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For the unit commitment problem in the hydro-thermal power system of VEAG Vereinigte
Energiewerke AG Berlin we present a basic model and discuss possible extensions where
both primal and dual solution approaches lead to flexible optimization tools. Extensions
include staggered fuel prices, reserve policies involving hydro units, nonlinear start-up costs,
and uncertain load profiles.

1. Introduction

Optimization problems in the power industry have attracted researchers from en-
gineering, operations research and mathematics for many years. The complex nature of
generation, transmission, and distribution of electric power implies ample opportunity
of improvement towards the optimal. Mathematical models have proven indispensable
in deepening the understanding of these optimization problems. The progress in al-
gorithms and implementations has an essential share in widening the abilities to solve
these optimization problems on hardware that is permanently improving.

In the present paper we address unit commitment in power operation planning.
This problem concerns the scheduling of start-up/shut-down decisions and operation
levels for power generation units such that the fuel costs over some time horizon are
minimal. The diversity of power systems regarding technological design and economic
environment leads to a variety of issues potentially occurring in mathematical models
of unit commitment. The ongoing liberalization of electricity markets will add to this
by shifting the objective in power planning from fuel cost minimization to revenue
maximization. For an introduction into basic aspects of unit commitment the reader is
referred to the book by Wood and Wollenberg [35]. A literature synopsis on various
traditional methodological approaches has been compiled by Sheble and Fahd [29]. In
our paper, we present some of the more recent issues in modeling and algorithms for
unit commitment.

The present paper grew out of a collaboration with the German utility VEAG
Vereinigte Energiewerke AG Berlin whose generation system comprises conventional
coal and gas fired thermal units as well as pumped-storage plants. An important
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feature of that system is its amount of installed pumped-storage capacity that enables
the inclusion of pumped-storage plants into the optimization. This contrasts with other
utilities where pumped-storage energy mainly serves reserve purposes and has only
limited impact on smoothing the load curve.

The mentioned technological and economic diversity of power planning in general
has its natural counterparts in the more specific setting of unit commitment. However,
there are quite a few basic features that unit commitment problems in hydro-thermal
systems like the VEAG one have in common. In our paper, this is reflected by the
model we call the basic one. It is a large-scale mixed-integer optimization problem
coupled both in time and with respect to the different generation units. For its solution
we employ primal and dual algorithms, and it will turn out that both approaches
have their merits and shortcomings. These pros and cons become essential when
heading for model extensions. A main purpose of the present paper is to report on our
experiences with model extensions and to indicate which approach (primal vs. dual)
offers advantages for a given model extension.

Our paper is organized as follows. In section 2 we present our basic model
together with the basics of the primal and the dual solution methods. Section 3
is devoted to extensions where primal solution techniques offer sufficient flexibility
while dual ones have to be modified substantially. We address reserve policies beyond
spinning reserve involving pumped-storage energy and include staggered fuel prices
depending on total fuel consumption. In section 4 we elaborate extensions where dual
approaches are the more flexible ones. Here we emphasize accurate modeling of unit
start-up costs and we extend the model towards the inclusion of uncertain load profiles.

2. Basic model and solution approaches

2.1. Model

The planning horizon for unit commitment, although in principle continuous in
time, gives rise to a discretization into (hourly, half-hourly, or even shorter) subinter-
vals. This is due to the availability of load data, the execution time for scheduling
decisions, and, last but not least, the algorithmic capabilities which prevent handling
the complex mixed-integer decision problem in continuous time. Therefore, unit com-
mitment models typically are in discrete time.

Let T denote the number of subintervals of the optimization horizon and suppose
there are I thermal as well as J pumped-storage hydro units. The variable uti ∈ {0, 1},
i = 1, . . . , I; t = 1, . . . ,T , indicates whether the thermal unit i is in operation at time t.
Variables pti, s

t
j , w

t
j , i = 1, . . . , I; j = 1, . . . ,J ; t = 1, . . . ,T , are the output levels for

the thermal units, the hydro units in generation and in pumping modes, respectively.
The variables ltj denote the fill (in energy) of the upper dam of the hydro unit j at the
end of interval t, j = 1, . . . ,J ; t = 1, . . . ,T.
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Generically, the objective function to be minimized can be expressed as

T∑
t=1

I∑
i=1

Ci
(
pti,u

t
i

)
+

T∑
t=1

I∑
i=1

Sti (ui), (1)

where Ci denotes the fuel costs and Sti denotes the start-up costs for the thermal unit i.
In our basic model, the fuel costs Ci are affine linear in pti. A more detailed

modeling here leads to convex piecewise linear, convex quadratic or even nonconvex
piecewise linear continuous curves, although it has to be admitted that all these curves
are fairly close to straight lines.

The start-up costs Sti of the basic model incur a unit-dependent but down-time-
independent cost ai per start-up. This can be expressed by ai max{uti−ut−1

i , 0}, and,
in a minimization framework, this cost function can be transformed in a standard way
into a linear one plus additional linear constraints. In contrast to the fuel costs where
nonlinearities are mostly negligible, here an essential nonlinearity has been excluded
– the down-time dependence of start-up costs, which leads to exponential terms or at
least to step functions. We will see that the latter prevents application of our primal
approach but can be handled via the dual method.

When modeling the constraints, again our emphasis is on mixed-integer linear
terms, although sometimes there are elegant nonlinear alternatives. This is motivated
by the far more powerful algorithmic tools that are available for mixed-integer linear
problems. In light of the dimensionality of our mixed-integer decision problem, it
currently seems utopic to handle nonlinearities directly.

