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Abstract—We propose a methodology for combining risk man-
agement with optimal planning of power production and trading
based on probabilistic knowledge about future uncertainties such
as demands and spot prices. Typically, such a joint optimization
of risk and (expected) revenue yields additional overall efficiency.
Our approach is based on stochastic optimization (stochastic pro-
gramming) with a risk functional as objective. The latter maps an
uncertain cash flow to a real number. In particular, we employso-
called polyhedral risk functionals which, though being non-linear
mappings, preserve linearity structures of optimization problems.
Therefore, these are favorable to the numerical tractability of the
optimization problems. The class of polyhedral risk functionals
contains well-known risk functionals such as Average-Value-at-
Risk and expected polyhedral utility. Moreover, it is also capable
to model different dynamic risk mitigation strategies.

I. I NTRODUCTION

In medium term planning of electricity production and
trading one is typically faced with uncertain parameters (such
as future energy demands and market prices) that can be
described reasonably by stochastic processes in discrete time.
When time passes, additional information about the uncertain
parameters may arrive (e.g., actual energy demands may be
observed). Planning decisions can be made at each time stage
based on the information available by then and on probabilistic
information about the future (non-anticipativity). In terms
of optimization, this situation is modeled by the framework
of multistage stochastic programming; cf. Section II. This
framework allows to anticipate the dynamic decision structure
appropriately.

In energy risk management, which is typically carried outex
post, i.e., after power production planning, derivative products
such as futures or options are traded in order to hedge a given
power production plan. However, decisions about buying and
selling derivative products can also be made at different time
stages, i.e., the dynamics of the decisions process here is of
the same type as in production and (physical) power trading.
Hence, it is suggesting to integrate these two decision pro-
cesses, i.e., to carry out simultaneously production planning,
power trading, and trading of derivative products. E.g., in[3],
[4] it has been demonstrated that such an integrated opti-

mization approach (electricity portfolio optimization) yields
additional overall efficiency.

However, for integrating risk management into a stochastic
optimization framework, risk has to be quantified in a definite
way. While in short term optimization simple risk functionals
(risk measures) such as expected utility or Value-at-Risk might
be appropriate, the dynamic nature of risk has to be taken into
account if medium or long term time horizons are considered.
Then, the partial information that is revealed gradually at
different time stages may have a significant impact on the risk.
Hence, in such situations it is necessary that risk functionals
incorporate this information dynamics somehow [2], [17].
However, it turns out that there are numerous possibilitiesfor
doing so and that the adequacy of a certain risk functional
depends strongly on the context (e.g., on the size of the
company).

This paper is organized as follows: after brief reviews
on multistage stochastic programming in Section II and risk
measurement in Section III, our concept of polyhedral risk
functionals from [6], [5] is presented in Section IV with regard
to its employment in electricity portfolio optimization. The
approach of polyhedral risk functionals, motivated through
tractability issues in optimization, is a constructive framework
providing particular flexibility with respect to dynamic aspects.
We suggest various concrete multi-period polyhedral risk func-
tionals and discuss the differences between them in SectionV.
Finally, we illustrate the effect of different polyhedral risk
functionals with optimal cash flow curves from a medium term
portfolio optimization model for a small power utility featuring
a combined heat and power plant (CHP); cf. Fig. 1.

II. M ULTISTAGE STOCHASTIC PROGRAMMING

For a broad presentation of stochastic programming we refer
to [23]. Let the time stages of the planning horizon be denoted
by t = 1, ..., T and let, for each of these time steps, ad-
dimensional random vectorξt be given. This random vector
represents the uncertain planning parameters that become
known at staget, e.g., energy demands or market prices. We
assume thatξ1 is known from the beginning, i.e., a fixed vector



Fig. 1. Schematic diagram for a power production planning and trading
model under demand and price uncertainty (portfolio optimization)

in R
d. The collectionξ := (ξ1, ..., ξT ) can be understood as

multivariate discrete time stochastic process. Based on these
notations a multistage stochastic program can be written as

min
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













F(z1, ..., zT )

