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1.1 Introduction

Electric power, one of the most important fields within energy supply, has
two main characteristics: on the one hand supply and demand have to be
balanced at every time, on the other hand it is storable at only small rates. For
these reasons, power plants have to regulate any imbalances between supply
and demand, and, in particular, need to cope with unpredictable changes in
the customer load. For that purpose regulating power plants are used, which
mostly run in part load and with reduced efficiency. Alternatively fast power
plants such as open cycle gas turbines may be used, which can start up within
short time. Beyond the cover of the fluctuating load of the customer side, these
power plants must also adjust to the increasing share of time-varying power
production on the supply side, mostly caused from fluctuating renewables,
notably wind.

Germany is the country with the highest installed wind power capacities
worldwide. In the year 2006, there was approximately 20 GW installed (about
16.6% of the total installed power in Germany) and with the planned offshore
development it could be up to 50 GW in 2030. Thereby, the sometimes strong
and rapid fluctuations of the wind energy fed into the electrical network as
well as the regional concentration in the north of the country increasingly pose
problems to the network operators and power suppliers [8, 16]. Conventional
fuel consumption may be saved by down-regulating conventional (back-up)
power plants, but investments in the power plant park can hardly be saved.

In this context, electrical energy storage offers a possibility to decouple sup-
ply and demand and to achieve better capacity utilization as well as higher
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efficiency of existing power plants. The changing context has led to an in-
creased interest in such possibilities over the last few years. Yet with the
liberalization of the electricity markets, the economics of storages have to be
valued against market prices as established at the energy exchanges. Also the
operation of storages will mostly not follow local imbalances of demand and
supply, but rather try to benefit from market price variations. Thereby, the
(partial) unpredictability of market prices as well as of wind energy supply
has to be taken into account. Things are complicated further through daily,
weekly, seasonal, and other cyclic patterns in demand, supply, and prices,
which require a valuation of storage (and other options) over periods as long
as one year.

Cost optimal operation planning under uncertainty for such long time peri-
ods poses a huge challenge to conventional stochastic programming methods.
In this paper we investigate a novel approach, reducing complexity through
the use of recombining scenario trees. The latter is used for the analysis of
a regional energy system model, which is described in Section 1.2. Section
1.3 presents the decomposition approach using recombining trees, whereas
Sections 1.4 and 1.5 are devoted to the results obtained so far.

1.2 Model description

To study the economics of storages a fundamental model is used. Combining
technical and economical aspects, the model describes the energy supply of a
large city, the available electricity generating technologies, and the demand.
The optimal load dispatch depends on the marginal generation costs as well
as on the impact of other system restrictions such as start up costs, etc. Most
important restriction of the model is the covering of the demand according
to a given profile. For this purpose, energy can be produced by conventional
power plants, procured as wind energy, and purchased on the spot market, cf.
Fig. 1.1.

Uncertainty in the amount of available wind energy and electricity prices
is modelled by a multivariate stochastic process that can be represented by
a recombining scenario tree. Thus, the proposed model combines many fea-
tures of generation scheduling models (unit commitment and load dispatch)
as found typically in energy system models [15]. In the following, the model
is discussed in detail. Table 1.1 gives an overview of the notation used.

Under the assumption of power markets with efficient information treat-
ment and without market power, the market results correspond to the out-
comes of an optimization carried out by a fully informed central planner. If
electricity demand is assumed to be price inelastic, welfare maximization is
equivalent to cost minimization in the considered power network. Thereby,
the total costs TC are given as the sum of import costs ICt, operating costs
OCt,i, and startup costs SCt,i over all time steps t and unit types i:
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Fig. 1.1. Scheme of the fundamental model

TC =
T∑

t=1

(
ICt +

∑
i

OCt,i + SCt,i

)
. (1.1)

The costs for power import at time t are given by

ICt = cimp
t Qimp

t . (1.2)

For the operating costs OCt,i an affine function of the plant output Qt,i

is assumed. Additionally, the decision variable capacity currently online Lonl
t,i

is introduced [17]. The capacity online forms an upper bound on the actual
output. Multiplied with the minimum load factor, it is also a lower bound on
the output for each power plant. Hence, operating costs can be decomposed
in fuel costs for operation at minimum load, fuel costs for incremental output,
and other variable costs:

OCt,i =
cfuel
i,t

η0
i

`iL
onl
t,i +

cfuel
i,t

ηm
i

(Qt,i − `iL
onl
t,i ) + coth

i Qt,i. (1.3)
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Table 1.1. Notation used by the model.

