat demand of customers in a city and its
vicinity. The power utility owns a combined heat and power
(CHP) facility that can serve the heat demand completely
and the electricity demand partly. Further electricity can be
obtained by purchasing volumes for each hour at the (day-
ahead) spot market of the European Energy Exchange (EEX),
or by signing a supply contract for a medium term horizon with
a larger power producer. The latter possibility is suspected to
be expensive, but relying on the spot market only is known to
be extremely risky. Spot price risk, however, may be reduced
by obtaining electricity futures at EEX.

Futures at EEX are purely financial contracts relating to a
specified delivery period in the future. Obtaining a future at a
certain market value results, at the end of the corresponding
delivery period, in a compensation of the difference between
this market value and the average spot price in the delivery
period. Hence, the question arises, whether the utility should
sign a delivery contract or rely on spot and future market. That
decision will be an output of the optimization which aims to
maximize the mean overall revenue and, simultaneously, to
minimize a risk measure.

To put this in concrete terms, we take a hourly discretization
and an optimization horizon of one year as a basis. We suppose
that two types of contracts are available: a fix contract (fix
delivery schedule, fix price), and a flexible contract. The latter
is based on the same delivery schedule, but, at the end of
each month, it is allowed to alter these pre-arranged volumes
for each hour of the following month by a certain percentage
and, in addition, to realter these new volumes in a day-ahead
manner by another percentage. The price of this contract
may depend on the overall volume and on the maximum
power (demand rate). Since electricity production together
with contract volumes might exceed the demand, we also allow
for selling at EEX spot and future market.

Due to the medium term horizon, we slightly simplified the
technical restrictions of the CHP facility in the model such
that no integer variables appear, we only impose that the heat
and the electricity production are within certain interdependent
bounds and that the electricity production of two consecutive
time-steps must not differ more than a given delta (cf. section
IV). Furthermore, we assume linear production cost. For the
spot market, we restrict ourselves to price-independent bids.
This guarantees full volume safety. We fully incorporate the
trading rules of EEX including transaction costs, day-ahead
offering, and initial and variation margins1 for futures. We
consider monthly base and peak futures for each month within
the optimization horizon, i.e., we neglect futures for quarters
and their cascading. We allow for rebalancing the future stock
on every trading day at 12 am.

Electricity demand and heat demand as well as spot and
future prices are not known in advance, but statistical infor-
mation is available due to historical observations. We set up a

1When a future is obtained from EEX, a deposit, the initial margin, has to
be payed rather than the market value. As long as the future is held, changes
of the market value have to be compensated immediately (variation margin).



time series model for these processes and we derive a scenario
tree from it by means of techniques according to [8], [9]. A
scenario tree is a specific form of a discrete approximation of
the time series model. The tree structure reflects the fact that
information is revealed over time. Future prices are assumed
to be so-called fair prices with respect to the spot prices of
the corresponding delivery period.

Risk aversion is achieved by including a multiperiod risk
measure in the objective. Such risk measures do not focus
on the terminal wealth only, but also take into account the
wealth at intermediate points in time in order to avoid liquidity
problems at all time [10]. Here, we apply the risk measures
to the cash values at the end of each month within the
optimization horizon. We use risk measure taken from the
class of polyhedral risk measures, that have been shown to
be particularly suitable for being optimized in a stochastic
program [11], [12]. They are, basically, multiperiod extentions
of the Conditional-Value-at-Risk (CV aR), which is, in turn,
an improvement of the well-known Value-at-Risk (V aR), that
is known to have certain drawbacks [13]. The key-idea of
polyhedral risk measures is that they can be written as a
specific stochastic minimization problem with an expectation
as objective, hence, minimizing such a risk measure is in many
respects equivalent to minimizing an expectation.

The remaining paper is organized as follows: First, we
describe the statistical models and the procedure of generating
a scenario tree therewith. Then, in section IV, we formalize
the above optimization model. Together with the scenario tree,
the model can be seen as a linear program. This so-called
deterministic equivalent is solved with a commercial LP solver
and simulation results are presented in section V.

II. MODELING STOCHASTIC INPUT DATA

First, we develop a time series model, i.e., a statistical
model, for the random input data of the optimization model
consisting of electricity demand, heat demand, and spot prices.
(The future prices will be derived directly from the spot prices,
cf. section III-B.) For each of these processes we have access
to a historical time series in hourly discretization to which our
time series model will be adapted.

