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Abstract—We propose a methodology for combining risk man- mization approach (electricity portfolio optimization)elds
agement with optimal planning of power production and trading  additional overall efficiency.
based on probabilistic knowledge about future uncertaintés such However, for integrating risk management into a stochastic

as demands and spot prices. Typically, such a joint optimiz#on L > e -
of risk and (expected) revenue yields additional overall diciency. optimization framework, risk has to be quantified in a dedinit

Our approach is based on stochastic optimization (stochastpro- ~Way. While in short term optimization simple risk functidea
gramming) with a risk functional as objective. The latter maps an  (risk measures) such as expected utility or Value-at-Rigkm

uncertain cash flow to a real number. In particular, we employso-  pe appropriate, the dynamic nature of risk has to be taken int
called polyhedral risk functionals which, though being non-linear 504t if medium or long term time horizons are considered.

mappings, preserve linearity structures of optimization poblems. S . .
Therefore, these are favorable to the numerical tractabiliy of the Then, the partial information that is revealed gradually at

optimization problems. The class of polyhedral risk functbnals different time stages may have a significant impact on the ris
contains well-known risk functionals such as Average-Vala-at- Hence, in such situations it is necessary that risk funet®n

Risk and expected polyhedral utility. Moreover, it is also @pable incorporate this information dynamics somehow [2], [17].
to model different dynamic risk mitigation strategies. However, it turns out that there are numerous possibilftes
doing so and that the adequacy of a certain risk functional
depends strongly on the context (e.g., on the size of the
In medium term planning of electricity production andompany).
trading one is typically faced with uncertain parametetglis  This paper is organized as follows: after brief reviews
as future energy demands and market prices) that can dremultistage stochastic programming in Section Il and risk
described reasonably by stochastic processes in disarede t measurement in Section 1ll, our concept of polyhedral risk
When time passes, additional information about the unicertdunctionals from [6], [5] is presented in Section IV with sed
parameters may arrive (e.g., actual energy demands maytddts employment in electricity portfolio optimization.h€&
observed). Planning decisions can be made at each time stageroach of polyhedral risk functionals, motivated thioug
based on the information available by then and on probébilistractability issues in optimization, is a constructivenfiework
information about the future (non-anticipativity). In ne$ providing particular flexibility with respect to dynamicets.
of optimization, this situation is modeled by the frameworkVe suggest various concrete multi-period polyhedral nisicf
of multistage stochastic programmingf. Section Il. This tionals and discuss the differences between them in Se¥tion
framework allows to anticipate the dynamic decision stitet Finally, we illustrate the effect of different polyhedrdkk
appropriately. functionals with optimal cash flow curves from a medium term
In energy risk management, which is typically carriedexit portfolio optimization model for a small power utility feaing
post i.e., after power production planning, derivative praduca combined heat and power plant (CHP); cf. Fig. 1.
such as futures or options are traded in order to hedge a given
power production plan. However, decisions about buying and
selling derivative products can also be made at differenéti  For a broad presentation of stochastic programming we refer
stages, i.e., the dynamics of the decisions process here i2a0[23]. Let the time stages of the planning horizon be deshote
the same type as in production and (physical) power tradirgy ¢ = 1,...,7 and let, for each of these time stepsda
Hence, it is suggesting to integrate these two decision pmimensional random vecta; be given. This random vector
cesses, i.e., to carry out simultaneously production preyn represents the uncertain planning parameters that become
power trading, and trading of derivative products. E.g[3la known at stage, e.g., energy demands or market prices. We
[4] it has been demonstrated that such an integrated ogmtssume thag; is known from the beginning, i.e., a fixed vector

I. INTRODUCTION

Il. MULTISTAGE STOCHASTIC PROGRAMMING
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with v € [0,1] and p being amulti-period risk functional
in R%. The collection¢ := (¢4, ...,&7) can be understood asapplied to selected time steps< ¢; < ... < t; = T allowing
multivariate discrete time stochastic process. Based esethfor dynamic perspectives to risk.
notations a multistage stochastic program can be written as If the stochastic input procegsas infinite support (think of
2= S b(Ey) - s probability distributions with densities such as normait
s=LTss T butions), the stochastic program (1) is an infinite dimemaio