Variables

Q Production IC Import costs
H Storage level SC Start-up costs
L Capacity OC Operating costs

TC Total costs

Indices

t Time step com Compressing power
T Final time pum Pumping power
i Unit type imp Import power
stu Start-up wind Wind power

Parameters

D Demand cstu specific start-up costs
W Wind power cimp specific import costs

` Load factor coth other variable costs

η0, ηm Efficiency cfuel fuel price

Here, ηm
i denotes the marginal efficiency for an operating plant and η0

i the
efficiency at the minimum load factor `i. With ηm

i > η0
i , the operators have

an incentive to reduce the capacity online (for details see [17]).
Besides operation costs, start-up costs may influence the power scheduling

decisions considerably. The start-up costs of unit i at time t are given by

SCt,i = cstu
i Lstu

t,i , (1.4)

where Lstu
t,i is the start-up capacity given by

Lstu
t,i = max(0, Lonl

t,i − Lonl
t−1,i). (1.5)

Covering the demand at time step t is ensured by∑
i

Qt,i + Qwind
t + Qimp

t ≥ Dt +
∑

i

Qpum
t,i +

∑
i

Qcom
t,i (1.6)

Thereby, the supply at time t is given by the power production Qt,i, the im-
ported energy Qimp

t , and the wind energy supply Qwind
t . The total demand

equals the sum of exogenously given domestic demand Dt and the pump-
ing and compressing energies Qpum

t,i and Qcom
t,i used to fill the pumped hydro

storage and compressed-air storage, respectively.
The operation levels of the units, pumps, and air compressors are con-

strained by the available capacity,

Qt,i ≤ Lt,i, Qpum
t,i ≤ Lpum

t,i , Qcom
t,i ≤ Lcom

t,i , (1.7)

whereas the wind energy supply is bounded by the available wind energy at
time t,
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Qwind
t ≤ Wt. (1.8)

For the storage plants, storage constraints need to be considered and the
filling and discharging has to be described. This leads to the following storage
level equation, linking the storage level Ht,i at time t with the level Ht−1,i at
time t− 1, both expressed in energy units. For the pumped hydro units, this
reads as

Ht,i = Ht−1,i −
1

ηm
i

Qt,i −
(

1
η0

i

− 1
ηm

i

)
`iL

onl
t,i (1.9)

+ηm,pum
i Qpum

t,i + (η0,pum
i − ηm,pum

i )`iL
onl,pum
t,i

for t = 1, . . . , T , where H0,i denotes the initial fill level. Additionally, as an
adequate terminal condition we require the initial and terminal fill levels of
the reservoirs to be fixed at the minimum fill level Hmin

i . Further, the storage
level at time step t is also limited by the minimum and maximum storage
levels,

Hmin
i ≤ Ht,i ≤ Hmax

i . (1.10)

Similar capacity constraints are formulated for the compressed-air units.
Additionally, all variables have to fullfill non-negativity conditions.

The objective of the optimization is to find a decision process satisfying the
constraints (1.5)–(1.10), being nonanticipative with respect to the stochastic
process (Wt, c

imp
t )t, and minimizing the expected total costs E[TC].

1.3 Decomposition using Recombining Scenario Trees

In this section, we present the solution method based on recombining trees,
that has been developed in [11], and sketch a method for generating recom-
bining scenario trees.

1.3.1 Problem Formulation

The optimization problem presented in Section 1.2 can be written as a linear
multistage stochastic program:

min E

[
T∑

t=1

〈bt(ξt), xt〉

]
(1.11)

s.t. xt ∈ Xt, xt ∈ σ(ξt), t = 1, . . . , T,

At,0xt + At,1xt−1 = ht(ξt), t = 2, . . . , T. (1.12)

Thereby, the vector xt contains all decision variables of time stage t. The sets
Xt are closed and polyhedral and model deterministic, static linear constraints
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at time t, i.e., the conditions (1.6), (1.7), and (1.10). The identities (1.12)
describe the random and time-coupling constraints (1.5), (1.8), and (1.9).
The uncertainty concerning the future wind energy input and spot prices is
modeled by the bivariate discrete time stochastic process ξ = (ξt)t=1,...,T , that
enters into the optimization model through the costs bt(·) and the right-hand
sides ht(·), which are assumed to depend affinely linear on ξt for t = 1, . . . , T .
Furthermore, ξ defines the nonanticipativity constraints, i.e., a decision xt at
time t must depend exclusively on observations made until t. This is formalized
by the condition xt ∈ σ(ξt), where ξt denotes the vector (ξ1, . . . , ξt).