The core of this model is a trivariate ARMA model for
the daily mean values. A general ARMA(p,q) model for a
stationary multivariate process X is based on finite order linear
difference equations with constant coefficient matrices, i.e.,

Xk − φ1Xk−1 − . . .− φpXk−p
= Zk + θ1Zk−1 + . . .+ θqZk−q , Zk ∼WN(0,Σ)

(II.1)
with a multivariate white noise process Z and suitable matrices
φj , θj , Σ. Such a multivariate model is capable to describe the
correlation between the components of Xk appropriately [14].

However, since ARMA models can only be applied to
stationary time series, several preprocessing methods have to
be applied in order to transform the originally non-stationary
series into stationary ones. In addition, for the diurnal pro-
files, cluster analyses are performed for all of the processes,
respectively.

A. Preprocessing electricity demand and heat demand

The historical data for the electricity demand De
t (electrical

load) and heat demand Dh
t (thermal load), which have been

provided by a German municipal utility, represents an one-
year period of hourly loads, hence, t = 1, ..., 365 · 24. Due to
climatic influence, such demands are characterized by typical
yearly cycles with high demand during winter time and low
demand during summer time. Further, the electricity demand
shows weekly cycles based on varying consumption behavior
of private and industrial customers on working days and
weekends. Moreover, the diurnal demand profiles reflect a
characteristic consumption behavior of the customers with sea-
sonal differences. Outliers can be observed on public holidays,
on days between holidays, and on days with extreme climatic
conditions.

Following our earlier studies [15], we suggest a decompo-
sition approach for the electricity demand data and a separate
handling of daily mean load data {D̄e

k, k = 1, . . . , 365} and
adjusted diurnal demand profiles

{Y e
k = (Y e24(k−1)+1, . . . , Y

e
24k), k = 1, . . . , 365}

such that De
t = D̄e

dt/24e ·Y et . For the heat demand we proceed
analogously with Dh

t = D̄h
dt/24e · Y ht .

The diurnal demand profiles are modeled by standard clu-
stering algorithms. We applied two specific types of cluster
analysis methods successively, joining (tree clustering) and k-
means clustering. The tree clustering method links together
objects of increasing dissimilarity or distance successively.
This suggests a suitable number k of clusters. The k-means
algorithm aims to find the optimum partition for dividing a
number of objects into k clusters. This procedure will move
objects around from cluster to cluster aiming to minimize the
within cluster variance and to maximize the between cluster
variance.

Applying these methods to the electricity demand data,
one can identify 9 clusters, namely for normal working days,
Saturdays and Sundays - finer classified depending on the
season. Outliers are assigned to the Sunday cluster of the same
season. Thus, we are able to assign a cluster to every day of the
year. For the heat demand, a number of 7 clusters turns out to
be appropriate. In this case, the clusters reflect the dependence
on the season and - in winter - on the day type.

For the daily means of the electricity demand data, we start
with the construction of a robust (deterministic) trend function
reflecting the varying consumption behavior of customers
during the year and the typical weekly cycles. An initial
trend estimation is calculated from the empirical means me

ij

of the D̄e
k values at week-day i in month j (i = 1, . . . , 7,

j = 1, . . . , 12). For each day k = 1, ..., 365 of the year let i(k)
and j(k) denote the week-day and the month, respectively.
Then, a primary trend is given by me

k = me
i(k),j(k) with

k = 1, . . . , 365.
Next, we improve this estimation by the extraction of large

outliers. Note that, for these demand series, outliers are values
lying fairly below the usual magnitude. We consider the relati-



ve differences between D̄e
k and me

k (k = 1, ..., 365). For each
k we replace D̄e

k by D̄e
k
′ := me

k if this respective difference
is considered as large. For the case that the difference is
small, we set D̄e

k
′ := D̄e

k. From this modified series D̄e
k
′

(k = 1, ..., 365), we calculate the empirical means me
ij
′ of

week-day i and month j in the same manner as above. Then
the second version of the trend estimation is given by me

k
′ :=

me
i(k),j(k)

′, k = 1, ..., 365. Analogously to the empirical means
me
ij
′, we calculate the empirical standard deviations veij

′ an set
vek
′ := vei(k),j(k)

′.
For the final trend function me

k
′′ we consider the truncated

series D̄e
k
′′ defined by D̄e

k
′′ := D̄e

k if D̄e
k ≥ me

k
′ − 3 · vek ′ and

D̄e
k
′′ := me

k
′−3·vek′ else. The values me

k
′′ are again calculated

as the empirical means of the the series D̄e
k
′′ depending on

week-day and month.
Now, the time series {Xe

k := D̄e
k
′′ − me

k
′′, k =

1, . . . , 365} turns out to be stationary, hence, it is suitable
for being described by an ARMA model. Processing the heat
demand series D̄h

k in the same manner yields an analogous
stationary time series {Xh

k , k = 1, . . . , 365}.