. = X AR )
_min {F(z, ..., 27) %tlxjél(&ég )’ &), fthe(g t)’ (1) optimization problem. For such problems a solution can lgard
bt T 5_:% t’sT)t Tt—s = Melst be found in practice. Thereforé, has to be approximated

by another process having finite support [15], [14]. Such an
wherez, is the decision vector for time stage The latter approximation must exhibit tree structure in order to reflec
may depend and may only depend on the data observed ui# monotone information structure &f cf. Fig. 2. Note that
time ¢ (non-anticipativity), i.e., ory, ...,&;, respectively. In appropriatescenario treeapproximation schemes must rely on
particular, the components af; are here and nowdecisions  stability results for (1) (cf., e.g., [16], [8], [22]) thaugrantee
sincer; may only depend or§; which was assumed to bethat the results of the approximate optimization problem ar
deterministic. The decisions are subject to constraimshe; related to the (unknown) results of the original problem.

has to be chosen within a given sEt. Typically, eachX; is  Though the framework (1) considers the dynamics of the
a polyhedron or even a box, potentially further constraibgd decision process, typically only the first stage solutignis
integer requirements. Moreover, there are dynamic cdtsstrajsed in practice since it is scenario independent whergas
involving matricesA; s and right-hand side#, which may is scenario dependent for> 2. When the second time stage
depend ort; in an affinely linear way. For the objective, we; — 2 is reached in reality one may solve a new problem
introduce wealth values; (accumulated revenues) for eachnstance of (1) such that the time stages are shifted one step
time stage defined by a scalar productpfand (negative) cost ahead (rolling horizon). However, is a good decision in the
coefficientsb;. The latter may also depend gnin an affinely sense that it anticipates future decisions and uncertainty
linear way. Hence, each is a random variablet (= 2, ..., T).

The objective functionaf maps the entire stochastic wealth I1l. A XIOMATIC FRAMEWORKS FORRISK FUNCTIONALS
process (cash flow) to a single real number. The classicalThe (multi-period) risk functionap in the objective of (1)
choice in stochastic optimization is thexpected valuéE s basically a mapping
(mean) of the overall revenug, i.e.,

F(Zl, ceey ZT) = —E[ZT]
which is alinear functional. Linearity is a favorable propert l.e., a real number is assigned to each random wealth process
' y ProPeMYeom a certain classz. We assume thag is a linear space

with respect to the numerical resolution of problem (1 5 random processes — (z %) which areadaptedto
However, if risk is a relevant issue in the planning procesg, underlying I tormation tslt’rdétutr; ey = 20 (61,61 )
then some sort of nonlinearity is required in the objective ( for j — 1....J. Furthermore oné .ma!{y reciuire’ ”t'ﬁe Jexis_

alternatively, in the constraints). In this presentatime, will : L X
discussmean-riskobiectives of the form tence of certain statistical moments for the random vaembl
) Ztyy.-, 2t,. The J time steps are denoted by,...,t; to
F(z1, . 2r) =5 p(2t,5 oy 2t,) — (1 =) - E[27] indicate that they may be only a subset of the timesteps

z = (Ztla "')ZtJ) = p(Z) €ER
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Fig. 3. Left: Different perspectives in the multi-periodusition. A risk functional may focus on the transitions bedw two consecutive time-steps (P1), or
it may only consider the distributions; seen from¢o (P2). Hybrid forms are indicated by (P3) and (P4). Rightsttation of the information structure of a
stochastic wealth process, , ..., z;, being discretely distributed. At each time stageand in each scenario one can look at subsequent time steps,
and consider the discrete (sub-) distributionzef seen from this node. Each of these distributions may caritito the risko(zt, , ..., 2¢ 5 )-

t = 1,...,T of the underlying information structure. Wethe following property is also required for alle Z:
assumd < t; < .. <t; =T andset, = 1for convenience. . Positive homogeneityFor eachy > 0 it holds that
The special case afingle-periodrisk functionals occurs if p(uz) = up(2).
only one time step is taken into accoudt 1, ¢; =T). Note that, for the single-period case = 1, the first three