∣

∣

∣

∣

∣

∣

∣

∣

zt :=
∑t

s=1
bs(ξs) · xs,

xt = xt(ξ1, ..., ξt), xt ∈ Xt,
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where xt is the decision vector for time staget. The latter
may depend and may only depend on the data observed until
time t (non-anticipativity), i.e., onξ1, ..., ξt, respectively. In
particular, the components ofx1 are here and nowdecisions
sincex1 may only depend onξ1 which was assumed to be
deterministic. The decisions are subject to constraints: eachxt

has to be chosen within a given setXt. Typically, eachXt is
a polyhedron or even a box, potentially further constrainedby
integer requirements. Moreover, there are dynamic constraits
involving matricesAt,s and right-hand sidesht which may
depend onξt in an affinely linear way. For the objective, we
introduce wealth valueszt (accumulated revenues) for each
time stage defined by a scalar product ofxt and (negative) cost
coefficientsbt. The latter may also depend onξt in an affinely
linear way. Hence, eachzt is a random variable (t = 2, ..., T ).

The objective functionalF maps the entire stochastic wealth
process (cash flow) to a single real number. The classical
choice in stochastic optimization is theexpected valueE
(mean) of the overall revenuezT , i.e.,

F(z1, ..., zT ) = −E[zT ]

which is alinear functional. Linearity is a favorable property
with respect to the numerical resolution of problem (1).
However, if risk is a relevant issue in the planning process,
then some sort of nonlinearity is required in the objective (or,
alternatively, in the constraints). In this presentation,we will
discussmean-riskobjectives of the form

F(z1, ..., zT ) = γ · ρ(zt1 , ..., ztJ
) − (1 − γ) · E[zT ]
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Fig. 2. Branching structure of a scenario tree wit40 scenarios,T = 8760
time steps, and approx.150, 000 nodes (there is a node at each time step for
each scenario)

with γ ∈ [0, 1] and ρ being a multi-period risk functional
applied to selected time steps1 < t1 < ... < tJ = T allowing
for dynamic perspectives to risk.

If the stochastic input processξ has infinite support (think of
probability distributions with densities such as normal distri-
butions), the stochastic program (1) is an infinite dimensional
optimization problem. For such problems a solution can hardly
be found in practice. Therefore,ξ has to be approximated
by another process having finite support [15], [14]. Such an
approximation must exhibit tree structure in order to reflect
the monotone information structure ofξ; cf. Fig. 2. Note that
appropriatescenario treeapproximation schemes must rely on
stability results for (1) (cf., e.g., [16], [8], [22]) that guarantee
that the results of the approximate optimization problem are
related to the (unknown) results of the original problem.

Though the framework (1) considers the dynamics of the
decision process, typically only the first stage solutionx1 is
used in practice since it is scenario independent whereasxt

is scenario dependent fort ≥ 2. When the second time stage
t = 2 is reached in reality one may solve a new problem
instance of (1) such that the time stages are shifted one step
ahead (rolling horizon). However,x1 is a good decision in the
sense that it anticipates future decisions and uncertainty.

III. A XIOMATIC FRAMEWORKS FORRISK FUNCTIONALS

The (multi-period) risk functionalρ in the objective of (1)
is basically a mapping

z = (zt1 , ..., ztJ
) 7→ ρ(z) ∈ R

i.e., a real number is assigned to each random wealth process
from a certain classZ. We assume thatZ is a linear space
of random processesz = (zt1 , ..., ztJ

) which areadaptedto
the underlying information structure, i.e.,ztj

= ztj
(ξ1, ..., ξtj

)
for j = 1, ..., J . Furthermore, one may require the exis-
tence of certain statistical moments for the random variables
zt1 , ..., ztJ

. The J time steps are denoted byt1, ..., tJ to
indicate that they may be only a subset of the timesteps
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Fig. 3. Left: Different perspectives in the multi-period situation. A risk functional may focus on the transitions between two consecutive time-steps (P1), or
it may only consider the distributionsztj

seen fromt0 (P2). Hybrid forms are indicated by (P3) and (P4). Right: Illustration of the information structure of a
stochastic wealth processzt1 , ..., ztJ

being discretely distributed. At each time stagetk and in each scenario one can look at subsequent time stepstj > tk
and consider the discrete (sub-) distribution ofztj

seen from this node. Each of these distributions may contribute to the riskρ(zt1 , ..., ztJ
).

t = 1, ..., T of the underlying information structure. We
assume1 < t1 < ... < tJ = T and sett0 = 1 for convenience.
The special case ofsingle-periodrisk functionals occurs if
only one time step is taken into account (J = 1, tJ = T ).