B. Preprocessing Spot prices

The spot market differs from other commodity markets
fundamentally. Electricity is a hardly storable product, hence,
there is the necessity of a balanced production and consump-
tion. Clearly, spot prices are affected by local characteristics
of different markets (climatic conditions, economic activities,
characteristics of local power producers, behavior of custo-
mers, political events), hence, an all-embracing modeling is
hardly possible. The problem of spot price modeling is studied
in a wide range of literature, see, e.g., [16], [17], [18], [19].

Like the electricity demand, spot prices are characterized
by typical yearly cycles with high prices during winter time
and lower prices during summer time. Further, the spot prices
show weekly and daily cycles. The midday load profiles reflect
the characteristic consumption behavior of the customers with
seasonal differences (evening price peak during winter time
and a midday peak during summer time). Further, one can
observe outliers on public holidays, on days with extreme
climatic conditions, and as a result of transmission shortages
or power plant outages.

In [16] a simultaneous modeling of the typical features of
the price process by combining an AR-GARCH process with a
jump-diffusion model is proposed. The model is calibrated to
historical data by using the maximum likelihood method. But,
facing the number of parameters that have to be estimated, this
seems to be an ambitious task in practice. Furthermore, for the
EEX spot price data, it can be observed that large price spikes
are followed by a fast reversion to the long term mean. But,
due to the high degree of autocorrelation in the price series, the
integrated model leads, in contrast to the former observation,
to a slow downward movement to the normal price level.

Hence, we suggest an easily adjustable discrete model for
daily mean spot prices C̄sk inspired by the above model but
with fast reversion behavior. It consists of a deterministic

component ms
k
′′ capturing trend and seasonality, the statio-

nary random component Xs
k from the multivariate ARMA

model (II.1) reflecting autocorrelation and mean reversion,
and a simplified jump diffusion model Ok · Zk representing
occasional price spikes. We allow for nonconstant jump rates
and frequencies by a parameterization depending on season:

C̄sk = ms
k
′′ +Xs

k +OkZk (II.2)

Ok =

{
0 with probability 1− λk
1 with probability λk

Zk ∼ N(µk, σk)

λk ∈ (0, 1)

(µk, σk, λk) = (µw, σw, λw), if k ∈ winter

(µk, σk, λk) = (µs, σs, λs), if k ∈ summer

The distribution of jumps is modeled with a Bernoulli distri-
bution with jump rate λk and the random jump magnitude is
normally distributed.

To estimate the deterministic component, we proceed ana-
logously as for the demand series. First, we calculate yearly
trend estimations ms

k and ms
k
′ and standard deviations vsk

′

depending on week-day and month in the same manner as in
section II-A. Then, extreme price outliers have to be identified.
Note that, here, outliers are values lying fairly above the
usual magnitude. Therefore, we define the outlier series by
Ok = max{0, Ok′} with Ok ′ := C̄sk−(ms

k
′+2·vsk ′). The final

trend estimation ms
k
′′ is calculated from the adjusted series

C̄sk − Ok as the empirical means of the respective week-day
i(k) in the respective month j(k).

The parameters of the outlier process (µw, σw, λw) and
(µs, σs, λs) are estimated by the empirical means, the em-
pirical standard deviations, and the relative outlier frequencies
in summer and winter time, respectively.

As for the demand profiles, we carried out a clu-
ster analysis with adjusted diurnal price profiles Ys

k =
(Y s24(k−1)+1, . . . , Y

s
24k) to model the intra daily price behavior.

In comparison to the electricity demand, there is a higher
variability among the profiles. Thus, the required number of
cluster is greater in this case. One can identify 10 clusters that
distinguish between working days, Saturdays, and Sundays on
the one hand, and between different seasons on the other hand.
Further, we operate with 3 outlier clusters for working days
with middle, high and extreme daily maximum for summer
and winter time, respectively. In addition, there is an outlier
cluster for weekends during winter time.