The power output of units and the fill of the upper dams have to fit the following
bounds:

pmin
it u

t
i 6 pti 6 pmax

it u
t
i, i = 1, . . . , I , t = 1, . . . ,T ,

0 6 stj 6 smax
jt , j = 1, . . . ,J , t = 1, . . . ,T ,

0 6 wt
j 6 wmax

jt , j = 1, . . . ,J , t = 1, . . . ,T ,
0 6 ltj 6 lmax

j , j = 1, . . . ,J , t = 1, . . . ,T.

(2)

Here, pmin
it , pmax

it , smax
jt , wmax

jt denote minimal and maximal outputs, respectively, and
lmax
j is the maximal fill of the upper dam.

Load coverage is modeled by the constraints

I∑
i=1

pti +
J∑
j=1

(
stj −wt

j

)
> Dt, t = 1, . . . ,T , (3)

where Dt denotes the electrical load at time t.
Reserve management is an important security issue in power system optimization.

In case of failure of generation equipment or of sudden load peaks, the power system
will be able to mobilize reserves within a prescribed time schedule. The latter being
quite sophisticated reserve capacities, they are usually not included to full extent into
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the optimization. Some basic issues, however, have to be incorporated, of which the
following spinning reserve Rt of the thermal units is mandatory:

I∑
i=1

(
utip

max
it − pti

)
> Rt, t = 1, . . . ,T. (4)

Our basic model will restrict the reserve management to the above conditions. The
peculiarity of the VEAG system with its considerable share of pumped-storage capacity,
however, necessitates an inclusion of pumped-storage units into the reserve scheme.
This leads to further constraints that couple different units, and, as we shall see later,
such coupling constraints over units, of which our basic model will contain just (3)
and (4), provide major challenges in the dual approach.

For the pumped-storage plants we have the following balances that interconnect
different time intervals:

ltj = lt−1
j −

(
stj − ηjwt

j

)
, j = 1, . . . ,J ;

l0j = linj , lTj = lend
j , t = 1, . . . ,T.

(5)

Here, linj , lend
j are the initial and final fills (in energy) of the upper dams, ηj denote

the pumping efficiencies. The latter are known to be nonlinear functions of the fill
in the upper dam, and our above argument on finding a proper compromise between
accurate modeling of nonlinearities and the ability to tackle the complex decision
problem applies at this place. Test runs for the VEAG system have confirmed the
above approximation to be tolerable.

Constraints avoiding simultaneous generation and pumping in the hydro plants
are dispensable since it can be shown that such a deficiency can not occur in optimal
points.

To avoid excessive thermal stresses in the coal fired blocks, they have to adhere
to minimum down times τi (and sometimes also to minimum up times). For the VEAG
system down times are relevant. They are modeled via

ut−1
i − uti 6 1− uli, i = 1, . . . , I; t = 2, . . . ,T − 1;

l = t+ 1, . . . , min{t+ τi − 1,T}. (6)

Of course, these conditions have to be adapted for units that are off-line at time
t = 1 and still within their minimum down time.

This completes the description of our basic model. An issue left out above but
often considered to be basic is ramping, i.e., imposing bounds on the speed of load
changes for a given unit in consecutive time steps. In the present paper, the finest time
discretization will be an hourly one. At least for the VEAG system ramping then is no
longer critical. This is different, of course, for half-hourly or even finer discretizations.
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2.2. Primal approach

LP-based branch-and-bound is among the earliest mathematical approaches to
unit commitment, cf. [29]. Early branch-and-bound approaches to unit commitment
suffered from the comparatively poor mathematical methodology and software technol-
ogy at that time. In the meantime, this has changed drastically, and general purpose
codes like the CPLEX Callable Library [4] combine latest LP-methodology with a
variety of options for arranging the branch-and-bound. The major advantage of the
primal approach via LP-based branch-and-bound is that model enrichment is possi-
ble as long as this is expressible in mixed-integer linear terms. In particular, further
internal coupling of the model caused by additional constraints has no structural impli-
cations for the algorithm. On the other hand, the full model has to be handled, which
may become prohibitive even if advanced methods are used for the LP-relaxations.

The above statements are illustrated by our test runs with the basic model, cf.
tables 1, 2, and figure 1. These were performed with real-life VEAG data for hourly
discretized time horizons of 1 week, 1 month, and 6 months. The generation system
comprises 34 thermal and 7 hydro units. Since the system includes some thermal units
of identical design, the basic model was slightly changed by aggregating the Boolean
variables for these units into proper integer variables. To indicate the increase in effort
when enriching the model we ran instances where the basic 1-step start-up costs are
replaced with a 3-step function. Accuracy of solutions was measured by the relative
gap between the best feasible solution and the minimum lower LP-bound at active
nodes in the search tree.

Table 1
Model dimensions.

Model dimensions Variant with groups of aggregated Variant with individual units and
units and 1-step start-up costs a 3-step function for start-up costs

1 week 1 month 6 months 1 week 1 month 6 months

Integer variables 2112 8184 56472 5420 20832 130320
Real variables 9781 37867 217608 15210 65442 383033
Constraints 8053 31237 204576 22902 83364 594619
Nonzeroes 31448 121877 760110 196803 749430 6363009

Table 2
Computing times on a HP 9000 (770/J180) and accuracy bounds.

CPU-time Variant with groups of aggregated Variant with individual units and
and accuracy units and 1-step start-up costs a 3-step function for start-up costs

1 week 1 month 6 months 1 week 1 month 6 months

CPU-time (min) 0:58.9 7:40.9 234:02.9 7:44.3 161:32.9 out of
accuracy bound (%) 0.086 0.073 0.133 0.391 0.389 memory
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Figure 1. Solution of the primal method for 1 month.