To render possible a numerical solution of (1.11), every ξt is assumed
to take values in a finite set Ξt = {ξt

(1), . . . , ξ
t
(nt)

}, and, consequently, the
process ξ can be represented by a scenario tree, cf., e.g., [3]. Then, (1.11)
can be formulated as a (large scale) deterministic linear optimization problem
that can be solved, in principal, by means of available solvers. However, with
growing time horizon T , problem (1.11) becomes too large to be solved as
a whole and one has to resort to decomposition techniques, e.g., temporal
decomposition. To this end, one considers certain time stages 0 = R0 < R1 <
. . . < Rn < Rn+1 = T, and defines the cost-to-go function at time Rj and
state (xRj

, ξ
Rj

(i) ) ∈ XRj
×ΞRj recursively by QRn+1(·, ·) := 0 and the Bellman

Equation

QRj (xRj , ξ
Rj

(i) ) := (QRj )

min E

 Rj+1∑
t=Rj+1

〈bt(ξt), xt〉+QRj+1(xRj+1 , ξ
Rj+1)

∣∣∣∣∣∣ ξRj = ξ
Rj

(i)


s.t. xt ∈ Xt, xt ∈ σ(ξt), t = Rj + 1, . . . , Rj+1,

At,0xt + At,1xt−1 = ht(ξt), t = Rj + 1, . . . , Rj+1,

for j = 1, . . . , n. Using this notation, problem (1.11) can be reformulated in
terms of Dynamic Programming:

min E

[
R1∑
t=1

〈bt(ξt), xt〉+QR1(xR1 , ξ
R1)

]
(Q0)

s.t. xt ∈ Xt, xt ∈ σ(ξt), t = 1, . . . , R1,

At,0xt + At,1xt−1 = ht(ξt), t = 2, . . . , R1,

and solved by, e.g., the Nested Benders Decomposition method [1, 12, 14].

1.3.2 Recombining Scenario Trees

At time t, the scenario tree representing ξ has nt = |Ξt| nodes u = 1, . . . , nt,
where node u corresponds to the event {ξt = ξt

(u)}. A special situation is given
whenever the subtrees associated at some nodes u and k at time Rj coincide,
i.e., the corresponding conditional distributions of (ξt)t=Rj+1,...,T are equal:
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P
[
(ξt)t=Rj+1,...,T ∈ · |ξRj = ξ

Rj

(u)

]
= P

[
(ξt)t=Rj+1,...,T ∈ · |ξRj = ξ

Rj

(k)

]
.

(1.13)

As far as it concerns the tree representation of the process ξ, property (1.13)
would allow to recombine the nodes u and k, and recombining at several
time stages Rj may prevent the node number to grow exponentially with the
number of time stages. Unfortunately, recombining is not allowed under time
coupling constraints, since the scenario-dependent control xRj (ξ

Rj ) will not
be equal on {ξRj = ξ

Rj

(u)} and {ξRj = ξ
Rj

(k)}, in general. However, (1.13) can

be useful, since it entails equality of the cost-to-go functions QRj
(·, ξRj

(u)) and

QRj (·, ξ
Rj

(k)). This is exploited by the solution algorithm presented in Section
1.3.3.

t=1 2 3 4 5

Fig. 1.2. Scenario tree with property (1.13), R1 = 3, and mR1 = 2, i.e., two different
subtrees are associated at time stage 3. (The black and the gray subtrees coincide,
respectively.)

