
PRIMAL AND DUAL METHODS FOR UNIT COMMITMENTIN A HYDRO-THERMAL POWER SYSTEMR. Gollmer1, A. M�oller2, M.P. Nowak3, W. R�omisch3, R. Schultz11 Gerhard-Mercator-Universit�at Duisburg, FB Mathematik, Lotharstr. 65, D-47048 Duisburg, Germany2 Weierstra�-Institut f�ur Angewandte Analysis und Stochastik, Mohrenstr. 39, D-10117 Berlin, Germany3 Humboldt Universit�at Berlin, Institut f�ur Mathematik, Unter den Linden 6, D-10099 Berlin, GermanyAbstract: For unit commitment in areal power generation system comprisingthermal and pumped-storage hydro unitsa large-scale mixed-integer optimizationmodel is developed and solved by primaland dual approaches. Solution methodsuse state-of-the-art algorithms and soft-ware. Results of test runs are reported.Keywords: Unit commitment, mixed-integerlinear programming, polyhedral combinatorics,Lagrangian relaxation, bundle methods1 INTRODUCTIONUnit commitment in power operation planningaims at the cost optimal scheduling of on/o�decisions and output levels for generating units.The power mix of the generation system has anessential impact on the design of mathematicalmodels and algorithms for solving unit commit-ment problems. In the present paper, the inter-action of a fair number of big coal �red blockswith several pumped storage plants of di�eringe�ciencies provides the main challenge. Thisre
ects the energy situation encountered at theGerman utility VEAG Vereinigte EnergiewerkeAG Berlin. Employing modern tools from math-ematical optimization we demonstrate how tosolve unit commitment problems for the VEAGsystem ranging over time horizons of up to 6months with hourly discretizations. Solvinghere means that we are able to establish sched-ules whose objective function values provablyThis research was supported by a grant of theGerman Federal Ministry of Education, Science, Re-search and Technology (BMBF).

are only per mills away from those of the op-timal schedules. This makes an essential di�er-ence to local search heuristics ([1], [17]) such astabu search, simulated annealing, and geneticalgorithms that try to iteratively improve feasi-ble schedules without being able to provide anycerti�cates in the above sense. The paper startswith the mathematical model followed by primaland dual solution approaches both accompaniedby reports on some characteristic test runs.2 MODELIn our model, T is the number of subintervalsof the optimization horizon, I; J are the num-bers of thermal and pumped storage hydro units.The variable uti 2 f0; 1g; i = 1; : : : ; I; t =1; : : : ; T indicates whether the thermal unit i isin operation at time t. Variables pti; stj ;wtj ; i =1; : : : ; I; j = 1; : : : ; J ; t = 1; : : : ; T are the out-put levels for the thermal units, the hydro unitsin generation and in pumping modes, respec-tively. The variables ltj denote the �ll (in en-ergy) of the upper dam of the hydro unit j atthe end of interval t, j = 1; : : : ; J ; t = 1; : : : ; T:The objective function to be minimized readsTXt=1 IXi=1Ci(pti;uti) + TXt=1 IXi=1 Sti(ui): (1)Here, Ci denotes the fuel costs for unit i whichoften are a convex function of power output. Wewill consider linear and piecewise linear versionsof Ci. The start-up costs Sti (ui) of the i-th unitdepend on its preceding down time.When formulating the constraints our accentis on linear terms although elegant nonlinearalternatives exist. Sticking to linearity is mo-tivated by the far more powerful mathemati-