2.3. Dual approach

The constraints from the basic model fall into two groups: (2), (5), and (6)
concern single units and possibly interconnect time intervals; (3) and (4) concern
single time intervals but interconnect units. The basic idea of the dual approach is to
perform a Lagrangian relaxation of load and reserve constraints (3), (4) leading to a
decomposition of the model into single-unit subproblems.

In unit commitment, Lagrangian relaxation is very popular and has a long his-
tory [29,30]. Recently, three aspects have made Lagrangian relaxation even more
attractive and applicable to large-scale instances: the algorithmic progress in solving
the nondifferentiable Lagrangian dual, the usually small relative duality gap and the
progress in fast Lagrangian heuristics for good primal feasible solutions.

Early approaches to the dual problem were based on subgradient methods and
smoothing techniques (cf. [29]). During the last decade more refined and efficient
methods became available: variants of cutting plane and bundle methods for convex
nondifferentiable minimization (cf. [13]). Here, dynamically constrained cutting plane
methods [15], bundle-trust algorithms [21], reduced complexity bundle methods [20],
variable metric bundle methods [19], and proximal bundle methods [6,9,10,12] have
to be mentioned. Moreover, dual convergence properties of proximal bundle methods
are exploited in [9] to derive new Lagrangian heuristics for thermal systems, and [18]
provides a novel qualitative study of the duality gap for several Lagrangian relaxation
schemes.
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For the basic model our Lagrangian relaxation approach associates Lagrange
multipliers with the load constraints (3) and the modified reserve constraints

I∑
i=1

utip
max
it +

J∑
j=1

(
stj −wt

j

)
> Dt +Rt (t = 1, . . . ,T ). (7)

The dual problem reads

max
(λ,µ)∈RT+×RT+

d(λ,µ), (8)

where λ,µ are the Lagrange multipliers. The function d is defined by the infimum
of the Lagrangian with respect to (p,u, s,w) under (2), (5), (6). It has the separable
form

d(λ,µ) :=
I∑
i=1

di(λ,µ) +
J∑
j=1

d̃j(λ,µ) +
T∑
t=1

[
λtDt + µt

(
Dt +Rt

)]
, (9)

where the functions dj , d̃j are optimal values of single-unit thermal and hydro sub-
problems:

di(λ,µ) := min
ui

{
T∑
t=1

[
Sti (ui)− µtutipmax

it + min
pti

{
Ci
(
pti,u

t
i

)
− λtpti

}]
:

uti,p
t
i satisfy (2) and (6)

}
,

d̃j(λ,µ) := min
sj ,wj

{
T∑
t=1

(
λt + µt

)(
wt
j − stj

)
: stj ,w

t
j satisfy (2) and (5)

}
.

The inner minimization of the thermal subproblems with respect to pti is done
explicitly while the outer minimization with respect to ui is done by dynamic program-
ming. For the hydro subproblems a fast descent algorithm from [22] is used. Since for
the concave dual function d subgradients are available, a powerful bundle-type algo-
rithm [16] is used for solving the Lagrangian dual (8). The optimal value of the dual
provides a lower bound for the minimal costs of the basic model and with the optimal
multipliers λ, µ we have solutions to the thermal and hydro subproblems. In general
these solutions may violate the load and reserve constraints (3) and (7) such that a
low-cost (primal) feasible solution has to be determined by Lagrangian heuristics.

The Lagrangian relaxation approach to unit commitment thus basically consists
of two steps whose realizations are both essential for the total performance of the
method: the solution of the dual (8) including initialization of the multipliers λ, µ and
the determination of a primal feasible solution by a suitable heuristic.

Initialization of the multiplier λ is done via a priority list of thermal units in
ascending order of their relative costs at maximum output. The initial λt is set as
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the relative costs of the most expensive on-line thermal unit when switching on in list
order just as many units as needed for covering the load Dt. The initial µt are zero
in all intervals.

The proximal bundle method generates a sequence (λk,µk) converging to some
optimal multiplier as well as trial points (λk,µk) starting with (λ1,µ1) = (λ1,µ1).
The trial points are used for evaluating subgradients g(λk,µk) of the dual function d
and its polyhedral upper approximation d̂k(λ,µ) defined by

min
j∈Jk

{
d
(
λj ,µj

)
+ g
(
λj ,µj

)T (
λ− λj ,µ− µj

)}
,

where Jk is a subset of {1, . . . , k}. At iteration k the next trial point (λk+1,µk+1) is
selected to belong to

argmax
{
d̂k(λ,µ)− 1

2σk
∥∥(λ− λk,µ−µk)

∥∥2
: (λ,µ) ∈ RT+ × RT+

}
,

where σk is a proximity weight. An ascent step to (λk+1,µk+1) = (λk+1,µk+1)
occurs if d(λk+1,µk+1) > d(λk,µk) + αvk, where α ∈ (0, 1) is fixed and vk =

d̂k(λk+1,µk+1)− d(λk,µk). Otherwise a null step (λk+1,µk+1) = (λk,µk) improves
the next polyhedral function d̂k+1. General strategies for updating σk and choosing
Jk+1 are discussed in [16,17]. The method is implemented in [17] such that the
cardinality of Jk is bounded and that it terminates if vk is less than a given (relative)
optimality tolerance.

We developed two Lagrangian heuristics for the unit commitment problem. Both
of them start with the outcome of the dual optimization and head for proper modifica-
tions such that the reserve constraint (7) is fulfilled. Of course, then also the demand
constraint (3) can be met.