Of course,p should exhibit certain properties that justifyyrgperties coincide with the classical axioms from [1],][10
the termrisk functional A high numberp(z) should indicate [12] A positively homogeneous convex risk functional is
a high risk of ending up at low wealth values;, a low cajied coherentin [1]. We note, however, that other authors
(negative) numbery(z) indicates a small risk. Such andyq not require positive homogeneity, but claim that riskutio
other intuitions have been formalized by various authasfr ,5iner grow overproportionally, i.ep(iz) > pp(z) for p > 1;
economics and financial mathematics. For the single-perigd [13], [11]. Clearly, the expectation functiond is a
case { = 1) there is a high degree of agreement about th&nerent risk functional, but the-Value-at-RiskVaR, (z) =
relevant axioms; cf..e.g., [1], [11], [17]. _ —inf{u € R:P(z < u) > a}, i.e., the negative-quantile of

The multi-period caseJ > 1) is a much more involved , 5 ot
concern. As a start, we cite t_he fir_st two ax_ioms from [2], I Eor the multi-period caseJ( > 1) the three axioms of a
addition to convexity as the third axiom. In this paper thewu -5vex risk functional are only a basis admitting many degre
berp(z) is interpreted as theninimal amouni: of additional  of freedom. There are several aspects of risk that could be
risk-free capitalsuch that the process, + ...z, + 1 1S measured. First of all, one may want to measure the chance
acceptable. This interpretation yields the axioms: A W@l of yery |ow valuesz;, at each time since very low values can
p is a multi-period convex (capital) risk functionalf the |,6a5n bankruptcy (liquidity considerations). In additiame
following properties hold for all stochastic wealth proses may want to measure the degree of uncertainty one is faced

2= (2t 2t,) ANdZ = (%, ..., Z,) In Z: with at each time step. If at some tinig one can be sure
« Monotonicity If z;; < z; in any case forj = 1,...,J, about the future development of ones wealth (j > k), this
then it holds thap(z) > p(Z). may be preferred to enduring uncertainty. E.g., low valyes
« Cash invarianceFor eachy € R it holds that may be tolerable if one is sure that later the wealth is higher
p(ztl Ty ey 2y N) - p(ztn ) ZtJ) - M- again.
« Convexity For eachu € [0,1] it holds that Hence, in this multi-period situation, one may want to take
p(pz + (1 —p)2) < pp(z) + (1 — p)p(2). into account not only the (marginal) distributions=f, ..., z,

The convexity property is motivated by the idea thatersi- but also their chronological order and thederlying informa-
fication might decrease risk but never increases it. Sometimiisn structure Therefore, a multi-period risk functional may
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Fig. 4. Monotone and piecewise linear concave utility fions, single-period (left) and two-period (= 2) (right)

also take into account the conditional distributions:gfgiven  frameworks. Then (1) is at least a convex problem (except
the informationz,,, ..., z;, with k < j respectively¢q,...,s possible integer constraints contained¥p), hence, any local
with s < t; (j = 1,...,J); cf. Fig. 3. Clearly, there are quite optimum is automatically a global optimum.