In the remaining part of this section we sketch a method for generating
scenario trees with property (1.13) for some nodes and several time stages
Rj , j = 1, . . . , n. It is a modification of the forward tree construction [10],
also based on successive stagewise clustering of a set of sampled trajectories
ζi = (ζi

1, . . . , ζ
i
T ), i = 1, . . . , N , that coincide in t = 1. Basically, it consists

of constructing non-recombining subtrees for every time period [Rj +1, Rj+1]
(Step 2), and assigning to several nodes at time Rj+1 the same subtree for
the subsequent time period (Step 1). Thereby, two nodes at time Rj+1 obtain
the same subtree h, whenever the values of ξ in these nodes are close for
some time t before Rj+1. Table 1.2 explains the notation used. The values
of mRj , nRj (h), and st+1(u), determining the structure of the scenario tree,
may be predefined or, as proposed in [10], determined within the algorithm to
not exceed certain local error levels. Whenever the sampled trajectories come
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from a time series model, the parameter t may be chosen according to the
latter.

Table 1.2. Notation used by Algorithm 1.

ζi
t value of trajectory i at time t

ξt,(u) value of the random variable ξt in node u
mRj number of subtrees with root node at time Rj (mR0 := 1)
(h, u) node u of some subtree h
nRj (h) number of nodes at time Rj of some subtree h
st+1(u) number of nodes at time t + 1 descending from some node u at time t
t time parameter for short-term history clustering

C
(h,u)
t subset of {1, . . . , N}, indicating trajectories ζi

going at time t through node (h, u)

C
(h)
Rj

subset of {1, . . . , N}, indicating trajectories ζi

lying in subtree h with root node at time Rj

Algorithm 1 (Generation of a recombining scenario tree).
Initialization: Set C

(1,1)
1 := C

(1)
R0

:= {1, . . . , N} , ξ
(1)
1 := ζ1

1 .
For j = 0, . . . , n (j-th recombination time stage):

1. If j > 0: Short-term history clustering for subtree assignment.
Find an index set A = {a1, . . . , amRj

} ⊂ {1, . . . , N} with minimal∑
h=1,...,mRj−1

∑
u=1,...,nRj

(h)

min
al∈A

∑
i∈C

(h,u)
Rj

‖(ζi
Rj−t, . . . , ζ

i
Rj

)− (ζal

Rj−t, . . . , ζ
al

Rj
)‖

and a partition C
(h)
Rj

, h = 1, . . . ,mRj
, of {1, . . . , N}, such that for every

node (h̃, ũ) at time Rj and every i ∈ C
(h̃,ũ)
Rj

we have i ∈ C
(h)
Rj

only if both

ah ∈ arg min
al∈A

∑
i′∈C

(h̃,ũ)
Rj

‖(ζi′

Rj−t, . . . , ζ
i′

Rj
)− (ζal

Rj−t, . . . , ζ
al

Rj
)‖

and C
(h̃,ũ)
Rj

⊂ C
(h)
Rj

hold true. The latter condition says that whenever node

(h̃, ũ) is assigned to cluster C
(h)
Rj

and thus obtains subtree h, all trajectories
ζl in node (h̃, ũ) go into subtree h of the subsequent timeperiod.

2. Subtree generation.
For every subtree h = 1, . . . ,mRj

of period [Rj + 1, Rj+1]:
a) Find an index set A = {a1, . . . , anRj

(h)} ⊂ C
(h)
Rj

with minimal∑
i∈C

(h)
Rj

min
al∈A

‖ζi
Rj+1 − ζal

Rj+1‖,
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and a partition C
(h,u)
Rj+1, u = 1, . . . , nRj+1(h), of C

(h)
Rj

with

C
(h,u)
Rj+1 ⊂ {i ∈ C

(h)
Rj

: au ∈ arg min
al∈A

‖ζi
Rj+1 − ζal

Rj+1‖}.

Define the value of ξRj+1 on node (h, u) by ξRj+1,(h,u) := ζau
t+1 and

for every subtree h̃ of period [Rj−1 + 1, Rj ] and every node (h̃, ũ) at
time Rj the transition probability from node (h̃, ũ) to node (h, u) by

PRj+1|Rj
[(h, u)|(h̃, ũ)] :=


|C(h,u)

Rj+1|

|C(h)
Rj

|
if C

(h̃,u)
Rj

∩ C
(h)
Rj

6= ∅

0 else.

b) For t = Rj + 1, . . . , Rj − 1:
For every node ũ of subtree h at time t:
Find an index set A = {a1, . . . , ast+1(ũ)} ⊂ C

(h,ũ)
t with minimal∑

i∈C
(h,ũ)
t

min
al∈A

‖ζi
t+1 − ζal

t+1‖,

and a partition C
(h,u)
t+1 , u = 1, . . . , st+1(ũ), of C

(h,ũ)
t with

C
(h,u)
t+1 ⊂ {i ∈ C

(h,ũ)
t : au ∈ arg min

al∈A
‖ζi

t+1 − ζal
t+1‖}.