The first heuristic, LH1 (see [12]), starts with fixing the u-components of solu-
tions (p,u, s,w) corresponding to optimal multipliers. Then the schedule of the hydro
plants is modified with the aim of reducing the value Dt + Rt +

∑J
j=1[wt

j − stj]
for intervals t where (7) is violated. Afterwards, the hydro variables are fixed,
and following [36] we search for binary variables uti fulfilling

∑I
i=1 u

t
ip

max
it >

Dt + Rt +
∑J

j=1[wt
j − stj]. This is done by selecting the interval t where this con-

dition is violated most and computing the increase of µt that, via the minimization
behind di(λ,µ), enforces just as many additional start-ups as necessary to meet the
reserve constraint at time t. This is repeated until (7) holds in all intervals. Finally,
the economic dispatch problem, i.e., the problem with u fixed, is solved.

The second heuristic, LH2, works as follows: the u-components of solutions
(p,u, s,w) corresponding to optimal multipliers and values (λ,µ) in their vicinity are
screened. Test runs showed that only a few of these variables change. Fixing the
remaining binary decisions drastically reduces dimension and leads to a quite tractable
problem. Now either the remaining problem allows for a direct solution with the
primal branch-and-bound method from subsection 2.2 or the following heuristic ideas
are employed. Again by increasing the µt a start-up vector u is enforced such that
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(7) holds in all time intervals. This vector forms the first member in a decreasing se-
quence of switching decisions. In each step a period t is selected where the available
reserve

∑I
i=1(utip

max
it −pti)−Rt is large. Then, by a dynamic programming step with

the additional constraint uti = 0, preceding and consecutive periods are determined
where units can be switched off without violating the reserve constraints. For each
member of the sequence the economic dispatch problem is solved by a modification
of the descent method from [22], and the member with least optimal value deter-
mines the output of the heuristic LH2. For further details regarding both heuristics
see [23].

The results in table 3 and figure 2 are based on the same data and hardware
as for the primal method. The weekly results in table 3 were obtained with the
heuristic LH2, and the remaining results with LH1. Compared with the primal approach
we have savings in the computing times with wider but still acceptable accuracy
bounds.

At this place, let us remark that further test runs indicated substantial improve-
ments over the results in table 3 when refining the linear fuel costs towards convex
piecewise linear functions, for details see [23].

Table 3
CPU-time in minutes on HP 9000 (770/J180) and upper bound of the

duality gap of the dual method.

NOA 3.0 optimality Optimization horizon

tolerance: 10−4 1 week 1 month 6 months

CPU-time (min) 0:19 2:36 60:15
Bound of gap (%) 0.44 0.93 0.84

Figure 2. Solution of the dual method for 1 week.
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3. Model extensions – primal solution techniques

3.1. Reserve policies

As pointed out in section 2, reserve management is indispensable in power op-
timization. The spinning reserve constraint (4) reflects the thermal units’ ability to
contribute to the reserve requirement: on-line units have to maintain a “safety mar-
gin”. This “margin” is the most expensive part of the capacity put on-line, and in the
worst case, the load is already covered but an additional (expensive) unit has to be
switched on-line only for maintaining the reserve.

In hydro-thermal systems like the VEAG one, therefore, reserve requirements are
distributed among all units including the hydro ones. The essential difference between
spinning reserve and reserve in the pumped-storage plants is that the former is available
as long as the unit is on-line while the latter can be utilized only with a sufficient fill
in the upper dam and hence for a limited time period. Modeling of pumped-storage
reserve thus has to involve book-keeping over time. Pumped-storage plants contribute
to the reserve in a twofold manner: either by leaving a “margin” towards the hourly
maximum output that is in tune with the total fill of the upper dam or by reducing the
pumping.

The share of the reserve power that has to be maintained by the pumped-storage
plants may either be fixed a priori or left as a variable. In what follows we pursue
the first of the two alternatives and denote the share by RtW , t = 1, . . . ,T . The
hydro units’ limitation to contribute to the reserve only for a certain time period
implies the necessity to replace hydro reserve with thermal reserve by units that can
be started up quickly. The start-up capabilities of these units determine a number hW
of consecutive time intervals in which one may resort to hydro reserve. Furthermore,
we have variables ςtj for the reserve gained by increased generation and ζtj for the
reserve gained by reduced pumping.

Then the following constraints model the total hydro reserve and the bounds for
the generation increases and the pumping decreases:∑

j∈J

(
ςtj + ζtj

)
>RtW ,

stj + ςtj 6 smax
j ,

ζtj 6wt
j , j ∈ J , t = 1, . . . ,T.

The book-keeping over an horizon of hW intervals starting from each time step t in
each of the hydro units is reflected by

lt−1
j +

k∑
l=0

[
−
(
st+lj + ςt+lj

)
+ ηj

(
wt+l
j − ζt+lj

)]
> 0,

j ∈ J , t = 1, . . . ,T , k = 0, . . . ,hW .
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Table 4
Model dimensions.

Dimensions 1 week 1 month 6 months

Integer variables 2112 8184 56472
Continuous variables 11313 48283 278424
Constraints 15084 58000 360939
Nonzeroes in matrix 70746 293475 1763308

Table 5
Computing times on a HP 9000 model 770/J180 and accuracy bounds.

1 week 1 month 6 months

CPU-time (min) 6:06 17:32 1126:59
Accuracy bound (%) 0.083% 0.08% 0.24%

This model extension does not increase the number of integer variables. On the
other hand, it increases both the number of continuous variables and, due to the last
group of constraints, the number of nonzeroes in the constraint matrix. This leads
to increased solution times for the LP-algorithm used within the branch-and-bound
procedure.