cal tools available then (LP-based branch-and-bound and Lagrangian relaxation, polyhedralcombinatorics).Bounds for the power output of units and the�ll of the upper dams readpminit uti � pti � pmaxit uti;0 � stj � smaxjt ;0 �wtj � wmaxjt ;0 � ltj � lmaxj ; i = 1; : : : ; I;j = 1; : : : ; J ;t = 1; : : : ; T: (2)Here, pminit ; pmaxit ; smaxjt ; wmaxjt denote minimaland maximal outputs, respectively, and lmaxj isthe maximal �ll of the upper dam.The equilibrium between total generation andelectrical load is covered by the equationsIXi=1 pti + JXj=1(stj �wtj) � Dt; t = 1; : : : ; T; (3)where Dt denotes the electrical load at time t.Moreover, at each time, a spinning reserve Rthas to be ensured which is modeled byIXi=1(utipmaxit � pti) � Rt; t = 1; : : : ; T: (4)For the whole time horizon, balances in thepumped storage plants have to be maintained:ltj = lt�1j � (stj � �jwtj);l0j = linj ; lTj = lendj ; j=1; : : : ; J ;t=1; : : : ; T: (5)Here, linj ; lendj are the initial and �nal �lls (in en-ergy) of the upper dams, �j denote the pumpinge�ciencies. At least in Germany, the VEAG sys-tem is somehow unique with its share of pumpedstorage plants that allows (and enforces) perma-nent utilization for economic purposes, in con-trast to usage of pumped storage energy in peakperiods and for emergencies only. Test runs forthe VEAG system have shown that, for this eco-nomic purpose and considering the large-scalecharacter of the decision problem, the linearapproximation in (5) satisfactorily matches thenonlinear e�ciency pro�le in practice.Constraints avoiding simultaneous generationand pumping in the hydro plants are dispensablesince such a de�ciency can not occur in optimalpoints. In view of our time discretization intohourly intervals, the issue of ramping is not ascritical as it would be with a �ner discretiza-tion. This was con�rmed by our test runs, and

ramping, therefore does not occur in our one-hour-discretization model.Finally, we have minimum down times �i forthe thermal units. These are modeled viaut�1i � uti � 1� uli; i = 1; : : : ; I;t = 2; : : : ; T�1;l = t+1; : : : ; t+�i (6)where the constraints for the time intervals t >T � �i + 1 have to be modi�ed accordingly.3 PRIMAL METHODSLP-based branch-and-bound is among the ear-liest mathematical approaches to unit commit-ment, cf. [19]. It is based on formulating, pos-sibly after exploiting proper equivalences, theunit commitment problem as a mixed-integerlinear program that quickly becomes large-scale.While running branch-and-bound one has up-per and lower bounds for the unknown optimalvalue. The relative di�erence between the leastupper bound and the minimum lower bound pro-vides a certi�cate of how close optimality hasbeen reached. The problem being large-scale, azero certi�cate is rather utopic, and certi�catesin the lower per cents or per mills are usuallyaccepted as su�ciently good.Early branch-and-bound approaches to unitcommitment su�ered from the comparativelypoor mathematical methodology and softwaretechnology at that time. Meanwhile, this haschanged drastically, both with respect to math-ematical algorithms and software implementa-tions, let alone hardware advances. General pur-pose codes like the CPLEX Callable Library [2]combine latest LP-methodology with a varietyof options for arranging the branch-and-bound.In fact, the CPLEX Callable Library forms thealgorithmic backbone of our primal approach tounit commitment.To make LP-based branch-and-bound workfor the above model the costs in (1) have to beexpressed by (mixed-integer) linear terms. Withthe fuel costs Ci, this is possible for the (piece-wise) linear situations. For the start-up costsSi which depend exponentially on the preced-ing downtime we used approximations via stepfunctions. The numbers of linearity regions forCi and steps for Si proved critical for the modelsize and hence for memory requirements and run