In the overall simulation procedure, the mapping between
days and profile clusters is a canonical one as long as Ok = 0,
i.e., as long as the simulation doesn’t yield an outlier for day k,
cf. (II.2). If, however, Ok = 1 for some day k, then we have to
assign an outlier cluster type. The choice among the available
outlier cluster in this case is made according to the simulated
outlier intensity Zk. For illustration, consider winter time and
let c1, c2, c3 denote the number of elements in the clusters
for moderate, middle, and large outliers, respectively. With
the model parameters (µw, σw, λw) from (II.2) we calculate



limits b1 and b2 such that the relative numbers of outlier cluster
elements is approximately maintained. Since Zk is normally
distributed, this is achieved, if we chose b1 and b2 such that

F (b1, µ
w, σw)− F (µw, µw, σw) =

1

2
· c1
c1 + c2 + c3

F (b2, µ
w, σw)− F (b1, µ

w, σw) =
1

2
· c2
c1 + c2 + c3

with F (y, µw, σw) denoting the normal distribution function
with mean µw and variance σw evaluated at y. Hence, if Ok =
1, we assign for day k the cluster of moderate outliers if 0 <
Zk ≤ b1, the middle outlier cluster if b1 < Zk ≤ b2, and the
cluster of large outliers if Zk > b2, respectively.

C. Calibrating the ARMA model

The calibration of the multivariate ARMA(p,q)-model re-
quires the determination of orders p and q as well as the
estimation of the model coefficients and the variance of the
noise process. All parameters can be estimated by the Hannan-
Rissanen-Algorithm simultaneously. The method generates
different ARMA models for specified model order upper
bounds, which are tested on stationarity and invertibility.

Then we have to decide among the remaining models for the
optimal one in the sense of a statistical information criterion
(Akaike, Bayes). After that, the efficiency of coefficient and
variance estimators may be improved by the conditional ma-
ximum likelihood method. The analysis is completed by some
tests of goodness of fit of the residuals (Portmanteau, Turning-
Point, Difference-Sign), which shall show the behavior of a
white noise process with zero mean and constant variance.

This calibration procedure applied to the preprocessed series

{Xk = (Xe
k , X

h
k , X

s
k) k = 1, ..., 365},

which is free of trend, seasonal patterns and extreme outliers,
yields a stationary invertible ARMA model, which passes all
the residual tests.

From this ARMA model we derive sample paths by si-
mulating the white noise process Zk in (II.1) repeatedly.
After composing these sample paths with the respective trend
functions and the jump process, diurnal profiles are added
using a bootstrap simulation procedure. Finally, we delete all
nonpositive scenarios.

III. SCENARIO TREES

The formulation of the optimization model is based on the
input scenario tree T , which consists of the tree structure
(nodes n ∈ N and predecessor mapping), node probabilities
πn, and the random data (De

n, D
h
n, C

s
n) for n ∈ N . The sce-

nario tree is constructed from a large number of sample paths
from section II via specialized scenario reduction algorithms,
that aim to minimize the approximation error with respect
to the optimal value and the solution set of the stochastic
optimization problem [9], [8].

The nodes of T are numbered successively beginning with
the root node 1. Every node n ∈ N \ {1} has a unique
predecessor denoted by n− and a unique corresponding time-
step t(n) ∈ {1, ..., 365 · 24}. Furthermore, we set path(n) =

0 12 24 36 48 60 72

Fig. 1. The (beginning of the) original scenario tree T (black) and the trading
tree T trade (red/gray) which is derived by delaying branching in T until the
beginning of the next trading day (t = 24, t = 48).

{n, n−, ..., 1} the set of all nodes between n and the root node.
The node probabilities πn are understood unconditional, i.e.,
for each time-step t it holds that

∑
{n∈N :t(n)=t} πn = 1.

Beside the random input data, also the decision variables are
defined on the scenario tree. This implies the non-anticipativity
of the decisions, i.e., the requirement that decisions at time t
must be based on the observations until time t only.