Table 4 displays the increase of model dimension. While the number of integer
variables coincides with the counterpart in table 1, the number of continuous variables
goes up by 30% and the number of matrix nonzeroes more than doubles (in the largest
model ranging over 6 months). Computing times are listed in table 5. The test runs
were performed for the variant with groups of aggregated units and 1-step start-up
costs (cf. tables 1 and 2) and with hW = 3.

3.2. Staggered fuel prices

Delivery contracts of power utilities with fuel suppliers often involve discounted
fuel prices. The bigger the fuel purchase, the lower the price per unit of fuel. Different
units of the generation system may require different qualities of fuel, and usually there
is a distinction between the fuels used for operation and for the start-up of a thermal
unit. Several generating units may use the same type of fuel.

In our basic model in section 2 we operate with constant fuel prices such that the
minimization of fuel costs coincides with the minimization of fuel consumption. Now
fuel prices are staggered and, moreover, there is an additional coupling among the
units using the same sort of fuel. We assume that the price per unit of fuel follows a
decreasing step function such that the fuel costs become piecewise linear and concave
(cf. figures 3 and 4).

Suppose that for a given sort of fuel we have prices fı, ı = 1, . . . , I , holding on
intervals [ξı−1, ξı], ı = 1, . . . , I , with ξ0 = 0. For a fuel consumption ξ ∈ [ξı−1, ξı]
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Figure 3. Fuel costs with staggered prices.

Figure 4. Staggered prices per unit of fuel.

the fuel costs f (ξ) then compute as

f (ξ) =
ı−1∑
ı=1

(ξı − ξı−1)fı + (ξ − ξı)fı.

Introducing αı = max{0, ξ − ξı}, ı = 0, . . . , I , we obtain the equality

f (ξ) =
I∑
ı=1

(αı−1 −αı)fı for all ξ ∈ [0, ξI]. (10)

Introducing variables δı ∈ {0, 1} and a constant M > ξI we have that

αı = max{0, ξ − ξı}, ı = 0, . . . , I ,

if and only if there exists a solution (α, δ) to the system

δıM + ξ − ξı>αı,
M − δıM >αı,

ξ − ξı6αı, (11)

06αı,
δı ∈ {0, 1}, ı = 0, . . . , I.
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Together with the right-hand side of (10) the above system provides a mixed-integer
linear model for the fuel costs f (ξ) that can be incorporated into our basic model.
Although we here restrict ourselves to piecewise linear concave costs f the same
model also works for general piecewise linear continuous costs.

Suppose the utility consumes  = 1, . . . ,J different sorts of fuel which may
be used for production only, for start-ups only or for both purposes simultaneously.
For each of the sorts  let Ip , Is denote the subsets of thermal units that use  for
production and start-ups, respectively. We allow some of these sets to be empty,
for instance, if some fuel is used for production or start-ups exclusively. Moreover,
there are variables ξ,  = 1, . . . ,J , for the total consumption of the fuel . This
consumption computes as

ξ =
T∑
t=1

∑
i∈Ip

Ĉi
(
pti,u

t
i

)
+

T∑
t=1

∑
i∈Is

Ŝti (ui),  = 1, . . . ,J . (12)

Here Ĉ, Ŝ are the fuel consumptions. They are computed by dividing the fuel costs
C, S from the basic model by the constant fuel prices adopted there.

The extension of the basic model towards staggered fuel prices is established as
follows. For each of the fuels we set up the cost model given by the system (11)
and the right-hand side in (10). Each system (11) enters the constraints, and the sum
of the expressions from (10) forms the objective of our extended model. The links
between total consumption of each of the fuels and the basic model are established
by the equations in (12) which enter the constraints. The model is completed by the
constraints (2)–(6) already occurring in the basic model.

The transformation of the maximum terms behind Ŝ, cf. section 2, into linear
expressions is accomplished in the same way as described in section 2.

Of course, staggered fuel prices are relevant for longer time periods only. There-
fore we designed test problems with an optimization horizon of 6 months (with a
4-hourly time discretization). Of the 11 different fuels there are staggered prices for
J = 3 sorts each of them with I = 3 price steps. After roughly an hour, the primal
method produced feasible points that later turned out to be within 1% of the optimum.
Verifying the quality of the solutions, however, is very expensive, and we observed
computing times of up to another 40 hours.

4. Model extensions – dual solution techniques

4.1. Nonlinear start-up costs

In contrast to what is assumed in our basic model, start-up costs of coal fired
thermal units essentially depend on the preceding down time of the block. This depen-
dence follows an exponential saturation curve towards a finite constant. In practice,
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after some finite down time, the start-up costs are constant (cold start). The following
description reflects this dependence on state variables:

Sti (ui) = max
τ=0,...,τci

cτi

(
uti −

τ∑
κ=1

ut−κi

)
,

where c0
i = 0 and cτi for τ = 0, . . . , τ ci are fixed increasing cost coefficients, τ ci is

the time the unit i needs to cool down, and c
τci
i is the cost for cold start. Choosing

c0
i = 0 ensures that Sti (ui) is non-negative. For τ > 0 the second factor equals 1 if the

unit is on-line at time t and has been off-line the τ preceding time periods. Table 1
shows the increase in dimension and constraint matrix fill, and table 2 displays our
computational results when imposing a (rough) 3-step approximation of the curve. In
conclusion, the primal approach is principally able to handle this situation, but the
effort is unacceptable.