a lot of those conditional distributions and the questideesr  Now, the framework of polyhedral risk functionals [6], [5]
which ones are relevant and how to weight them reasonalgpes one step beyond convexity: polyhedral risk functienal
The above axioms leave this question open. In our opiniamaintain linearity structures even though they are noaline
a general answer can not be given, the requirements depéntttionals. Namely, a polyhedral risk functionalis given
strongly on the application context, e.g., on the time hamjz by
on the size and capital reserves of the respective company, o

the broadness of the model, etc. Yi =y 6) € Y5,

U VA

Some authors, however, concretize the coherence axiomsgn e J Z;::o V].,k%/]]fk =T )

this direction by suggesting stronger cash invariance grop” z) = nf{E {ijo € yj} (y o 0,.... J), @)
ties, e.qg.: Zk:o Wik Yj—k = 2t

o P(Ztyy s 2ty 15 2ty F oo 2o, 1) = P25 0y 20,) — p fOT G=15..J)
eachj € {1,...,J} andp € R [19] where z = (z,,...,2,) denotes a stochastic wealth pro-
o P(Ztyy ooy 2,15 2t; T 205 2t,+20) = p(2t,, -, 2t,)—E[20]  cess being non-anticipative with respect gp i.e., z; =
for eachj and each random variablg that is known at z;(¢y, ..., &). The notationinf{ . } refers to the infimum. The
timet; 1, i.e., 20 = 20(&1, - &,y ) [17] definition includes fixed polyhedral con&s (e.g.,Ry x ... x
o plz+2) =p(2)+ %, if Z=(%,,...,2,) is such that R,) in some Euclidean spac&s, fixed vectors:;, h; w; ,

%, is nonrandom (deterministic), i.€%,, = Z;,(&1) [13]  and matriced/; 5, which have to be chosen appropriately. We
Each of these may be reasonable in some situations, Wil give examples for these parameters below. However, any
they seem to be too special for imposing them as genefanctionalp defined by (2) is always convex [6], [S].
axioms. The framework of polyhedral risk functionals in the Observe that problem (2) is more or less of the form (1), i.e.,
next section allows to model concrete instances with difer the risk of a stochastic wealth process is given by the optima

perspectives to the dynamics. value of a stochastic program. Moreover, if (2) is inserted i
the objective of (1) (i.e.F = p), one is faced with two nested
IV. POLYHEDRAL RISK FUNCTIONALS minimizations which, of course, can be carried out jointly.

The basic motivation for polyhedral risk functionals isThIS yields the equivalent optimization problem

a technical, but important one. Consider the optimization ry = x4 (€1, ., &) € Xy,
problem (1). It is basically linear if the objective funatial F yi = yi(&1, .0 6,) €Y,
is linear. In this_ case it is well tractable by_ various sauti . 5 ZZ;E Ap s (E)me—s = he (&),
and decomposition methods. However, Hf incorporates a  min ¢E |:Zj=0 Cj - y]} Zi— Virli—k =75,
risk functionalp it is no longer linear since risk functionals §=0 | _

. . " D ko Wik Yi—k
are essentially nonlinear by nature. Decomposition airest - th bo(&s) -
may get lost and solution methods may take much longer T Lms=LTUSANS s
or may even fail. To avoid the worst possible situation onghich is a stochastic program of the form (1) withear ob-
should choose to be convex. As discussed above, convexifgctive. In other words: the nonlinearity of the risk furactal
is in accordance with economic considerations and axi@mati is transformed into additional variables and additionad&r




No. | polyhedral representation (2)

p1 | inf {% S7_1 (w05 + LE [y52])

vo €RY, yj =y;(61,&;) ERY X Ry (j=1,...,7), }
Yi1 — Y2 =z; Yoy (1=1,...,J)
Yo €R, y; =y;(&1, &) ERE xRy (j=1,...,J),
Yj1 —Yj2 =2zt; +yo1 (G =1,...,J)
Yo €R, y; =y;(&1,.-.&;) ERE xRy (F=1,...,J), A
Y1,1 —Y1,2 = 2t; +Y0,1, Yj,1 — Y52 = 2t; T Y0,1 +¥Yj—1,2 G=2,...,J)
Yo €R, yj =y;(&1, &) ERXRy (=1, J = 1), yy = ys(1,&e,) € Ry xRy }
Yj1 — Y2 =2 +yj-10 (1=1,....J)
Yo ER, y; =y;(61,..6;) ERX Ry xRy (j=1,...,J), }
W2 — Uk —Yk—1,1) = 2t; G =1,...,J)
Yo € R, yj =y (1, &) € Ry X Ry xRy (G =1,...,J), A
Y1,2=¥1,3=0, Yj2 —¥j3 —¥j-1,2=0(G =2,...,J), yj1 —yj2 —yo=2; G=1,....J)