A. Derived trees

To formulate the optimization model, it is useful to in-
troduce further (smaller) trees derived from T by delaying
branching points or by eliminating time-steps. These trees
reflect further non-anticipativity restrictions, e.g. day-ahead
requirements for spot market decisions. All decision variables
are defined on the nodes of the trees. The nodes of the trees
are numbered in the same way as for the original scenario
tree:
• Future tree T fut: based on the original scenario tree, the

number of time-steps and, hence, the number of nodes is
reduced such that there is one time-step at each trading
day at 12 am. In addition, there are time-steps (and nodes)
for the final billing of the futures at the end of each
month (11 pm). Every node d ∈ N fut has a unique
corresponding node n(d) ∈ N in T .

• Trading day tree T trade: based on the original scenario
tree. For every day and every scenario, branching between
12 am, previous day, and 12 am, current day, is delayed in
time until the beginning of the next trading day (mon-fri
and not a holiday), cf. Fig. 1. Each node n ∈ N of the
original scenario tree has a unique corresponding node
j(n) ∈ N trade such that for the time-steps of the nodes
it holds that t(n) = t(j(n)).

• Contract tree T contr: based on T trade, branching is
(further) delayed to the 1st day of the following month.
For each node j of T trade there is a unique corresponding
node l(j) ∈ N contr.

Note that the decision about the contract alternatives (fix,
flexible, on none) has to be made already at the beginning,



i.e., the respective decision variable would be defined on the
root node 1 rather than on one of the above trees.

B. Prices for electricity futures

A future for a month m expires at the end of this month.
Then, the final future price is fixed to the average electricity
spot price in this month m. Note that, for peak futures, only
the hours between 8 am and 8 pm on trading days contribute to
the respective average, whereas, for base futures, every hour
of month m is taken into account. Hence, for the price of
a future for month m before the end of this month, it is
natural to assume so-called fair prices, i.e., the market value
of the future at some point in time t < end(m) is given by
the conditional expectation of the (temporal) average of the
(stochastic) spot prices with respect to the information that is
available at this time t. This approach guarantees the future
prices to be arbitrage-free.

IV. OPTIMIZATION MODEL

A. Parameters

The scenario tree data can be understood as parameters
indexed by node numbers. All the other parameters are indexed
by time-step or they are not indexed at all:
De
n, Dh

n: Demand of electricity, heat at node n ∈ N in MW
Csn: Spot price cots for electricity in Euro/MWh (n ∈ N )
Cfb,mn , Cfp,mn : Prices for base, peak futures in Euro/MWh
Cs,trans = 0.04 Euro/MWh: Spot market transaction cost
Cf,trans = 0.02 Euro/MWh: Future market transaction cost
Cf,imar = 2.0 Euro/MWh: Initial margin for futures
Cpe: Cost factor for electricity production in Euro/MWh
Cph: Cost factor for production of heat in Euro/MWh
δpe: Maximum gradient for electricity production in MW
P e: Selling price for electricity in Euro/MWh
P h: Selling price for heat in Euro/MWh
V ct : Pre-arranged contract volumes (t = 1, ..., 365 · 24)
Cc,fix: Energy rate for fix contract in Euro/MWh
Cc,flex,p: Peak energy rate, flexible contr. in Euro/MWh
Cc,flex,o: Off-peak energy rate in Euro/MWh
Cc,flex,d: Maximum demand rate in Euro/MW

B. Decision variables

Decision variables will be denoted by the letter x. All of
them are defined on one of the trees described in the previous
section and, hence, are indexed by the respective node number:
Future stock for month m (base): xfb,md ∈ R, d ∈ N fut

Future stock for month m (peak): xfp,md ∈ R, d ∈ N fut

Spot market volumes: xsj ∈ R, j ∈ N trade

Power production, electricity: xpen ∈ R+, n ∈ N
Power production, heat (thermal): xphn ∈ R+, n ∈ N
Power production: xpn = (xpen , x

ph
n ) ∈ R2, n ∈ N

Monthly declared contr. volumes: xc,flex,decl
l ∈ R+, l ∈ N contr

Contract volumes: xcj ∈ R+, j ∈ N trade

C. Restrictions

For the future trading variables, we impose that the initial
future stock is empty and that, after future for month m has
expired, the respective amount of futures is zero:
xfb,m1 = xfp,m1 = 0 for m = 1, ..., 12,
xfb,md = xfp,md = 0 if t(d) ≥ end(m) for m = 1, ..., 12.

For the CHP facility we impose a gradient restriction for
the production of electricity, the heat demand satisfaction
restriction, and that, for all time-steps, the two-dimensional
vector xpn lies within some given bounded polyhedron in R2

that is given through a matrix Ap and a vector bp:
|xpen − xpen−| ≤ δpe for n ∈ N \ {1},
xphn ≥ Dh

n for n ∈ N ,
Ap · xpn ≤ bp for n ∈ N .