Fortunately, this situation improves considerably when employing the dual ap-
proach: with an equidistant time discretization and a finite time to enter the cold
start phase the dynamic programming procedure for the thermal subproblems behind
dj(λ,µ) can be adapted to handle the exponential saturation curve (in fact, to handle
any nonlinear curve). The state space, so far determined by the on/off decisions uti
only, is extended by the consecutive time oti unit i has been off-line at time step t.
Since we have an equidistant discretization and reach the cold start phase in finite
time, there are only finitely many different states for the oti.

Let Mi denote the number of time intervals for reaching the cold start phase and
recall that τi is the minimum down time of unit i. Then there are Mi + 1 different
states per unit and time step, namely (uti,o

t
i) ∈ {(1, 0), (0, 1), (0, 2), . . . , (0,Mi)}, and

the possible transitions are

(1, 0)→ (1, 0), (1, 0)→ (0, 1),(
0, t′
)
→
(
0, t′ + 1

)
for t′ < τi,(

0, t′
)
→
(
0, t′ + 1

)
,
(
0, t′
)
→ (1, 0) for τi 6 t′ 6Mi − 1,

(0,Mi)→ (0,Mi), (0,Mi)→ (1, 0).

For each of these finitely many state transitions the corresponding start-up cost is
readily computed via the functional dependence in the saturation curve.

Table 6 shows our computational results for Mi = 39. Again, for the weekly
computations the heuristic LH2 was employed and for the remaining computations
LH1 (cf. subsection 2.3). Although there is an increased effort due to the state space
extension in the dynamic programming, this is far more tolerable than the enormous
increase with the primal approach.

4.2. Inclusion of uncertainties

Uncertainty is a major issue in power optimization. Among the main sources
of uncertainty there are load profiles, generator outages, stream flows in water units,
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Table 6
Nonlinear start-up costs, CPU-time in minutes on HP 9000 (770/J180)

and upper bound of the duality gap of the dual method.

NOA 3.0 optimality Optimization horizon

tolerance: 10−4 1 week 1 month 6 months

CPU-time (min) 0:18 3:04 63:04
Bound of gap (%) 0.28 0.98 0.73

and prices or market situations in general. Liberalization in the power industry has
fostered the mathematical analysis of power systems under uncertainty. Although
liberalization of power markets is out of the scope of the present unit commitment
paper, the mathematical machinery from stochastic programming that we are go-
ing to utilize next has a considerable potential for addressing liberalization issues
as well.

In the literature there is a growing number of contributions to power optimization
under uncertainty with emphasis on modeling aspects and solution methods. For in-
stance, the papers [14,25] address optimization models for hydroelectricity production
and their solution by nested Benders decomposition techniques. Models for hydro-
thermal generation systems under uncertain electrical load and/or electricity prices are
considered in [5,27,31–33], and variants of (augmented) Lagrangian decomposition
methods are proposed for their solution.

In the present paper we will focus on the issue of planning a unit commitment
schedule under uncertainty of power demand. We assume that the electrical load
{Dt: t = 1, . . . ,T} is a random variable. At the beginning of the optimization horizon
we are facing incomplete information in that we only know the probability distribution
of D and not its precise outcomes. Nevertheless we are forced to take decisions.
Stochastic programming offers deterministic equivalents for optimizing decisions in
situations like the one we are in. In fact, we are exposed to a multi-stage scheme
of alternating decisions and observations. Assuming complete information on the
load at time t = 1 we decide on all variables of the first interval, then we observe
the outcome of D2 and take the decisions for t = 2, afterwards we observe D3,
take the decisions for t = 3, and so on. Here, the issue of non-anticipativity is
crucial: decisions must not depend on future realizations of the random components.
A proper criterion for optimization in this context would be to minimize the sum of
the direct costs caused by the decisions at t = 1 plus the expectation of the costs
caused by all the future non-anticipative decisions. In this way, we end up with a
linear mixed-integer multi-stage stochastic program. For a detailed introduction to
multi-stage stochastic programs that adds mathematical rigour to the above sketch we
refer to the textbook [1].

The multi-stage stochastic program for unit commitment sketched above is de-
scribed in more detail in [7]. It embodies an operational model that is very demanding
from the computational point of view. Nevertheless, it is possible to tackle the prob-
lem by a stochastic variant of the Lagrangian relaxation approach from subsection 2.3
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(cf. [7,24]). The idea is to associate stochastic Lagrange multipliers to the stochas-
tic load and reserve constraints. The full model then decomposes into single-unit
multi-stage stochastic programs that are coordinated by the Lagrangian dual. Again,
specialized algorithms (stochastic dynamic programming, descent algorithm) for the
stochastic single-unit (thermal, storage) subproblems, concave nondifferentiable max-
imization of the (stochastic) dual, and heuristics for regaining the relaxed load and
reserve constraints are crucial. For details of the algorithm and preliminary numerical
experience for the weekly VEAG power generation model under uncertain load we
refer to [23] and [24].

In what follows, we adopt a planning rather than an operational point of view.
In some sense this will lead us to a two-stage approximation of the above multi-stage
program. We assume that, in advance, we have to decide for the whole time horizon on
those variables that reflect decisons which cannot be employed as short-term corrective
actions. The vector of all these variables forms our first-stage decision, the remaining
variables are in the second stage, i.e., they depend on the outcome of the random
variable D. The multi-stage modeling approach then reduces to a two-stage one.