p2 | inf {yo + 337 LE[ys0

ps | infdyo+ 537, TE[y;0 ‘

ps | inf % > Efyj—1a + éyj,S}

{

pa inf{% (yo +37) ., LE [yj,2]> '
{
{

06 inf

J
Yo + é]E [ys.2] '

TABLE |
REPRESENTATION(2) FOR EXEMPLARY MULTI-PERIOD POLYHEDRAL RISK MEASURED1, ..., p6

constraints in (1). This means that decomposition schemeés avhere (.)~ denotes the negative part of a real number, i.e.,
solution algorithms known for linear stochastic prograrae c ¢~ = max{0, —a} for a« € R. The second representation is
also be used for (1) witli = p. The cas& = v-p—(1—~)-E deduced from the first one by introducing stochastic vaesbl
can be fully reduced to the ca&e= p; cf. [5]. y1 for the positive and the negative part @f + zr. Hence,
Another important advantage of polyhedral risk functiesnalAVaR,, is of the form (2) withJ = 1, ¢o = 1, ¢; = (0, é),
is that they also behave favorable to stability with respeat; o = (1,-1), w11 = -1, Yo =R, Y1 = R2 =Ry x Ry,
to (finite) approximation of the stochastic input process andhy = hy = Voo = V1,0 = V1,1 = 0. Thus, it is a (single-
[8]. Hence, there is a justification for the employment of thperiod) polyhedral risk functional.
scenario tree approximation schemes from [15], [14]. Another single-period example for a polyhedral risk func-
It remains to discuss the issue of choosing the paramettiomal (satisfying monotonicity and convexity) is expette
¢j, hj, wik, Vi, Y; in (2) such that the resulting functionalutility, i.e., p,(z7) := —E[u(z7)] with a non-decreasing
p is indeed a convex risk functional satisfying, e.g., theoncave utility functionu : R — R; cf. [11]. Typically,
coherence properties presented in the previous sectiothido nonlinear functions such agz) = 1 — e~#* with some fixed
end, several criteria have been deduced in [6], [5] inv@vind > 0 are used. Of course, in such caggss not a polyhedral
duality theory from convex analysis. However, here we i@&str risk functional. However, in situations where the domain of
ourselves to the presentation of examples. zr can be bounded a priori, it makes sense to use piecewise
First, we consider the casé = 1, i.e., the case of single- linear functions for: (see Fig. 4, left). Then, according to the
period risk functionals evaluating only the distributiori oinfimum representation of piecewise linear convex fundtion
the final valuezr (total revenue). The starting point of the[20, Corollary 19.1.2], it holds that
concept of polyhedral risk functionals was the well-knovgt r 2
functional Average-Value-at-RiskVaR,, at some probability  p, (z7) = inf {E[c ]| T (& ---,fz;) e Ry, }
level € (0,1). It is also known as Conditional-Value-at- weyr =2y Y Y =1
Risk (cf. [21]), but as suggested in [11] we prefer the namgheren is the number of cusps af, w1, ..., w, are thez-

Average-Value-at-Risk according to its definition coordinates of the cusps, and= —u(w;) (i = 1, ..,n). Thus,
1 [ py 1S @ polyhedral risk functional. This approach can also be
AVaRq(z) := 5/0 VaR(z)df generalized to the multi-period situation in an obvious gy

specifying a (concave) utility function : R/ — R (see Fig. 4,

and avoid any conflict with the use of conditional distrilouits right). However, specifying an adequate utility functiom:
within VaR and AvaR. The Average-Value-at-Risk is a (sing| gnb). EVer, specilying ar q Yy : m
e&e difficult in practice, in particular in the multi-periocse.