model variant with groups of aggregated variant with individual units anddimensions units and �xed start-up costs a 3-step function for start-up costs1 week 1 month 6 months 1 week 1 month 6 monthsinteger variables 2112 8184 56472 5420 20832 130320real variables 9781 37867 217608 15210 65442 383033constraints 8053 31237 204576 22902 83364 594619nonzeroes 31448 121877 760110 196803 749430 6363009Table 1: Model dimensions for both model variantsCPU-time variant with groups of aggregated variant with individual units andand units and �xed start-up costs a 3-step function for start-up costsaccuracy 1 week 1 month 6 months 1 week 1 month 6 monthsCPU-time / min 0:58.9 7:40.9 234:02.9 7:44.3 161:32.9 out ofaccuracy bound / % 0.086 0.073 0.133 0.391 0.389 memoryTable 2: Computing times on a HP 9000 (770/J180) and accuracy bounds of the primal methodtimes. Therefore, proper selections based on theconcrete VEAG data were made here. The datasituation was also exploited for guiding the sub-division (branching start-up variables accordingto the load pro�le), for improving model prop-erties (introducing integer instead of Booleanvariables for units with identical design) and fora fast heuristic to �nd a �rst feasible solution.Moreover, some �rst experiments with cuttingplanes from polyhedral combinatorics [18] weremade to tighten the lower bounds.Test runs with real-life data were performedon an HP 9000 (770/J180). Time horizons con-sidered are 1 week, 1 month, and 6 months, withan hourly discretization. The generation systemincluded 34 thermal and 7 hydro units. Thegenerating costs were approximated by a linearfunction. Two approximations to the start-upcosts were made, leading to two di�erent modelvariants. In the �rst variant the start-up costswere constant. This enables the reformulationas a general mixed integer problem by aggre-gating the groups of technically identical units.In the second variant a step function with threesteps per unit was used for the start-up costs.This prohibits aggregation of units and leads tomuch bigger models with an increase in comput-ing time. The tighter accuracy bounds in the�rst variant result from a smaller gap betweenthe LP-relaxation and the feasible set. The �rsttable displays the problem dimensions. The so-lution process, which for branch-and-bound the-oretically could be continued until a satisfactoryaccuracy bound is achieved, was �nished, when

the bound dropped below 1%. This always hap-pened with the �rst feasible solution, found by aproblem-speci�c rounding heuristic, which nor-mally is followed by a branch-and-bound proce-dure for the full problem. Computing times andaccuracy bounds are in Table 2.In general, the primal approach via LP-basedbranch-and-bound allows ample model enrich-ment as long as this is expressible in mixed-integer linear terms. In particular, further in-ternal coupling of the model caused by the in-troduction of additional constraints is not criti-cal. This is exploited when extending the abovemodel towards more sophisticated reserve poli-cies involving hydro units [7] or towards stag-gered fuel prices [6]. On the other hand, alwaysthe full model has to be handled which may be-come prohibitive even if advanced methods areused for the LP-relaxations. This paves the wayfor decomposition which will be discussed next.4 DUAL METHODSDual methods called Lagrangian relaxationshave become very popular in unit commitment(cf. [19], [20]). Recently, three aspects madeLagrangian relaxation attractive and applicableto large-scale unit commitment problems: thealgorithmic progress for solving the nondi�er-entiable Lagrangian dual, the usually small rel-ative duality gap and the progress in fast La-grangian heuristics for good primal feasible so-lutions. Early approaches for solving the dualproblem were based on subgradient methods
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Figure 1: Solution of the primal method for 1 monthand smoothing techniques (cf. [19]). Dur-ing the last decade more re�ned and e�cientmethods became popular: variants of cuttingplane and bundle methods for convex nondif-ferentiable minimization (cf. [8]). We men-tion here dynamically constrained cutting planemethods ([9]), bundle-trust algorithms ([15]), re-duced complexity bundle methods ([14]), vari-able metric bundle methods ([13]) and proximalbundle methods ([4], [5], [3], [7]). Moreover,dual convergence properties of proximal bundlemethods are exploited in [4] to derive new La-grangian heuristics for thermal systems and [12]provides a novel qualitative study of the dualitygap for several Lagrangian relaxation schemes.For the model in Section 2, our Lagrangianrelaxation approach associates Lagrange multi-pliers with the loading constraints (3) and themodi�ed reserve constraintsIXi=1 utipmaxit + JXj=1(stj �wtj) � Dt +Rt; (7)(t = 1; : : : ; T ). The dual problem readsmax(�;�)2IRT+�IRT+ d(�;�); (8)where �;� are the Lagrange multipliers. Thefunction d is de�ned by the in�mum of the La-grangian with respect to (p, u, s, w) under (2),