For the contract volumes we have that xcj = 0 if no contract
is purchased and, if the fix contract is included, xcj = V ct(j) for
j ∈ N trade. For the case that the flexible contract is chosen,
the monthly declared volumes and the effective volumes,
respectively, have to satisfy:

xc,flex,decl
l ∈ [(1− α) · V ct(l), (1 + α) · V ct(l)]
xcj ∈ [(1− β) · xc,flex,decl

l(j) , (1 + β) · xc,flex,decl
l(j) ]

for l ∈ N contr, j ∈ N trade with some given percentages α, β.
For the spot market, no further restrictions are imposed. It

remains to require the satisfaction of the electricity demand:

xsj(n) + xpen + xcj(n) ≥ De
n, n ∈ N (IV.3)

D. Cash values

For formulating the objective, we introduce auxiliary varia-
bles zn (n ∈ N ) that represent the wealth at time t(n) in
the respective scenario, i.e., the accumulated revenues. These
cash values are composed of the revenues from satisfying the
demands, the cost of power production and contracts, and the
cash flows caused by spot market activity and future trading:

zn = zn− + P e ·De
n + P h ·Dh

n

+ zpn + zcn + zsn
+

∑12
m=1z

fb,m
n +

∑12
m=1z

fp,m
n

(IV.4)

Note that the z variables depend on the decisions. The cash
flows for power production and spot market are given by

zpn = −Cpe · xpen − Cph · xphn
zsn = −xsj(n) · Csn − |xsj(n)| · Cs,trans,

respectively. Because we allow for future trading only on
trading days at noon, zfb,mn = zfp,mn = 0 if t(n) does not
correspond to such point in time. If t(n) does correspond to
12 am on a trading day, i,e., if there is a corresponding node
d(n) ∈ N fut, then

zfb,mn = xfb,md(n)− ·
(
Cfb,md(n) − C

fb,m
d(n)−

)

−
(
|xfb,md(n) | − |x

fb,m
d(n)−|

)
· Cf,imar

−
∣∣∣xfb,md(n) − x

fb,m
d(n)−

∣∣∣ · Cf,trans · 1{t(n)6=end(m)}

for base futures of month m = 1, ..., 12. The first and the
second summand in the above equation represent the variation
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Fig. 2. Resulting optimal cash values over time for the case that no contract
is included and without incorporating multiperiod risk measures. Top: Only
E[zT ] is optimized. Bottom: 0.9 · CV aR(zT ) − 0.1 · E[zT ] is minimized.
There is considerably high spreading and many scenarios reach fairly low
cash values at the end or in the meantime, respectively.

margin and the initial margin, respectively. The indicator
function in the third summand reflects the fact, that transaction
cost don’t need to be payed when the future contract expires.
For peak futures, the cost functions zfp,mn are analogous.

For the contracts cash flow zcn, we have to distinguish
between the fix and the flexible contract. For both of them,
there is a volume dependent price to be payed, but for the
latter, there is, in addition, an extrapolated demand rate zc,flex,d

n

depending on the maximum demand within the elapsed time,
which is to be payed at the end of each month.

zcn =

{
−xcj(n) · Cc,fix for the fix contract
−xcj(n) · C

c,flex
t(n) − zc,flex,d

n for the flexible contract

The monthly demand rate is adapted such that, at the end of
the term, the overall payment is proportional to the overall
maximum power, hence,
∑
{ñ∈path(n)}z

c,flex,d
ñ = Cc,flex,d ·max{j∈path(j(n))}x

c,flex
j

for all leaves n, i.e., for n ∈ N such that t(n) = T . Note that
zc,flex,d
ñ = 0 if t(ñ) is not the end of a month.