period) coherent ris_k functional which is broadly accgpte Prthermore expected utility is not cash invariant, resitim
AVaR,(27) can be interpreted as the mean (expectation) flle single-period nor in the multi-period case. Therefore w

the a-tail distribution of zp, i.e., the mean of the distributionfocus on generalizind\VaR to the multi-period case in the
of zp below thea-quantile ofzy. It has been observed in [21] 9 P

that AVaR,, can be represented by following.
AVaR, (27) = infyeer {yo + 2E[(yo + 27) 7]} V. MULTI-PERIODPOLYHEDRAL RISK FUNCTIONALS
Yo € R, In the multi-period casd > 1, the framework of polyhedral
=inf ¢ yo + 2E[y12] | ¥1 = v1(&1, .. &r) € R3, risk functionals provides particular flexibility with resgt to

Yo+ 2r =Y1,1 — V1,2 dynamic aspects, i.e., it allows to model different persipes
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Fig. 5. Optimal cash values; (wealth) over time{ = 1, ..., 7)) for different risk functionals. Each curve in a graph regames one of the0 scenarios.

to the relations between different time stages. In the vatg Applying AVaR,, to other possible mixtures yields, e.g.,
we introduce some examples which exteAdaR, to the 1 —J
multi-period situation in different ways. pa(z) = ﬁVaRa(j Zj:l Zt;)
We start with definingp; as the simplest possibl&VaR po(2) 1= AVaRo(min{z,, .. z,})
extension being defined as the sum A&YaR, applied to where the index numbers and 6 are chosen compatibly to

different time stages, i.epi(z) = (l,Z‘j’:l AVaR,(z¢,). [6], [17], [5]. These risk functionals depend on the multiate
Next we deduce from p; by interchanging summatiort] distribution of (z,, ..., z:,). In our opinion, ps is the most
and minimization inf), i.e., reasonable multi-period extension éiVaR with regard to
liquidity considerations, sincAVaR is applied to the respec-
_ tively lowest wealth values; see also [2, Section 4].
(z) = 137 inf i+ LE | (2, +yo,5) i_peri i
P1 7 2uj=1, Mep \Y0.0 T t; T Y0, In [17], [18], the multi-periodAVaR was suggested. This
. ’ - isk functional mAVaR, =: takes up perspective (P1)
it {55 3B [y )|} T AVaR, =: ps takes up.
pa(z) ylone]R Yo+ JZJ:l @ (th +y0) in Fig. 3 (left), i.e., it focuses on variations between two

consecutive time steps. It can be defined by

for any wealth sequence. The latter functional can be 1 _

interpreted asAVaR,, (z,) with a randomly drawn time step pa(2) 1= 7 Xjmr B [AVaRa(zt; = 21,0060, 0 Gy

T € {t1,...,t 7} being stochastically independentafClearly, where AVaR,(. |1, ...,&, ) refers to theconditional AVaR
the random variable is a kind of mixture ofz,,...,2z,. with respect to the information available at tirhe The latter
Note, however, thgb; andp, do not consider the chronologi-is easy to understand by considering the tree in Fig. 3 (right
cal order ofz;,, ..., z¢,. Hence, they only take into account theThe conditionalAVaR is the collection ofAVaR, values
(marginal) distributions;, , ..., z;, seen from the present, i.e.,calculated from the (sub-) distributions &t seen from each
from here and nowt{ = 1). In Fig. 3 (left) this perspective node at time;, < ¢;. Note that, in thenAVaR formula, these
is symbolized by (P2). AVaR,, values are averaged in terms of the expected \V&lue
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Fig. 6. Optimal future stock over time for different polymetrisk functionals.

