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Abstract: For unit commitment in a
real power generation system comprising
thermal and pumped-storage hydro units
a large-scale mixed-integer optimization
model is developed and solved by primal
and dual approaches. Solution methods
use state-of-the-art algorithms and soft-
ware. Results of test runs are reported.
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1 INTRODUCTION

Unit commitment in power operation planning
aims at the cost optimal scheduling of on/off
decisions and output levels for generating units.
The power mix of the generation system has an
essential impact on the design of mathematical
models and algorithms for solving unit commit-
ment problems. In the present paper, the inter-
action of a fair number of big coal fired blocks
with several pumped storage plants of differing
efficiencies provides the main challenge. This
reflects the energy situation encountered at the
German utility VEAG Vereinigte Energiewerke
AG Berlin. Employing modern tools from math-
ematical optimization we demonstrate how to
solve unit commitment problems for the VEAG
system ranging over time horizons of up to 6
months with hourly discretizations. Solving
here means that we are able to establish sched-
ules whose objective function values provably
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are only per mills away from those of the op-
timal schedules. This makes an essential differ-
ence to local search heuristics ([1], [17]) such as
tabu search, simulated annealing, and genetic
algorithms that try to iteratively improve feasi-
ble schedules without being able to provide any
certificates in the above sense. The paper starts
with the mathematical model followed by primal
and dual solution approaches both accompanied
by reports on some characteristic test runs.

2 MODEL

In our model, T is the number of subintervals
of the optimization horizon, I,.J are the num-
bers of thermal and pumped storage hydro units.
The variable u! € {0,1}, i = 1,...,I;t =
1,...,T indicates whether the thermal unit 7 is
in operation at time ¢. Variables p!, 35-, wz-,i =
1,....,5;5=1,...,J; t =1,...,T are the out-
put levels for the thermal units, the hydro units
in generation and in pumping modes, respec-
tively. The variables l;- denote the fill (in en-
ergy) of the upper dam of the hydro unit j at
the end of interval ¢, j =1,...,J; t=1,...,T.

The objective function to be minimized reads
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Here, C; denotes the fuel costs for unit ¢ which
often are a convex function of power output. We
will consider linear and piecewise linear versions
of C;. The start-up costs S!(u;) of the i-th unit
depend on its preceding down time.

When formulating the constraints our accent
is on linear terms although elegant nonlinear
alternatives exist. Sticking to linearity is mo-
tivated by the far more powerful mathemati-



cal tools available then (LP-based branch-and-
bound and Lagrangian relaxation, polyhedral
combinatorics).

Bounds for the power output of units and the
fill of the upper dams read

PRl < pf <ppeal,
0§S§'§3ﬂaxv j= 7.“7(]’. (2)
0<wt_<wmax I A ]

- = gt =1,...,T.

0< 1 <o,
Here, pln, pmee, s5", wii™  denote minimal
and maximal outputs, respectively, and I7"*" is
the maximal fill of the upper dam.
The equilibrium between total generation and
electrical load is covered by the equations
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where D! denotes the electrical load at time ¢.
Moreover, at each time, a spinning reserve R;
has to be ensured which is modeled by

I
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For the whole time horizon, balances in the
pumped storage plants have to be maintained:
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Here, l;'-”, l;?”d are the initial and final fills (in en-
ergy) of the upper dams, 7; denote the pumping
efficiencies. At least in Germany, the VEAG sys-
tem is somehow unique with its share of pumped
storage plants that allows (and enforces) perma-
nent utilization for economic purposes, in con-
trast to usage of pumped storage energy in peak
periods and for emergencies only. Test runs for
the VEAG system have shown that, for this eco-
nomic purpose and considering the large-scale
character of the decision problem, the linear
approximation in (5) satisfactorily matches the
nonlinear efficiency profile in practice.
Constraints avoiding simultaneous generation
and pumping in the hydro plants are dispensable
since such a deficiency can not occur in optimal
points. In view of our time discretization into
hourly intervals, the issue of ramping is not as
critical as it would be with a finer discretiza-
tion. This was confirmed by our test runs, and

ramping, therefore does not occur in our one-
hour-discretization model.

Finally, we have minimum down times 7; for
the thermal units. These are modeled via

wTh—ut<1-wl, i=1,...,1;
t=2,...,T-1;  (6)
l=t+1,...,t+T7;

where the constraints for the time intervals ¢ >
T — 7; 4+ 1 have to be modified accordingly.

3 PRIMAL METHODS

LP-based branch-and-bound is among the ear-
liest mathematical approaches to unit commit-
ment, cf. [19]. It is based on formulating, pos-
sibly after exploiting proper equivalences, the
unit commitment problem as a mixed-integer
linear program that quickly becomes large-scale.
While running branch-and-bound one has up-
per and lower bounds for the unknown optimal
value. The relative difference between the least
upper bound and the minimum lower bound pro-
vides a certificate of how close optimality has
been reached. The problem being large-scale, a
zero certificate is rather utopic, and certificates
in the lower per cents or per mills are usually
accepted as sufficiently good.