Of course,ρ should exhibit certain properties that justify
the termrisk functional. A high numberρ(z) should indicate
a high risk of ending up at low wealth valuesztj

, a low
(negative) numberρ(z) indicates a small risk. Such and
other intuitions have been formalized by various authors from
economics and financial mathematics. For the single-period
case (J = 1) there is a high degree of agreement about the
relevant axioms; cf.,e.g., [1], [11], [17].

The multi-period case (J > 1) is a much more involved
concern. As a start, we cite the first two axioms from [2], in
addition to convexity as the third axiom. In this paper the num-
berρ(z) is interpreted as theminimal amountµ of additional
risk-free capitalsuch that the processzt1 + µ, ..., ztJ

+ µ is
acceptable. This interpretation yields the axioms: A functional
ρ is a multi-period convex (capital) risk functionalif the
following properties hold for all stochastic wealth processes
z = (zt1 , ..., ztJ

) and z̃ = (z̃t1 , ..., z̃tJ
) in Z:

• Monotonicity: If ztj
≤ z̃tj

in any case forj = 1, ..., J ,
then it holds thatρ(z) ≥ ρ(z̃).

• Cash invariance: For eachµ ∈ R it holds that
ρ(zt1 + µ, ..., ztJ

+ µ) = ρ(zt1 , ..., ztJ
) − µ.

• Convexity: For eachµ ∈ [0, 1] it holds that
ρ(µz + (1 − µ)z̃) ≤ µρ(z) + (1 − µ)ρ(z̃).

The convexity property is motivated by the idea thatdiversi-
ficationmight decrease risk but never increases it. Sometimes

the following property is also required for allz ∈ Z:
• Positive homogeneity: For eachµ ≥ 0 it holds that

ρ(µz) = µρ(z).
Note that, for the single-period caseJ = 1, the first three
properties coincide with the classical axioms from [1], [10],
[12]. A positively homogeneous convex risk functional is
called coherentin [1]. We note, however, that other authors
do not require positive homogeneity, but claim that risk should
rather grow overproportionally, i.e.,ρ(µz) > µρ(z) for µ > 1;
cf. [13], [11]. Clearly, the expectation functionalE is a
coherent risk functional, but theα-Value-at-RiskVaRα(z) =
− inf{µ ∈ R : P(z ≤ µ) > α}, i.e., the negativeα-quantile of
z, is not.

For the multi-period case (J > 1) the three axioms of a
convex risk functional are only a basis admitting many degrees
of freedom. There are several aspects of risk that could be
measured. First of all, one may want to measure the chance
of very low valuesztj

at each time since very low values can
mean bankruptcy (liquidity considerations). In addition,one
may want to measure the degree of uncertainty one is faced
with at each time step. If at some timetk one can be sure
about the future development of ones wealthztj

(j > k), this
may be preferred to enduring uncertainty. E.g., low valuesztj

may be tolerable if one is sure that later the wealth is higher
again.

Hence, in this multi-period situation, one may want to take
into account not only the (marginal) distributions ofzt1 , ..., ztJ

but also their chronological order and theunderlying informa-
tion structure. Therefore, a multi-period risk functional may
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Fig. 4. Monotone and piecewise linear concave utility functions, single-period (left) and two-period (J = 2) (right)

also take into account the conditional distributions ofztj
given

the informationzt1 , ..., ztk
with k < j respectivelyξ1, ..., ξs

with s < tj (j = 1, ..., J); cf. Fig. 3. Clearly, there are quite
a lot of those conditional distributions and the question arises
which ones are relevant and how to weight them reasonably.
The above axioms leave this question open. In our opinion,
a general answer can not be given, the requirements depend
strongly on the application context, e.g., on the time horizon,
on the size and capital reserves of the respective company, on
the broadness of the model, etc.