E. Objective

The above cash values zn can be understood, together
with the node probabilities πn, as discrete random variables
zt, t = 1, ..., T, with T = 365 ·24 and zt = (zn){n∈N :t(n)=t}.
Thus, the overall expected revenue is given by E[zT ] and the
multiperiod risk measure ρ applied to the time-steps t1, ..., tT ′
reads ρ(zt1 , ..., ztT ′ ). Hence, the objective can be written as

min γ · ρ(zt1 , ..., ztT ′ )− (1− γ) · E[zT ] (IV.5)

with some weighting parameter γ ∈ [0, 1]. The minimization is
over all the x variables from section IV-B with respect to the
constraints from section IV-C. For the simulations, we used
γ = 0.9 and for t1, ..., tT ′ we took the end of each month
within the optimization horizon.
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Fig. 3. Resulting optimal cash values over time for the case that no contract
is included. Two different multiperiod polyhedral risk measures are optimized,
ρ2 (top) and ρ4 (bottom), cf. [11], [12]. Obviously, multiperiod risk measures
aim to reduce spreading at all time. Roughly speaking, ρ4 tries to reach equal
spread at all time, whereas ρ2 tries to find a maximal level that is not underrun.

V. SIMULATION RESULTS

The model is implemented and solved with ILOG CPLEX
8.1, the ILOG Concert Technology 13 library, and GNU C++
on a 2 GHz Linux PC with 1 GB memory. We used a scenario
tree with 21 scenarios, 365 · 24 = 8760 time-steps, and 98016
nodes.

We ran the simulation successively for the case that the fix
contract, the flexible one, or no contract at all is included. We
separated this decision from the rest of the optimization model,
because all the remaining decision variables are continuous,
hence, the three remaining (sub-) problems are purely linear
programs. Time for solution is in either case around two hours.
We optimized with CV aR, with 2 multiperiod risk measures,
and without risk measure and obtained:

no contract fix contr. flexible contr.
CV aR(zT ) 3, 088, 140 3, 135, 020 3, 354, 510
E[zT ] −3, 088, 140 −3, 135, 020 −3, 354, 510
opt. value 3, 088, 140 3, 135, 020 3, 354, 510

ρ2(z) 3, 192, 280 3, 670, 050 4, 129, 490
E[zT ] −3, 086, 200 −3, 128, 670 −3, 347, 280
opt. value 3, 181, 670 3, 615, 910 4, 051, 270

ρ4(z) 1, 264, 820 1, 382, 560 1, 562, 660
E[zT ] −3, 085, 480 −3, 133, 950 −3, 365, 940
opt. value 1, 446, 890 1, 557, 700 1, 742, 990

E[zT ] −3, 072, 310 −3, 120, 760 −3, 339, 230

These values suggest, that going without any contract is the
best alternative in terms of expected revenue and, surprisingly,
in terms of risk, too. Note that the absolute values of the
risk measures may not have a significant meaning, but can
be compared for the three contract alternatives.

Beside the (optimal) magnitude of the risk measure and the
expected terminal wealth, the shape of the cash values over all
time-steps seems to be the most relevant output information.
For the case that no contract is considered, the effect of
different risk measures can be observed very well, cf. Fig. 2



-7e+06

-6e+06

-5e+06

-4e+06

-3e+06

-2e+06

-1e+06

 0

 1e+06

 2e+06

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

-7e+06

-6e+06

-5e+06

-4e+06

-3e+06

-2e+06

-1e+06

 0

 1e+06

 2e+06

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

Fig. 4. Resulting cash values over time using the multiperiod risk measure
ρ2 for the case that the fix contract (top) or the flexible contract (bottom) is
included. In the latter case, there are jumps due to the monthly demand rate.

and Fig. 3. The different shapes of the curves are achieved by
different policies of future trading. Future trading is revealed
through the jumps in the curves. If no risk is considered (Fig. 2
top), then there is no future trading at all. For the case that
a delivery contract is considered, future trading activity is
reduced, cf. Fig. 4.

VI. CONCLUSIONS AND OUTLOOK

Regarding the optimal values, relying on spot and future
market appears to be the better choice than purchasing one of
the available delivery contracts. However, the situation may be
different if the conditions, i.e., the parameters, are changed,
or if we no longer assume fair prices for the futures. Due to
this fair prices assumptions, futures are almost too perfectly
capable of reducing spot price risk.

The model could be adapted and improved in numerous
directions, e.g. by allowing for price-dependent spot market
bids or by introducing integer variables into the CHP produc-
tion facility model. Moreover, another goal is to enlarge the
number of scenarios in order to approximate the uncertainty
more accurately. Therefore, one would need more efficient
solution methods. Currently, we are working on a decomposi-
tion approach based on Lagrangian relaxation of the coupling
constraint (IV.3) and the coupling induced by the non-linearity
of the polyhedral risk measures.
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