Set ξt+1,(h,u) := ζau
t+1 and Pt+1|t[(h, u)|(h, ũ)] :=

|C(h,u)
t+1 |

|C(h,ũ)
t |

.

The determination of the index sets A is a k−mean problem and, thus, an
NP-hard combinatorial optimization problem [6]. While it is possible for small
values mRj , nRj (h), and st+1(u) to find optimal sets A by enumeration, larger
values demand for heuristics, e.g. the forward selection of [4, 9].

In Step 1 of Algorithm 1, several nodes (h̃, ũ) at time Rj obtain the same
subtree h. For notational convenience, we pick out a representative amongst
them and denote the associated value of ξRj by λ

Rj

h . The following function
will be used in Section 1.3.3 and maps a node (h̃, ũ) with subtree h to the
corresponding representative node:

λRj : ΞRj → {λRj

1 , . . . , λRj
mRj

} =: ΛRj ,

λRj (ξRj

(h̃,ũ)
) := λ

Rj

h whenever C
(h̃,ũ)
Rj

⊂ C
(h)
Rj

.

1.3.3 Solution Algorithm

In [11] it was shown how to modify a Nested Benders Decomposition [1, 12, 14]
of problem (1.11) to exploit the recombining property (1.13) of the process ξ.
In the following, we sketch this algorithm.
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Consider the formulation (Q0) of problem (1.11). A Nested Benders De-
composition successively approximates the piecewise-linear convex functions
xRj

7→ QRj
(xRj

, ξ
Rj

(u)) by a set of supporting hyperplanes and evaluates them
in an adaptively chosen sequence of points xRj . Whenever two nodes u and
k at time Rj fulfill (1.13), the functions QRj

(·, ξRj

(u)) and QRj
(·, ξRj

(k)) coincide,
and, thus, they may be approximated simultaneously.

To this end, we define the following underestimating functions: We set
QLC

Rn+1
(·, ·) := 0 and for j = n, . . . , 0, x̄Rj ∈ XRj , and λ

Rj

i ∈ ΛRj let

QL
Rj

(x̄Rj
, λ

Rj

i ) := (QL
Rj

)

min E

 Rj+1∑
t=Rj+1

〈bt(ξt), xt〉+QLC
Rj+1

(xRj+1 ,λ
Rj+1(ξRj+1))

∣∣∣∣∣∣ ξRj = λ
Rj

i


s.t. xt ∈ Xt, xt ∈ σ(ξt), t = Rj + 1, . . . , Rj+1,

At,0xt + At,1xt−1 = ht(ξt), t = Rj + 1, . . . , Rj+1,

xRj = x̄Rj . (1.14)

Thereby,QLC
Rj+1

(·, λRj+1
i ) is an approximation ofQL

Rj+1
(·, λRj+1

i ) by supporting
hyperplanes that is easy to evaluate and that will be properly defined in
equation (1.15) below. Problem (QL

Rj
) is often referred to as master problem.

Note, that in contrast to the classical Nested Benders Decomposition, the same
approximation QLC

Rj+1
(·, λRj+1

i ) can be used in the objective function of (QL
Rj

)

for all nodes with the same subtree i, i.e., whenever λRj+1(ξRj+1) = λ
Rj+1
i .

The function QLC
Rj

(·, λRj

i ) is used to induce a feasible solution at stage Rj

and to approximate the value of QL
Rj

(·, λRj

i ) on its domain. For the latter

purpose, given a point x̄ ∈ XRj
with QL

Rj
(x̄, λ

Rj

i ) < ∞, an optimality cut

supporting QL
Rj

(·, λRj

i ) is given by QL
Rj

(x̄, λ
Rj

i ) + 〈π, xRj
− x̄〉 ≤ 0, where

π denotes the dual variables corresponding to the constraint (1.14) in an
optimal solution of problem (QL

Rj
). To induce feasibility at time stage Rj , a

point x̄ ∈ XRj
that is infeasible for (QL

Rj
) is cut off using a feasibility cut

〈d, x〉+ e ≤ 0. This cut is computed by solving an auxiliary problem, cf. [11],
and has the property 〈d, x̄〉 + e > 0 and 〈d, x〉 + e ≤ 0 for all x ∈ XRj

with
QL

Rj
(x, λ

Rj

i ) < ∞.