Starting up a coal fired block involves some time delay before the block becomes
available for electricity generation. Therefore, switching decisions for these units have
to be taken well in advance and cannot be employed as short-term corrective actions.
This motivates us to put the u-components belonging to the coal fired blocks into
the first stage. Indeed, all the remaining decisions in the basic model from section 2,
namely switching of gas turbines as well as operation of the on-line thermal and
hydro units, involve only minor delay that is feasible for short-term corrective actions.
The two-stage stochastic program then yields an implementable weekly plan of on/off
decisons for the coal fired units. This plan minimizes the sum of the direct (start-up)
costs plus the expected value of the costs that arise after having observed the load
profile and optimized the second-stage corrective actions.

A crucial ingredient of a stochastic program is the probability distribution under-
lying the random data. Its extraction from statistical data is highly non-trivial and a
field of active research, see, e.g., [8,26,34]. The availability of statistical data itself
often may be a problem. Fortunately, this is not the case with load profiles in power
industry where utilities maintain rich data collections. Behind the expectation entering
the two- and multi-stage stochastic programs addressed above, there is a multivariate
integral over an implicitly given integrand. Numerically, it is thus hopeless to operate
with multivariate continuous probability distributions at this place. Therefore we as-
sume that the random load profile D follows a discrete distribution with finite support,
realizations Dω, ω ∈ Ω, and probabilities πω, ω ∈ Ω. Following a usual convention,
the realizations will be called scenarios.

To formalize our extension of the basic model from section 2 to the two-stage
stochastic program mentioned above, we have to distinguish between coal and gas
fired thermal units. Deviating from the notation in section 2 we therefore denote by
i = 1, . . . , I the coal fired thermal units only, and we introduce k = 1, . . . ,K for the
gas turbines.
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The variables uti ∈ {0, 1}, i = 1, . . . , I , t = 1, . . . ,T , now denote the first-
stage decisions. The second-stage variables depend on the scenarios and thus carry an
additional index ω: utωk ∈ {0, 1}, k = 1, . . . ,K, t = 1, . . . ,T , ω ∈ Ω, are the start-ups
of the gas turbines and ptωi , ptωk , stωj , wtω

j , i = 1, . . . , I , k = 1, . . . ,K, j = 1, . . . ,J ,
t = 1, . . . ,T , ω ∈ Ω, are the output levels for the coal and gas fired thermal units, the
hydro units in generation and in pumping modes, respectively. Finally, we have ltωj
for the fills which are second-stage variables as well.

As with the basic model, these variables have to fulfill the constraints (2)–(5),
and (6). In (3) the scenarios Dtω enter at the right-hand side.

In the basic model we have affine expressions for the fuel costs of the thermal
units in operation. With the above variables these expressions now read ciptωi + coi for
the coal fired and ckptωk + cok for the gas fired units. Here, ci, coi , ck, cok are suitable
constants. The objective function of our two-stage stochastic program is then given
by

T∑
t=1

I∑
i=1

ai max
{
uti − ut−1

i , 0
}

+Eω

[
T∑
t=1

K∑
k=1

ak max
{
utωk − u

(t−1)ω
k , 0

}]

+Eω

[
T∑
t=1

(
I∑
i=1

uti
(
cip

tω
i + coi

)
+

K∑
k=1

utωk
(
ckp

tω
k + cok

))]
.

The box constraints (2) allow to replace in the above expression uti(cip
tω
i + coi ) by

cip
tω
i + coiu

t
i, and accordingly for the gas turbines. Altogether we end up with a linear

mixed-integer objective function.
The above model is elaborated in detail in [3]. To study its principal features we

rewrite the model as

min

{
cx+

r∑
ν=1

πνqyν : Ax 6 b, x ∈ X, Tx+Wyν 6 hν , yν ∈ Y ,

ν = 1, . . . , r

}
. (13)

Here x, y refer to the first- and second-stage variables and X, Y denote restrictions
requiring some or all of the variables to be binary. Accordingly, the data vectors and
matrices are derived, with the mentioned remodeling of the maximum expressions in
the objective. In particular, r denotes the cardinality of the support of the random
variable D.

Problem (13) is a large-scale mixed-integer linear program whose constraint ma-
trix obeys the block-angular structure depicted in figure 5.

Of course, this model is far too big to be tackled directly. Again decomposition
will be helpful. To this end, we rewrite (13) by introducing the copies x1, . . . ,xr and
adding the constraints x1 = · · · = xr:
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Figure 5. Constraints matrix structure of (13).

Figure 6. Constraints matrix of the scenario formulation (14).

min

{
r∑

ν=1

πν
(
cxν + qyν

)
: Axν 6 b, xν ∈ X, Txν +Wyν 6 hν , yν ∈ Y ,

ν = 1, . . . , r, x1 = · · · = xr

}
. (14)

The equations x1 = · · · = xr then explicitly represent the non-anticipativity that
before was modeled implicitly by the scenario independence of the first-stage vari-
ables. For convenience we express the equations x1 = · · · = xr by the constraint∑r

ν=1H
νxν = 0 where H = (H1, . . . ,Hr) is a suitable matrix. This leads to the

block structure depicted in figure 6.
Figure 6 suggests a Lagrangian relaxation of the non-anticipativity constraint∑r

ν=1H
νxν = 0 since the latter is the only condition in (14) that interconnects

single-scenario subproblems. In this way, we obtain the Lagrangian dual

max
λ
d(λ), (15)

where

d(λ) :=
r∑

ν=1

dν(λ) (16)
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and

dν(λ) := min
{
πν
(
cxν + qyν

)
+ λ

(
Hνxν

)
: Axν 6 b, xν ∈ X,

Txν +Wyν 6 hν , yν ∈ Y
}

for ν = 1, . . . , r.
In principle, we are now in the same situation as in subsection 2.3. The La-

grangian dual is a non-smooth concave maximization problem for whose solution we
apply the proximal bundle method from [16,17]. Function values and subgradients of
d are given by (16) where we can exploit separability into single-scenario subprob-
lems. Note that the latter are very close to our basic model from section 2. The only
difference is the term λ(Hνxν) in the objective. Experience in solving the basic model
(by either primal or dual methods) hence may be exploited directly when solving the
single-scenario subproblems.