(5), (6). d has the separable formd(�;�) := IXi=1 di(�;�) + JXj=1 ~dj(�;�)+ TXt=1[�tDt + �t(Dt +Rt)] (9)where the functions dj , ~dj are optimal values ofsingle-unit thermal and hydro subproblems:dj(�;�) := minui n TXt=1[Si(ui(t))� �tutipmaxit+minpti fCi(pti;uti)� �tptig] :uti;pti satisfy (2) and (6)o~dj(�;�) := minsj ;wj n TXt=1(�t + �t)(wtj � stj) :stj ;wtj satisfy (2) and (5)oThe inner minimization of the thermal subprob-lems w.r.t. pti is done explicitly while the outerminimization w.r.t. ui is done by dynamic pro-gramming. For the hydro subproblems a fast de-scent algorithm from [16] is used. Since for theconcave dual function d subgradients are avail-able, powerful bundle-type algorithms [10] maybe used for solving the Lagrangian dual (8). Theoptimal value of the dual provides a lower bound



for the minimal costs of the model in Section 2and with the optimal multipliers �, � we havesolutions of the thermal and hydro subproblems.In general these solutions cause violation of theload and reserve constraints (3) and (4) suchthat a low-cost (primal) feasible solution has tobe determined by a Lagrangian heuristics. Al-together, the Lagrangian relaxation algorithmconsists of the following steps:Step 1: Initialize the multipliers �, �.Step 2: Solve the dual problem (8) by the prox-imal bundle method ([10], [11]).Step 3: Determine a primal feasible solution bya Lagrangian heuristics.In both Step 2 and Step 3 thermal and hydrosubproblems are solved repeatedly.The multiplier � is initialized by a list of ther-mal units in ascending order of relative costs atmaximum output. In each time interval ther-mal units are switched on in list order until thetotal maximum output at least equals the de-mand or all units are online. The relative costsof the most expensive online unit initialize �t.Initially, the multipliers �t are zero in all inter-vals.The proximal bundle method generates a se-quence (�k;�k) converging to some optimalmultiplier and trial points (��k; ��k) starting with(��1; ��1) = (�1;�1). The trial points are usedfor evaluating subgradients g(��k; ��k) of the dualfunction d and its polyhedral upper approxima-tion ~dk(�;�) de�ned byminj2Jkfd(��j; ��j) + g(��j ; ��j)T (�� ��j;�� ��j)gwhere Jk is a subset of f1; :::; kg. In iteration kthe next trial point (��k+1; ��k+1) is selected tobelong toargmaxf ~dk(�;�)� 12�kk(�� �k;���k)k2gwhere the maximization is subject to (�;�) 2IRT+ � IRT+ and �k is a proximity weight. Anascent step to (�k+1;�k+1) = (��k+1; ��k+1) oc-curs if d(��k+1; ��k+1) � d(�k;�k) + �vk, where� 2 (0; 1) is �xed and vk = ~dk(��k+1; ��k+1) �d(�k;�k). Otherwise a null step (�k+1;�k+1) =(�k;�k) improves the next polyhedral function~dk+1. General strategies for updating �k andchoosing Jk+1 are discussed in [10, 11]. Themethod is implemented in [11] such that the car-dinality of Jk is bounded and that it terminates