Some authors, however, concretize the coherence axioms in
this direction by suggesting stronger cash invariance proper-
ties, e.g.:

• ρ(zt1 , ..., ztj−1
, ztj

+µ, .., ztJ
+µ)=ρ(zt1 , .., ztJ

)−µ for
eachj ∈ {1, ..., J} andµ ∈ R [19]

• ρ(zt1 , ..., ztj−1
, ztj

+z0, .., ztJ
+z0)=ρ(zt1 , .., ztJ

)−E[z0]
for eachj and each random variablez0 that is known at
time tj−1, i.e., z0 = z0(ξ1, ..., ξtj−1

) [17]
• ρ(z + z̃) = ρ(z) + z̃tJ

if z̃ = (z̃t1 , ..., z̃tJ
) is such that

z̃tJ
is nonrandom (deterministic), i.e.,z̃tJ

= z̃tJ
(ξ1) [13]

Each of these may be reasonable in some situations, but
they seem to be too special for imposing them as general
axioms. The framework of polyhedral risk functionals in the
next section allows to model concrete instances with different
perspectives to the dynamics.

IV. POLYHEDRAL RISK FUNCTIONALS

The basic motivation for polyhedral risk functionals is
a technical, but important one. Consider the optimization
problem (1). It is basically linear if the objective functional F
is linear. In this case it is well tractable by various solution
and decomposition methods. However, ifF incorporates a
risk functionalρ it is no longer linear since risk functionals
are essentially nonlinear by nature. Decomposition structures
may get lost and solution methods may take much longer
or may even fail. To avoid the worst possible situation one
should chooseρ to be convex. As discussed above, convexity
is in accordance with economic considerations and axiomatic

frameworks. Then (1) is at least a convex problem (except
possible integer constraints contained inXt), hence, any local
optimum is automatically a global optimum.

Now, the framework of polyhedral risk functionals [6], [5]
goes one step beyond convexity: polyhedral risk functionals
maintain linearity structures even though they are nonlinear
functionals. Namely, a polyhedral risk functionalρ is given
by

ρ(z) = inf


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
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j=0
cj · yj

]
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yj = yj(ξ1, ..., ξtj
) ∈ Yj ,

∑j

k=0
Vj,kyj−k = rj

(j = 0, ..., J),
∑j

k=0
wj,k · yj−k = ztj

(j = 1, ..., J)


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
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

(2)

where z = (zt1 , ..., ztJ
) denotes a stochastic wealth pro-

cess being non-anticipative with respect toξ, i.e., zt =
zt(ξ1, ..., ξt). The notationinf{ . } refers to the infimum. The
definition includes fixed polyhedral conesYj (e.g.,R+ × ...×
R+) in some Euclidean spacesR

kj , fixed vectorscj , hj wj,k,
and matricesVj,k, which have to be chosen appropriately. We
will give examples for these parameters below. However, any
functionalρ defined by (2) is always convex [6], [5].

Observe that problem (2) is more or less of the form (1), i.e.,
the risk of a stochastic wealth process is given by the optimal
value of a stochastic program. Moreover, if (2) is inserted into
the objective of (1) (i.e.,F = ρ), one is faced with two nested
minimizations which, of course, can be carried out jointly.
This yields the equivalent optimization problem

min
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xt = xt(ξ1, ..., ξt) ∈ Xt,

yj = yj(ξ1, ..., ξtj
) ∈ Yj ,

∑t−1

s=0
At,s(ξt)xt−s = ht(ξt),

∑j

k=0
Vj,kyj−k = rj ,

∑j

k=0
wj,k · yj−k

=
∑tj

s=1 bs(ξs) · xs
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which is a stochastic program of the form (1) withlinear ob-
jective. In other words: the nonlinearity of the risk functional
ρ is transformed into additional variables and additional linear



No. polyhedral representation (2)

ρ1 inf



1

J

PJ
j=1

`

y0,j + 1

α
E [yj,2]

´

˛

˛

˛

˛

y0 ∈ R
J , yj = yj(ξ1, ...ξtj

) ∈ R+ × R+ (j = 1, ..., J),
yj,1 − yj,2 = ztj

+ y0,j (j = 1, ..., J)

ff

ρ2 inf



y0 + 1

J

PJ
j=1

1

α
E [yj,2]

˛

˛

˛

˛

y0 ∈ R, yj = yj(ξ1, ...ξtj
) ∈ R+ × R+ (j = 1, ..., J),

yj,1 − yj,2 = ztj
+ y0,1 (j = 1, ..., J)

ff

ρ3 inf
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J

PJ
j=1

1

α
E [yj,2]

˛

˛

˛

˛

y0 ∈ R, yj = yj(ξ1, ...ξtj
) ∈ R+ × R+ (j = 1, ..., J),

y1,1 − y1,2 = zt1 + y0,1, yj,1 − yj,2 = ztj
+ y0,1 + yj−1,2 (j = 2, ..., J)

ff

ρ4 inf
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“

y0 +
PJ

j=1
1

α
E [yj,2]