Hence, an approximation of QL
Rj

(·, λRj

i ) by means of optimality cuts

Copt(λ
Rj

i ) and feasibility cuts Cfeas(λ
Rj

i ) is given by

QLC
Rj

(xRj , λ
Rj

i ) := max
(x̄,π̄)∈Copt(λ

Rj
i )

QL
Rj

(x̄, λ
Rj

i ) +
〈
π̄, xRj

− x̄
〉

(1.15)

s.t.
〈
d, xRj

〉
+ e ≤ 0, (d, e) ∈ Cfeas(λ

Rj

i ).
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The solution algorithm processes the master problems (QL
Rj

), j = 0, . . . , n,
of the decomposed scenario tree in a forward or backward manner. At each
time stage Rj , each master problem QL

Rj
(·, λRj

i ), λ
Rj

i ∈ ΛRj , is evaluated

for a set Zj(λ
Rj

i ) of controls xRj
. If QLC

Rj
(xRj

, λ
Rj

i ) < QL
Rj

(xRj
, λ

Rj

i ), the

approximation QLC
Rj

(·, λRj

i ) (and all master problems that use QLC
Rj

(·, λRj

i ))
is updated by generating new optimality or feasibility cuts. Further, in the
forward mode, new control points xRj+1 are generated from the solution of
the master problem (QL

Rj
) to form the sets Zj+1(λ

Rj+1
i ) for λ

Rj+1
i ∈ ΛRj+1 .

Since each such evaluation contributes several new controls xRj+1 to the sets
Zj+1(λ

Rj+1
i ), the latter can grow exponentially with increasing j. It was shown

in [11] how the problem structure allows to deal with this difficulty.
The algorithm stops when either the first timeperiod master problem (QL

0 )
is infeasible, or all master problems could be solved to optimality and the gen-
eration of cuts has stopped. In the former case, also problem (Q0) is infeasible,
in the latter, the problem has been solved to optimality. Another stopping cri-
teria which allows to stops the algorithm when the error falls below a given
tolerance, is also discussed in [11]. A more detailed description of the Nested
Benders Decomposition Algorithm can be found in [1, 7, 12].

1.4 Case study

We study a power generating system, consisting of a hard coal power plant to
cover the minimum and medium load, and two fast gas turbines on different
power levels to cover the peaks. The operating parameters of these units rely
on real data. Furthermore, the model contains an offshore wind park, a pump-
storage power plant (PSW) with the basic data of the PSW Geesthacht, and
a compressed-air energy storage (CAES) with the operating parameters of the
CAES Huntorf. Further source of power supply is the EEX spot market. The
time horizon for optimization is one year and a hourly discretization is used,
i.e., the model contains T = 8760 time stages.

The stochastic wind power process is represented by a time series model
fitted to historical data and scaled to the size of the offshore wind park re-
garded. To take into account the interdependency between wind power and
spot price behaviour, the expected spot market prices are calculated from a
fundamental model basing on the existing power plants in Germany and their
reliability, prices for fuels and CO2, the German load, and the wind power
process above. Fluctuation of the spot prices around their expected value are
modeled by a further time series model. This hybrid approach was used to
generate 1 000 trajectories, containing hourly values of wind power and spot
prices in the course of one year. These trajectories were used to generate a
recombining tree by Algorithm 1 of Section 1.3.2. The resulting scenario tree
branched three times per day in a binary way and recombination into mRj

= 3
subtrees took place once a day, i.e., Rj = j · 24, j = 1, . . . , 364.
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Fig. 1.3. Optimal power scheduling in a winter week.
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Fig. 1.4. Spot market price and CAES output in a winter week.

1.5 Numerical Results

The optimization problem was solved with varying model parameters. To this
end, a base setting was defined, with wind power of approximately 50% of the
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totally installed plant power and storage sizes corresponding to the aforemen-
tioned CAES and PSW units. Coming from this setting, variations with higher
and lower levels of installed wind power and different storage dimensions were
calculated. In the following some results are presented.