Early branch-and-bound approaches to unit
commitment suffered from the comparatively
poor mathematical methodology and software
technology at that time. Meanwhile, this has
changed drastically, both with respect to math-
ematical algorithms and software implementa-
tions, let alone hardware advances. General pur-
pose codes like the CPLEX Callable Library [2]
combine latest LP-methodology with a variety
of options for arranging the branch-and-bound.
In fact, the CPLEX Callable Library forms the
algorithmic backbone of our primal approach to
unit commitment.

To make LP-based branch-and-bound work
for the above model the costs in (1) have to be
expressed by (mixed-integer) linear terms. With
the fuel costs C}, this is possible for the (piece-
wise) linear situations. For the start-up costs
S; which depend exponentially on the preced-
ing downtime we used approximations via step
functions. The numbers of linearity regions for
C; and steps for S; proved critical for the model
size and hence for memory requirements and run



model variant with groups of aggregated variant with individual units and
dimensions units and fixed start-up costs a 3-step function for start-up costs
1 week 1 month 6 months 1 week 1 month 6 months
integer variables 2112 8184 56472 5420 20832 130320
real variables 9781 37867 217608 15210 65442 383033
constraints 8053 31237 204576 22902 83364 594619
nonzeroes 31448 121877 760110 196803 749430 6363009
Table 1: Model dimensions for both model variants
CPU-time variant with groups of aggregated variant with individual units and
and units and fixed start-up costs a 3-step function for start-up costs
accuracy 1 week 1 month 6 months 1 week 1 month 6 months
CPU-time / min 0:58.9 7:40.9 234:02.9 7:44.3 161:32.9 out of
accuracy bound / % 0.086 0.073 0.133 0.391 0.389 memory

Table 2: Computing times on a HP 9000 (770/J180) and accuracy bounds of the primal method

times. Therefore, proper selections based on the
concrete VEAG data were made here. The data
situation was also exploited for guiding the sub-
division (branching start-up variables according
to the load profile), for improving model prop-
erties (introducing integer instead of Boolean
variables for units with identical design) and for
a fast heuristic to find a first feasible solution.
Moreover, some first experiments with cutting
planes from polyhedral combinatorics [18] were
made to tighten the lower bounds.

Test runs with real-life data were performed
on an HP 9000 (770/J180). Time horizons con-
sidered are 1 week, 1 month, and 6 months, with
an hourly discretization. The generation system
included 34 thermal and 7 hydro units. The
generating costs were approximated by a linear
function. Two approximations to the start-up
costs were made, leading to two different model
variants. In the first variant the start-up costs
were constant. This enables the reformulation
as a general mixed integer problem by aggre-
gating the groups of technically identical units.
In the second variant a step function with three
steps per unit was used for the start-up costs.
This prohibits aggregation of units and leads to
much bigger models with an increase in comput-
ing time. The tighter accuracy bounds in the
first variant result from a smaller gap between
the LP-relaxation and the feasible set. The first
table displays the problem dimensions. The so-
lution process, which for branch-and-bound the-
oretically could be continued until a satisfactory
accuracy bound is achieved, was finished, when

the bound dropped below 1%. This always hap-
pened with the first feasible solution, found by a
problem-specific rounding heuristic, which nor-
mally is followed by a branch-and-bound proce-
dure for the full problem. Computing times and
accuracy bounds are in Table 2.

In general, the primal approach via LP-based
branch-and-bound allows ample model enrich-
ment as long as this is expressible in mixed-
integer linear terms. In particular, further in-
ternal coupling of the model caused by the in-
troduction of additional constraints is not criti-
cal. This is exploited when extending the above
model towards more sophisticated reserve poli-
cies involving hydro units [7] or towards stag-
gered fuel prices [6]. On the other hand, always
the full model has to be handled which may be-
come prohibitive even if advanced methods are
used for the LP-relaxations. This paves the way
for decomposition which will be discussed next.