if vk is less than a given (relative) optimalitytolerance.Two di�erent Lagrangian heuristics were de-veloped and implemented. The �rst heuristics(LH1) has three steps and starts with reducingthe value Dt + Rt +PJj=1[wtj � stj ] by modify-ing the schedule of the hydro plants if the re-serve constraint (7) is violated at time t andthe value of this sum is the largest in a cer-tain set of intervals. This may cause new vi-olations of the reserve constraint in intervalswhere the above sum is small. In a secondstep the hydro variables are �xed, and follow-ing [21] we search for binary variables uti ful�ll-ing PIi=1 utipmaxit � Dt + Rt + PJj=1[wtj � stj ].The main idea is to take the interval wherethis condition is violated most and to computethe increase of �t necessary to switch on justthat many thermal units such that the condi-tion holds. This is repeated until the reserveconstraint (7) holds in all intervals. After hav-ing �xed the binary variables uti, the economicdispatch problem is solved by CPLEX [2].The Lagrangian heuristics LH2 exploits thestructure of the dual problem (8) and screens allsolutions (p;u; s;w) corresponding to (nearly)optimal multipliers (�,�). For convex modelsany feasible primal solution (p;u; s;w) corre-sponding to optimal multipliers, is also optimal.This fails in the mixed-integer situation. Insteadwe determine a set of primal solutions corre-sponding to slightly perturbed optimal multi-pliers. To this end we �rst screen the binarydecisions in the dynamic programming solutionsto the thermal subproblems. Test runs showedthat only a few of these variables change. Fix-ing the remaining binary decisions drastically re-duces dimension. Then a decreasing sequence ofbinary decisions u is constructed. In each stepa period t is selected where the available reservePIi=1(utipmaxit �pti)�Rt is large, and the multipli-ers are used to determine in which preceding andconsecutive periods some unit can be switchedo�. For each element of the sequence an eco-nomic dispatch problem is solved by a modi�-cation of the descent method from [16]. Theelement with the least optimal value provides areasonably good solution of the problem (1)-(6).The results in Table 3, Table 4 and Figure 2are based on the same data and hardware asfor the primal method. Compared with Section



NOA 3.0 optimality optimization horizontolerance: 10�4 1 week 1 month 6 monthsproduction start-up time/ bound of time/ bound of time/ bound ofcosts costs min gap/ % min gap/ % min gap/ %linear constant 0:17 1.10 2:36 0.93 60:15 0.84linear time dependent 0:20 1.13 3:04 0.98 63:04 0.73piecew. lin. constant 0:28 1.09 5:33 0.86 110:23 0.79piecew. lin. time dependent 0:30 1.07 5:28 0.96 119:02 0.69Table 3: CPU-time in minutes on HP 9000 (770/J180) and upper bound of the duality gap of the dualmethod (with LH1)
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Figure 2: Solution of the dual method (withLH1) for 1 week3 exponential approximations for start-up costsleading to more than 50 di�erent steps wereused and examples with piecewise linear fuelcosts were run. The dual method is faster thanthe primal but yields wider accuracy bounds.Re�ned modelling of down time dependence ofstart-up costs is less time critical in the dualapproach since the time for solving the thermalsubproblems is linear in the number of start-upcost approximation steps. The heuristics LH2yields tighter accuracy bounds than LH1. Piece-wise linear fuel costs cause quite substantial in-creases in computing time when using LH1 andCPLEX for the economic dispatch. This doesnot occur in LH2, where a speci�c descent algo-rithm for economic dispatch is employed.5 CONCLUSIONSThe approaches to unit commitment presentedin this paper are fast, powerful and supple-ment each other. The primal, branch-and-bound based method shows its strength with

production start-up bound of time/costs costs gap/ % minoptimization horizon: 1 weeklinear constant 0.44 0:19linear time dep. 0.28 0:18piecew. lin. constant 0.20 0:21piecew. lin. time dep. 0.29 0:22optimization horizon: 1 monthpiecew. lin. constant 0.30 6:24piecew. lin. time dep. 0.42 5:26Table 4: Upper bound for the duality gapand CPU-time on HP 9000 (J280) of the dualmethod (with LH2)complex constraints interconnecting generationunits. The dual algorithm, that relies on La-grangian relaxation, has its merits with compli-cated, even nonlinear conditions imposed on sin-gle units but interconnected in time. Both ap-proaches have advanced mathematics as an in-dispensable ingredient. In the primal case theseare recent LP-methodology and a 
exible ande�cient branch-and-bound scheme. The dualmethod is an interplay of high-level non-smoothoptimization, custom made algorithms for thesingle unit subproblems and Lagrangian heuris-tics, for which we presented two new propos-als. To the best of our knowledge, the literaturehas no comparable contributions where a mid-size hydro-thermal system is provably optimized(with certi�cates in the per mills) over hourlydiscretized time horizons of up to 6 months.ACKNOWLEDGEMENTSWe are grateful to K.C. Kiwiel (Polish Academyof Sciences, Warsaw) for the permission to usethe NOA 3.0 package and to G. Schwarzbach
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