”

˛

˛

˛

˛

y0 ∈ R, yj = yj(ξ1, ...ξtj
) ∈ R × R+ (j = 1, ..., J − 1), yJ = yJ(ξ1, ...ξtJ

) ∈ R+ × R+

yj,1 − yj,2 = ztj
+ yj−1,1 (j = 1, ..., J)

ff

ρ5 inf
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1

J

PJ
j=1 E

ˆ

yj−1,1 + 1

α
yj,3

˜

˛

˛

˛

˛

y0 ∈ R, yj = yj(ξ1, ...ξtj
) ∈ R × R+ × R+ (j = 1, ..., J),

Pj

k=1
(yk,2 − yk,3 − yk−1,1) = ztj

(j = 1, ..., J)

ff

ρ6 inf
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y0 + 1

α
E

ˆ

yJ,2

˜

˛

˛

˛

˛

y0 ∈ R, yj = yj(ξ1, ...ξtj
) ∈ R+ × R+ × R+ (j = 1, ..., J),

y1,2 − y1,3 = 0, yj,2 − yj,3 − yj−1,2 = 0 (j = 2, ..., J), yj,1 − yj,2 − y0 = ztj
(j = 1, ..., J)

ff

TABLE I
REPRESENTATION(2) FOR EXEMPLARY MULTI-PERIOD POLYHEDRAL RISK MEASURESρ1, ..., ρ6

constraints in (1). This means that decomposition schemes and
solution algorithms known for linear stochastic programs can
also be used for (1) withF = ρ. The caseF = γ ·ρ−(1−γ)·E
can be fully reduced to the caseF = ρ; cf. [5].

Another important advantage of polyhedral risk functionals
is that they also behave favorable to stability with respect
to (finite) approximation of the stochastic input processξ

[8]. Hence, there is a justification for the employment of the
scenario tree approximation schemes from [15], [14].

It remains to discuss the issue of choosing the parameters
cj , hj , wj,k, Vj,k, Yj in (2) such that the resulting functional
ρ is indeed a convex risk functional satisfying, e.g., the
coherence properties presented in the previous section. Tothis
end, several criteria have been deduced in [6], [5] involving
duality theory from convex analysis. However, here we restrict
ourselves to the presentation of examples.

First, we consider the caseJ = 1, i.e., the case of single-
period risk functionals evaluating only the distribution of
the final valuezT (total revenue). The starting point of the
concept of polyhedral risk functionals was the well-known risk
functionalAverage-Value-at-RiskAVaRα at some probability
level α ∈ (0, 1). It is also known as Conditional-Value-at-
Risk (cf. [21]), but as suggested in [11] we prefer the name
Average-Value-at-Risk according to its definition

AVaRα(z) :=
1

α

∫ α

0

VaRβ(z)dβ

and avoid any conflict with the use of conditional distributions
within VaR and AVaR. The Average-Value-at-Risk is a (single-
period) coherent risk functional which is broadly accepted.
AVaRα(zT ) can be interpreted as the mean (expectation) of
the α-tail distribution ofzT , i.e., the mean of the distribution
of zT below theα-quantile ofzT . It has been observed in [21]
that AVaRα can be represented by

AVaRα(zT ) = infy0∈R

{

y0 + 1

α
E[(y0 + zT )−]

}

= inf







y0 + 1

α
E[y1,2]

∣

∣

∣

∣

∣

∣

y0 ∈ R,

y1 = y1(ξ1, ..., ξT ) ∈ R
2
+,

y0 + zT = y1,1 − y1,2







where( . )− denotes the negative part of a real number, i.e.,
a− = max{0,−a} for a ∈ R. The second representation is
deduced from the first one by introducing stochastic variables
y1 for the positive and the negative part ofy0 + zT . Hence,
AVaRα is of the form (2) withJ = 1, c0 = 1, c1 = (0, 1

α
),

w1,0 = (1,−1), w1,1 = −1, Y0 = R, Y1 = R
2
+ = R+ × R+,

andh0 = h1 = V0,0 = V1,0 = V1,1 = 0. Thus, it is a (single-
period) polyhedral risk functional.