4 DUAL METHODS

Dual methods called Lagrangian relaxations
have become very popular in unit commitment
(cf. [19], [20]). Recently, three aspects made
Lagrangian relaxation attractive and applicable
to large-scale unit commitment problems: the
algorithmic progress for solving the nondiffer-
entiable Lagrangian dual, the usually small rel-
ative duality gap and the progress in fast La-
grangian heuristics for good primal feasible so-
lutions. Early approaches for solving the dual
problem were based on subgradient methods
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Figure 1: Solution of the primal method for 1 month

and smoothing techniques (cf. [19]). Dur-
ing the last decade more refined and efficient
methods became popular: variants of cutting
plane and bundle methods for convex nondif-
ferentiable minimization (cf. [8]). We men-
tion here dynamically constrained cutting plane
methods ([9]), bundle-trust algorithms ([15]), re-
duced complexity bundle methods ([14]), vari-
able metric bundle methods ([13]) and proximal
bundle methods ([4], [5], [3], [7]). Moreover,
dual convergence properties of proximal bundle
methods are exploited in [4] to derive new La-
grangian heuristics for thermal systems and [12]
provides a novel qualitative study of the duality
gap for several Lagrangian relaxation schemes.

For the model in Section 2, our Lagrangian
relaxation approach associates Lagrange multi-
pliers with the loading constraints (3) and the
modified reserve constraints

J
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(t=1,...,T). The dual problem reads

max d(\, ), 8
A O ) (3)

where A, u are the Lagrange multipliers. The
function d is defined by the infimum of the La-
grangian with respect to (p, u, s, w) under (2),

(5), (6). d has the separable form

I J
A, ) =Y di(A p) + Y di( A, p)
i:lT j=1 (9)
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t=1

where the functions d;, Jj are optimal values of
single-unit thermal and hydro subproblems:

T
dj(A, ) = min { S_[Si(wi(t) — plulpf
o t=1
+min{C;(p}, uf) — A'p}}] :
p;
toot
u;, p; satisfy (2) and (6)}
T
dj(A, )= min { YA+ ph)(w! - s)) :
P =1
sz-,'w; satisfy (2) and (5)}

The inner minimization of the thermal subprob-
lems w.r.t. p! is done explicitly while the outer
minimization w.r.t. u; is done by dynamic pro-
gramming. For the hydro subproblems a fast de-
scent algorithm from [16] is used. Since for the
concave dual function d subgradients are avail-
able, powerful bundle-type algorithms [10] may
be used for solving the Lagrangian dual (8). The
optimal value of the dual provides a lower bound



for the minimal costs of the model in Section 2
and with the optimal multipliers A, g we have
solutions of the thermal and hydro subproblems.
In general these solutions cause violation of the
load and reserve constraints (3) and (4) such
that a low-cost (primal) feasible solution has to
be determined by a Lagrangian heuristics. Al-
together, the Lagrangian relaxation algorithm
consists of the following steps:

Step 1: Initialize the multipliers A, u.

Step 2: Solve the dual problem (8) by the prox-
imal bundle method ([10], [11]).

Step 3: Determine a primal feasible solution by
a Lagrangian heuristics.

In both Step 2 and Step 3 thermal and hydro
subproblems are solved repeatedly.

The multiplier A is initialized by a list of ther-
mal units in ascending order of relative costs at
maximum output. In each time interval ther-
mal units are switched on in list order until the
total maximum output at least equals the de-
mand or all units are online. The relative costs
of the most expensive online unit initialize A’
Initially, the multipliers p! are zero in all inter-
vals.

The proximal bundle method generates a se-
quence (Ag, py,) converging to some optimal
multiplier and trial points (g, fi;,) starting with
(A1, 1) = (A1, py). The trial points are used
for evaluating subgradients g(Ay, ft;,) of the dual
function d and its polyhedral upper approxima-
tion dy, (A, p) defined by

min{d(Xj, i) + g%y )T (A= Aot = i)}
where Jj, is a subset of {1,...,k}. In iteration k
the next trial point (Agy1, fy41) is selected to
belong to

argmax{dy (X, p) — Skl = Ay, p — pi)ll?}

where the maximization is subject to (A, p) €
R{ X R{ and o is a proximity weight. An
ascent step t0 (Apy1. fgy1) = (Aks1s g yy) 0C
curs if d(Apq1, fogp1) > d(Ag, py) + vi, where
a € (0,1) is fixed and v, = czk(j\kﬂ,ﬂkﬂ) —
d(Ag, pg). Otherwise a null step (Agy1, fgi1) =
(Ak, ;) improves the next polyhedral function
dri1. General strategies for updating oy, and
choosing Jiy1 are discussed in [10, 11]. The
method is implemented in [11] such that the car-
dinality of Jj is bounded and that it terminates

if vy is less than a given (relative) optimality
tolerance.

Two different Lagrangian heuristics were de-
veloped and implemented. The first heuristics
(LH1) has three steps and starts with reducing
the value D! + R* + Y°7_; [w — st] by modify-
ing the schedule of the hydro plants if the re-
serve constraint (7) is violated at time ¢ and
the value of this sum is the largest in a cer-
tain set of intervals. This may cause new vi-
olations of the reserve constraint in intervals
where the above sum is small. In a second
step the hydro variables are fixed, and follow-
ing [21] we search for binary variables w! fulfill-
ing Yy ulp® > D' + Rt + Y1 [w! — st].
The main idea is to take the interval where
this condition is violated most and to compute
the increase of i’ necessary to switch on just
that many thermal units such that the condi-
tion holds. This is repeated until the reserve
constraint (7) holds in all intervals. After hav-
ing fixed the binary variables u!, the economic
dispatch problem is solved by CPLEX [2].