The optimal operation levels along a randomly chosen scenario from the
base setting during a winter week are depicted in Fig. 1.3. Whenever the
power production exceeds the demand curve, energy is put into the storages,
whereas the white spaces under the demand curve represent the output of
the storage plants. The operation levels of the thermal units show the usual
characteristics and availability of wind power obviously reduces imports from
the spot market. The storage units are mainly used to cover the peaks and are
only marginally used during the weekend. In this model, the contribution of
the operating costs to the power supply costs amount to 2.08 Eurocents/kWh
with using storage plants and 2.10 Eurocents/kWh without using storage
plants. Figure 1.4 shows the optimal output and fill level of the CAES (as a
fraction of maximum discharge power and maximum fill level, respectively)
in comparison to the actual power price. The minimum fill level of the CAES
is 60%. Obviously, the storage plant discharges in times of high spot prices
on weekdays, and the aforementioned marginal usage of storage plants during
the weekend coincides with lower power prices over this period.
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Fig. 1.5. Optimal power scheduling in a winter week with doubled wind power
capacity.
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Fig. 1.6. Spot market price and CAES output in a winter week with doubled wind
power capacity.

To study the impact of the share of wind power on the system, the opti-
mization problem was solved again with doubled wind power capacity. The
results along the same scenario and for the same winter week are depicted
in Fig. 1.5. While this extension does not lead to significant changes of the
thermal units, it enables to largely reduce the amount of energy bought at
the spot market. Figure 1.6 shows the operation of the CAES in the course of
the week. Again, the CAES is mainly used at peak times to avoid expensive
imports from the spot market. It can be seen that the availability of more
wind power in the system can lead both to more and to less extraction of
stored energy. This is due to the fact that, on the one hand, with more wind
power more energy may be stored and therefore extracted (Sunday). On the
other hand, less power has to be generated in times with high wind power
(from Wednesday to Friday).

The optimization problem was solved further times with varying quantities
of installed wind power and storage capacities. Figure 1.7 shows the minimal
expected costs depending on the wind power capacity for different storage
capacities. Thereby, a wind factor of y stands for an amount of wind power
being y times the wind power of the base setting. In relation to the wind power
capacity, the impact of an extension of the storage system on the costs appears
to be rather marginal and the individual curves are almost superposed. Thus,
to analyze the latter, Fig. 1.8 shows the relative reduction of costs that can be
achieved by the use of storage systems of different dimensions, where a model
without storages generates operating costs of 100%. Again, a storage system
dimension of y corresponds to y times the dimension of the base setting. The
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Fig. 1.7. Minimal expected costs depending on the wind power capacity installed
for different storage capacities installed.

results clearly show, that the relative cost reduction due to storage use is
the highest in the twice-wind-setting, and in all settings the most prevailing
gradient is between no use and the use of the half dimension of storage sizes.
Hence, it seems promising to study expansion models for cost-optimal storage
sizes, taking into account operational as well as investment costs.

The optimization algorithm was implemented in C++ and the master
problems were solved with CPLEX 10.0 [2]. Running time on a PC with
2.4 GHz CPU and 2 GB RAM was 10 minutes, approximatively.

1.6 Conclusions and Outlook

We applied a decomposition method for linear multistage stochastic optimiza-
tion problems proposed by [11] to optimal scheduling within a regional energy
system including wind power and energy storages. It has been shown that
this approach relying on recombining scenario trees allows to handle multi-
stage problems with large numbers of scenarios and including time-coupling
constraints, and, therefore, it is suitable for optimizing and analyzing energy
systems.

In principle, the recombining tree decomposition approach allows for dis-
crete decision variables in the first time stage and, hence, this method seems
to be also appropriate to find optimal first-stage investment decisions within
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Fig. 1.8. Reduction of minimal expected costs depending on the storage capacity
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expansion models. This could be one aspect of future studies. However, fur-
ther research is needed to extend the decomposition approach to more general
optimization models, in particular those including discrete variables in later
time stages. The latter would allow to adapt numerous aspects of the en-
ergy system model to achieve a more detailed picture of the system and its
constraints.

Another aspect of future research could be the extension of the decompo-
sition approach on optimization problem including multiperiod risk measures.
For this purpose, especially the class of polyhedral risk measures [5] seems to
be useful, since the linear structure of the optimization problem is maintained.

References

1. J.R. Birge. Decomposition and partitioning methods for multistage stochastic
programming. Operations Research, 33(5):989–1007, 1985.

2. ILOG CPLEX 10.0. http://www.ilog.com/products/cplex.
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