In the end, the optimal value of the Lagrangian dual (15) provides us with a
lower bound to the optimal value of our stochastic program (13). The presence of
integer variables and hence the missing convexity is the reason for these values to be
different in general. Therefore, the solutions to the single-scenario subproblems for the
optimal λ in general violate the relaxed non-anticipativity constraint

∑r
ν=1 H

νxν = 0,
and a Lagrangian heuristic for regaining non-anticipativity has to be set up. Compared
with the situation in subsection 2.3, however, now the relaxed constraint is a pretty
simple identity of the x-components of the single-scenario solutions. This immediately
gives rise to heuristics: consider the x-components of the single-scenario solutions as
proposals and decide for one of them by either averaging (and rounding to the next
integer) or by the frequency of occurrence or some other criterion.

Altogether, the above dual approach to the stochastic program (13) leads to a
solution for which the lower bound from the Lagrangian dual provides a quality cer-
tificate (gap). A major algorithmic advantage is in reducing the solution of the model
extension (13) to instances that are very close to our basic model.

To reduce the gap even further, a branch-and-bound scheme in the spirit of
global optimization is placed on top of the above procedure, cf. [2]. The link to global
optimization becomes evident when rewriting (13) as

min
{
cx+Q(x): Ax 6 b, x ∈ X

}
, (17)

where

Q(x) = Eωφ
(
hω − Tx

)
and

φ(s) = min{qy: Wy 6 s, y ∈ Y }.

Indeed, the above function Q(x) is lower semicontinuous in general [28] such that it
makes sense to tackle (17) by branch-and-bound. Branching is performed by subdi-
viding the set {x: Ax 6 b, x ∈ X}, upper and lower bounds are obtained as above,
and the critical property to be established is non-anticipativity.
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To outline the algorithm let P denote the list of current problems and zLD =
zLD(P ) be a lower bound associated with problem P ∈ P. Then we proceed as
follows:

Step 1 Initialization: Set z = +∞ and let P consist of problem (14).
Step 2 Termination: If P = ∅ then the solution x̂ that yielded z = cx̂ + Q(x̂) is

optimal.
Step 3 Node selection: Select and delete a problem P from P and solve its Lagrangian

dual. If the optimal value zLD(P ) hereof equals +∞ (infeasibility of a subproblem)
then go to step 2.

Step 4 Bounding: If zLD(P ) > z go to step 2 (this step can be carried out as soon as
the value of the Lagrangian dual rises above z).

(i) The scenario solutions xν , ν = 1, . . . , r, are identical: if cxν +Q(xν) < z then
let z = cxν +Q(xν) and delete from P all problems P ′ with zLD(P ′) > z. Go
to step 2.

(ii) The scenario solutions xν , ν = 1, . . . , r, differ: compute the average x =∑r
ν=1 π

νxν and round it by some heuristic to obtain xR. If cxR +Q(xR) < z
then let z = cxR+Q(xR) and delete from P all problems P ′ with zLD(P ′) > z.
Go to step 5.

Step 5 Branching: Select a component x(m) of x and add two new problems to P
obtained from P by setting x(m) = 0 and x(m) = 1.

The model extension (13) is solved quite satisfactorily by the above methods.
Details are reported in [3]. We ran both instances with binary on/off-variables for
thermal units and with integer variables in case of identical blocks (cf. subsection 2.2).

Table 7 displays problem dimensions for the deterministic equivalent (13). All
problem instances are based on an optimization horizon of T = 168 hourly intervals.
The power system comprises I = 17 coal fired blocks, K = 8 gas turbines, and
J = 7 pumped storage plants. The columns correspond to the number of scenarios,
of constraints, of variables in total, of integer variables, and to the dimension of the
multiplier λ.

Table 8 shows the quality certificates (gaps) obtained after 10 minutes of CPU-
time at a Digital Alpha Personal Workstation with 500 MHz processor. There are two
different instances of the uncertain electrical load, one caused by generator failure, the
other by inaccurate load forecast. The columns “with NOA 3.0” correspond to the full
algorithm outlined above, the columns “without NOA 3.0” concern the algorithmic
shortcut where instead of maximizing in the Lagrangian dual (15) we just computed
d(λ) for λ = 0. On the one hand, this allowed far more iterations of the branch-and-
bound scheme, on the other hand, lower bounds became so inferior that the final gaps
could not compete with those from the full algorithm.
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Table 7
Problem sizes.

Model Scen. Constr. Var. Int. Mult.

Binary 4 47159 47327 7560 11424
10 113639 109775 14616 28560
16 180119 172223 21672 45696

Integer 4 32049 37257 5880 4704
10 78369 89625 12936 11760
16 124689 141993 19992 18816

Table 8
Quality certificates.

Model Scen. Gap
formulation Generator failure instances Inaccurate load forecast instances

without NOA 3.0 with NOA 3.0 without NOA 3.0 with NOA 3.0

Binary 4 3.2% 0.8% 1.4% 0.5%
10 11.1% 0.8% 8.3% 3.3%
16 9.0% 2.8% 10.1% 2.7%

Integer 4 3.2% 0.1% 4.1% 0.1%
10 1.7% 0.2% 3.1% 0.3%
16 2.2% 0.3% 2.5% 0.4%
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