Now, all these examples can be represented through (2), it the power demand only in part. In addition, the utility
they aremulti-period polyhedral risk measuresf. Table I. In can buy power at the day-ahead spot market of some power
addition, functionaps is a kind of mixture betweep, andps exchange, e.g., the European Energy Exchange EEX. Morover,
and, thus, models perspective (P3) from Fig. 3 (left). Nbt t the utility can trade monthly (purely financial) futuresge.
p1, ..., pg are multi-period coherent risk functionals accordin@helix futures at EEX).
to Section Ill. These examples show that the concept of poly- L . . . L
hedral risk functionals allows to model different perspexst Th? ObJeCt'V?F of t_h|5 quel IS a _mean—rlsk objecnvg
to risk of processes. At this point, one might expect a ris.?zS d!scussed In Section 1 incorporating a polyhedral risk
functional that takes into account all possible (condipn un_cgognalp qn(:‘t.thefeﬁpec_f_gd t(;tal_ revgnwzﬂ, we Lrjlse |
distributions as indicated in Fig. 3 (left), perspectivetyP 7.~ as weighting factor. 1ime norizon IS one year in hourly

However, modeling such an all-embracing approach rais%lsc,cretuanon, i.e.]’ = 8760. For the risk time steps; we use

the problem how to weight the risks of all these distributiofy. P at the last trading day of each wegk< 1, .., J = 52).

reasonably. Therefore, we refrain from such examples here' M€ serles models for the uncertain input data (demands and
' prices) have been set up (see [9] for details) and approgunat

according to [15], [14] by a finite scenario tree consistitig o

40 scenarios; see Fig. 2. Such approximations are justified for
Finally, we illustrate the effects of different polyhedrak this optimization model through stability results for dtastic

functionals by presenting some optimal wealth processes fr optimization problems and polyhedral risk functionals [Bhe

an electricity portfolio optimization model [9], [7]. Thimodel resulting optimization problem is very large-scale, hogrev

is of the form (1), it considers the one year planning probleith is numerically tractable due to the favorable nature of

of amunicipal power utilityi.e., a price-taking retailer servingpolyhedral risk functionals. In particular, since we maukel

heat and power demands of a certain region; see Fig.the CHP plant without integer variables, it is a linear pesgr

It is assumed that the utility features a combined heat afid®) which could be solved by ILOG CPLEX in about one

power (CHP) plant that can serve the heat demand completbbur.

VI. [LLUSTRATIVE SIMULATION RESULTS
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Fig. 7. Optimal cash values over time (excerpt) [10]

(11]

In Fig. 5 the optimal cash flows are displayed, i.e., the
wealth valuesz; for each time steg = 1,...,7 and each [12]
scenario, obtained from optimization with different ma@sk
objectives. These families of curves differ in shape due L
different policies of future trading induced by the diffate [14]
risk functionals; see Fig. 6. Setting= 0 (no risk functional
at all) yield high spread foer. Using AVaR,, (z1) (v = 0.9) [15]
yields low spread forz; but low values and high spread at
t < T. This shows that, for the situation here, single-periddel
risk functionals are not appropriate means of risk aversion
The employment of multi-period polyhedral risk functiomal(17]
yields spread that is better distributed over time. However
the way how this is achieved is different. The functionals
ps, andpg yield similar results: they aim at finding a leval
as high as possible such that the curves rarely fall belotw tH]
level. The effect ofp, and p; is different: these functionals 20]
aim at equal spread at all times (where the effectpofis
weaker). At the first glances; seems to have no effect at all [21]
but zooming into the branching points (Fig. 7) reveals tkat i
effect is a local one, namely branching is delayed only frofpz]
t; until ¢; 1 (perspective (P1) in Fig. 3). This effect may be
more useful for long term models (e.g., pension fund models
[17, Chapter 5]). Note that the displays in Fig. 5 illustrates3]
primarily perspective (P2) from Fig. 3, i.e., everything is
seen from here and now. Finally, we note that the effects of
the risk functionals cost only less thai¥% of the expected
overall revenuéE[zr].
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