Another single-period example for a polyhedral risk func-
tional (satisfying monotonicity and convexity) is expected
utility, i.e., ρu(zT ) := −E[u(zT )] with a non-decreasing
concave utility functionu : R → R; cf. [11]. Typically,
nonlinear functions such asu(x) = 1− e−βx with some fixed
β > 0 are used. Of course, in such casesρu is not a polyhedral
risk functional. However, in situations where the domain of
zT can be bounded a priori, it makes sense to use piecewise
linear functions foru (see Fig. 4, left). Then, according to the
infimum representation of piecewise linear convex functions
[20, Corollary 19.1.2], it holds that

ρu(zT ) = inf

{

E [c · y1]

∣

∣

∣

∣

y1 = y1(ξ1, ..., ξT ) ∈ R
n+2
+ ,

w · y1 = zT ,
∑n

i=1
y1,i = 1

}

wheren is the number of cusps ofu, w1, ..., wn are thex-
coordinates of the cusps, andci = −u(wi) (i = 1, .., n). Thus,
ρu is a polyhedral risk functional. This approach can also be
generalized to the multi-period situation in an obvious wayby
specifying a (concave) utility functionu : R

J → R (see Fig. 4,
right). However, specifying an adequate utility function may
be difficult in practice, in particular in the multi-period case.
Furthermore, expected utility is not cash invariant, neither in
the single-period nor in the multi-period case. Therefore we
focus on generalizingAVaR to the multi-period case in the
following.

V. M ULTI -PERIODPOLYHEDRAL RISK FUNCTIONALS

In the multi-period caseJ > 1, the framework of polyhedral
risk functionals provides particular flexibility with respect to
dynamic aspects, i.e., it allows to model different perspectives
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Fig. 5. Optimal cash valueszt (wealth) over time (t = 1, ..., T ) for different risk functionals. Each curve in a graph represents one of the40 scenarios.

to the relations between different time stages. In the following
we introduce some examples which extendAVaRα to the
multi-period situation in different ways.

We start with definingρ1 as the simplest possibleAVaR
extension being defined as the sum ofAVaRα applied to
different time stages, i.e.,ρ1(z) := 1

J

∑J

j=1
AVaRα(ztj

).
Next we deduceρ2 from ρ1 by interchanging summation (Σ)
and minimization (inf), i.e.,

ρ1(z) = 1

J

∑J

j=1
inf

y0,j∈R

{

y0,j + 1

α
E

[

(

ztj
+ y0,j

)−
]}

ρ2(z) := inf
y0∈R

{

y0 + 1

J

∑J

j=1

1

α
E

[

(

ztj
+ y0

)−
]}

for any wealth sequencez. The latter functional can be
interpreted asAVaRα(zτ ) with a randomly drawn time step
τ ∈ {t1, ..., tJ} being stochastically independent ofz. Clearly,
the random variablezτ is a kind of mixture ofzt1 , ..., ztJ

.
Note, however, thatρ1 andρ2 do not consider the chronologi-
cal order ofzt1 , ..., ztJ

. Hence, they only take into account the
(marginal) distributionszt1 , ..., ztJ

seen from the present, i.e.,
from here and now (t0 = 1). In Fig. 3 (left) this perspective
is symbolized by (P2).

Applying AVaRα to other possible mixtures yields, e.g.,

ρ4(z) := AVaRα( 1

J

∑J

j=1
ztj

)

ρ6(z) := AVaRα(min{zt1 , ..., ztJ
})

where the index numbers4 and 6 are chosen compatibly to
[6], [17], [5]. These risk functionals depend on the multivariate
distribution of (zt1 , ..., ztJ

). In our opinion,ρ6 is the most
reasonable multi-period extension ofAVaR with regard to
liquidity considerations, sinceAVaR is applied to the respec-
tively lowest wealth values; see also [2, Section 4].

In [17], [18], the multi-periodAVaR was suggested. This
risk functional mAVaRα =: ρ5 takes up perspective (P1)
in Fig. 3 (left), i.e., it focuses on variations between two
consecutive time steps. It can be defined by

ρ5(z) := 1

J

∑J

j=1
E

[

AVaRα(ztj
− ztj−1

|ξ1, ..., ξtj−1
)
]

where AVaRα( . |ξ1, ..., ξtk
) refers to theconditional AVaR

with respect to the information available at timetk. The latter
is easy to understand by considering the tree in Fig. 3 (right):
The conditionalAVaR is the collection ofAVaRα values
calculated from the (sub-) distributions attj seen from each
node at timetk < tj . Note that, in themAVaR formula, these
AVaRα values are averaged in terms of the expected valueE.
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Fig. 6. Optimal future stock over time for different polyhedral risk functionals.