The Lagrangian heuristics LH2 exploits the
structure of the dual problem (8) and screens all
solutions (p,u,s,w) corresponding to (nearly)
optimal multipliers (A,u). For convex models
any feasible primal solution (p,u,s,w) corre-
sponding to optimal multipliers, is also optimal.
This fails in the mixed-integer situation. Instead
we determine a set of primal solutions corre-
sponding to slightly perturbed optimal multi-
pliers. To this end we first screen the binary
decisions in the dynamic programming solutions
to the thermal subproblems. Test runs showed
that only a few of these variables change. Fix-
ing the remaining binary decisions drastically re-
duces dimension. Then a decreasing sequence of
binary decisions u is constructed. In each step
a period t is selected where the available reserve
S (ulpmer —pt)— R? is large, and the multipli-
ers are used to determine in which preceding and
consecutive periods some unit can be switched
off. For each element of the sequence an eco-
nomic dispatch problem is solved by a modifi-
cation of the descent method from [16]. The
element with the least optimal value provides a
reasonably good solution of the problem (1)-(6).

The results in Table 3, Table 4 and Figure 2
are based on the same data and hardware as
for the primal method. Compared with Section



NOA 3.0 optimality optimization horizon

tolerance: 10~ 1 week 1 month 6 months
production | start-up time/ | bound of | time/ | bound of | time/ | bound of
costs costs min gap/ % min gap/ % min gap/ %
linear constant 0:17 1.10 2:36 0.93 60:15 0.84
linear time dependent | 0:20 1.13 3:04 0.98 63:04 0.73
piecew. lin. | constant 0:28 1.09 5:33 0.86 110:23 | 0.79
piecew. lin. | time dependent | 0:30 1.07 5:28 0.96 119:02 | 0.69

Table 3: CPU-time in minutes on HP 9000 (770/J180) and upper bound of the duality gap of the dual

method (with LH1)

9000 production | start-up bound of | time/
8000 : costs costs gap/ % min
7000 s PR L — -
optimization horizon: 1 week
s000l [t N LLJ ]‘JJ ]‘JJ ]"J LL HJJJ-LLJ.LLH ‘ ‘p ‘
L JUn linear constant | 0.44 0:19
5000 kel .l ; ~ / : .
4000 ~ linear time dep. | 0.28 0:18
piecew. lin. | constant | 0.20 0:21
3000 load
2000 thermal generation — piecew. lin. | time dep. | 0.29 0:22
1000 ‘ optimization horizon: 1 month ‘
Op Lo piecew. lin. | constant | 0.30 6:24
-1000[ piecew. lin. | time dep. | 0.42 5:26
20005 24 a8 72 96 120 144 168

Figure 2: Solution of the dual method (with
LH1) for 1 week

3 exponential approximations for start-up costs
leading to more than 50 different steps were
used and examples with piecewise linear fuel
costs were run. The dual method is faster than
the primal but yields wider accuracy bounds.
Refined modelling of down time dependence of
start-up costs is less time critical in the dual
approach since the time for solving the thermal
subproblems is linear in the number of start-up
cost approximation steps. The heuristics LH2
yields tighter accuracy bounds than LH1. Piece-
wise linear fuel costs cause quite substantial in-
creases in computing time when using LH1 and
CPLEX for the economic dispatch. This does
not occur in LH2, where a specific descent algo-
rithm for economic dispatch is employed.

5 CONCLUSIONS

The approaches to unit commitment presented
in this paper are fast, powerful and supple-
ment each other. The primal, branch-and-
bound based method shows its strength with

Table 4: Upper bound for the duality gap
and CPU-time on HP 9000 (J280) of the dual
method (with LH2)

complex constraints interconnecting generation
units. The dual algorithm, that relies on La-
grangian relaxation, has its merits with compli-
cated, even nonlinear conditions imposed on sin-
gle units but interconnected in time. Both ap-
proaches have advanced mathematics as an in-
dispensable ingredient. In the primal case these
are recent LP-methodology and a flexible and
efficient branch-and-bound scheme. The dual
method is an interplay of high-level non-smooth
optimization, custom made algorithms for the
single unit subproblems and Lagrangian heuris-
tics, for which we presented two new propos-
als. To the best of our knowledge, the literature
has no comparable contributions where a mid-
size hydro-thermal system is provably optimized
(with certificates in the per mills) over hourly
discretized time horizons of up to 6 months.
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