Now, all these examples can be represented through (2), i.e.,
they aremulti-period polyhedral risk measures; cf. Table I. In
addition, functionalρ3 is a kind of mixture betweenρ2 andρ5

and, thus, models perspective (P3) from Fig. 3 (left). Note that
ρ1, ..., ρ6 are multi-period coherent risk functionals according
to Section III. These examples show that the concept of poly-
hedral risk functionals allows to model different perspectives
to risk of processes. At this point, one might expect a risk
functional that takes into account all possible (conditional)
distributions as indicated in Fig. 3 (left), perspective (P4).
However, modeling such an all-embracing approach raises
the problem how to weight the risks of all these distribution
reasonably. Therefore, we refrain from such examples here.

VI. I LLUSTRATIVE SIMULATION RESULTS

Finally, we illustrate the effects of different polyhedralrisk
functionals by presenting some optimal wealth processes from
an electricity portfolio optimization model [9], [7]. Thismodel
is of the form (1), it considers the one year planning problem
of a municipal power utility, i.e., a price-taking retailer serving
heat and power demands of a certain region; see Fig. 1.
It is assumed that the utility features a combined heat and
power (CHP) plant that can serve the heat demand completely

but the power demand only in part. In addition, the utility
can buy power at the day-ahead spot market of some power
exchange, e.g., the European Energy Exchange EEX. Morover,
the utility can trade monthly (purely financial) futures (e.g.,
Phelix futures at EEX).

The objectiveF of this model is a mean-risk objective
as discussed in Section 1 incorporating a polyhedral risk
functional ρ and the expected total revenueE[zT ]; we use
γ = 0.9 as weighting factor. Time horizon is one year in hourly
discretization, i.e.,T = 8760. For the risk time stepstj we use
11 PM at the last trading day of each week (j = 1, ..., J = 52).
Time series models for the uncertain input data (demands and
prices) have been set up (see [9] for details) and approximated
according to [15], [14] by a finite scenario tree consisting of
40 scenarios; see Fig. 2. Such approximations are justified for
this optimization model through stability results for stochastic
optimization problems and polyhedral risk functionals [8]. The
resulting optimization problem is very large-scale, however,
it is numerically tractable due to the favorable nature of
polyhedral risk functionals. In particular, since we modeled
the CHP plant without integer variables, it is a linear program
(LP) which could be solved by ILOG CPLEX in about one
hour.
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Fig. 7. Optimal cash values over time (excerpt)

In Fig. 5 the optimal cash flows are displayed, i.e., the
wealth valueszt for each time stept = 1, ..., T and each
scenario, obtained from optimization with different mean-risk
objectives. These families of curves differ in shape due to
different policies of future trading induced by the different
risk functionals; see Fig. 6. Settingγ = 0 (no risk functional
at all) yield high spread forzT . UsingAVaRα(zT ) (γ = 0.9)
yields low spread forzT but low values and high spread at
t < T . This shows that, for the situation here, single-period
risk functionals are not appropriate means of risk aversion.
The employment of multi-period polyhedral risk functionals
yields spread that is better distributed over time. However,
the way how this is achieved is different. The functionalsρ2,
ρ3, andρ6 yield similar results: they aim at finding a levely0

as high as possible such that the curves rarely fall below that
level. The effect ofρ4 and ρ1 is different: these functionals
aim at equal spread at all times (where the effect ofρ1 is
weaker). At the first glance,ρ5 seems to have no effect at all,
but zooming into the branching points (Fig. 7) reveals that its
effect is a local one, namely branching is delayed only from
tj until tj+1 (perspective (P1) in Fig. 3). This effect may be
more useful for long term models (e.g., pension fund models
[17, Chapter 5]). Note that the displays in Fig. 5 illustrate
primarily perspective (P2) from Fig. 3, i.e., everything is
seen from here and now. Finally, we note that the effects of
the risk functionals cost only less than1% of the expected
overall revenueE[zT ].
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