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Abstract: The weekly cost-optimal generation of electrisvpr in a hydro- dual, specialized subproblem solvers and Lagrangian heuristics,
thermal generation system is modeled as a multistage nimteger stochastic this stochastic Lagrangian relaxation algorithm becomes rather

program. The model incorporates uncertainties of eledtt@ad forecasts, of fficient. O del d uti techni lidated
inflows to pumped storage hydro plants and of fuel or eléttriorices. For efmcient. ur modael ana solution techniques are valioated on

its solution a stochastic Lagrangian relaxation schemesigded by assign- the system of the German utility Vereinigte Energiewerke AG

ing (stochastic) multipliers to all constraints couplingwer units. Numerical (VEAG). The VEAG generation system consists of 25 (coal-
results are presented for the generation system of a Gertiligyn under un-

certain load. The stochastic load process is approximatexfinite number of fired or gas-burning) thermal units and 7 pumped hydro units.

realizations (scenarios) in scenario tree form. Its total capacity is about 13,000 megawatts (MW) including a
Keywords: Stochastic integer programming, Lagrangiaaxation, unit com- Nydro capacity of 1,700 MW; the system peak loads are about
mitment, bundle methods, scenario generation. 8,600 MW. Our numerical results indicate that the algorithm
bears potential for solving complex real-life power scheduling
. INTRODUCTION models under uncertainty in reasonable time.

| ¢ th has b iderable int fi The stochastic power management model uses a set of sce-
n recent years thereé has been considerable interest in H&?ios to model data uncertainty. In our approach to load sce-

has been stimulated by the ongoing liberalization of electrici Ary) load scenario tree. In a final step the number of load sce-

markets: electric utilities generate power in a competitive envlz ids is reduced by a scenario deletion procedure based on a
ronment, generating and trading activities must be coordinatg ltable probability distance

electricity portfolios for spot and option markets become impor- The paper is organized as follows. §ti we give a descrip-

tant, and the electrical load as well as electricity prices become . . .
: ) X tioh of a our stochastic programming model §IH we describe
increasingly unpredictable.

The present baper aims at optimizing generation and tradlthe stochastic Lagrangian relaxation approach together with its
P Pap P 99 ponents and report on numerical results for the VEAG sys-

of an electric hydro-thermal based utility under data uncertain ¥im with uncertain load IV we present our procedure for

More s_peuﬂcally, we consider a power system comprising th?%/rénerating scenario trees of the electrical load process and re-
mal units, pumped hydro storage plants and contracts for de 1t on numerical tests

ery and purchase. The relevant uncertain data comprise eledinc
load, stream flows to hydro units, and fuel and electricity prices.
We develop a dynamic stochastic programming model where
the expected production costs are minimized subject to operaWWe consider a power generation system comprising thermal
tional constraints. Since the model contains stochastic mixethts, pumped storage plants and contracts for delivery and pur-
integer decisions and is large-scale, new questions are raiekase, and describe a model for its weekly cost-optimal genera-
on designing solution algorithms and generating approximdien under uncertainty in electrical load, inflows in hydro units
scenario-based data processes. The goal of the paper is t@n# prices for fuel or contracts.
form the reader on how to incorporate fuel and electricity prices The scheduling horizon of one week is typically discretized
into the stochastic unit commitment problem, how to generdtdo uniform (e.g., hourly) intervals. Accordingly, the load,
representative scenario trees for the uncertain data and howstveam flows and electricity prices are assumed to be constant
succeded in solving the resulting large models. within each period. The scheduling decisions for thermal units
The solution approach pursued in the present paper consigg which units to commit in each period, and at what gener-
in a stochastic version of classical Lagrangian relaxation [1],ating capacity. The decision variables for the hydro plants are
which is very popular in power optimization [2], [3], [4], [5], the generation and pumping levels for each period. Power con-
[6], [7], [8]. Since the coupling constraints contain randorttacts for delivery and purchase are regarded as special thermal
variables, stochastic multipliers are needed for their dualizanits. The schedule should minimize the total generation costs,
tion, and the dual problem is a nondifferentiable stochastic pigubject to the operational requirements.
gram. Consequently, this approach is based on the same, blthe basic system requirementis to meet the electric load. An-
stochastic, ingredients as in the classical case: a solver for tléher important requirement is the spinning reserve constraint:
nondifferentiable dual, subproblem solvers, and a Lagrangi@nmaintain reliability (compensate sudden load peaks or un-
heuristic. With a state-of-the-art bundle method for solving tHereseen outages of units) the total commited capacity should

Il. POWER SYSTEM MODELING



exceed the load in every period by a certain amount. Other op-
erating constraints which have to be incorporated are generat-
ing limits for thermal and hydro units. Each generating unit can
only be operated within a feasible range defined by its minimum
and maximum capacities. Water utilization for power genera-
tion in a pumped storage hydro unit is further limited by the
storage volume in the upper and lower dam of the unit. For
thermal units there are additional minimum up/down-time re-
guirements: when a unit is switched on (off), it must remain on
(off) for a certain number of time steps. Contracts for delivery
and purchase have minimum up/downtime of one period.

To schedule the generation in a power system schedulers
forecast the electric load for the specific time span. Since the ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
electric load is mainly driven by meteorological parameters 1 tg to T
(temperature, cloud cover, etc.) the actual system load devi-
ates from the prediction. Uncertainty on the generating system
is not limited to that of electric load. Other sources of uncer-
tainty are generator outages, inflows to hydro units, and prices . , )
of fuel and electricity. To formulate a power generation modBfPabilityT, of each node is generated recursively by
that incorporates fluctuations in stream inflows in hydro plants, m=1 Th=TT, forn#l

and fuel and electricity prices in addition to the load uncertaint';é,Odesn with ¢ + (n) = 0 are calledeaves; they constitute the
+(n) =

we use a probabilistic description of uncertainty. Egtollect terminal seta( 1. A scenario corresponds to a path from the root

the_ uhcertam data in pe_rlddt LT, le, _th_e load and the node to a leaf. The probabiliti§St, } ., , provide a distribu-
spinning reserve, water inflows, and coefficients of cost func- . T . .
. . tfon for the set of all scenarios. Conversely, given such scenario
tions for thermal units and power contracts. Then we assu

that { & }T is a discrete-time stochastic process. Of Coursrp]);r%babilities, the remaining node and transition probabilities are
=1 > ) cp ' [generated recursively by

at the beginning of the scheduling horizon we only know t

probability distribution of the data proceé&: }{_, and not its Th= 5 Ta, Tn, =Th /M forngea’,(n).

precise outcome. Nevertheless we are forced to take decisions. Ny € +(n)

In practice the data forecast may be reliatble .until some _periggch noden corresponds to a set of realizations{f}{_, that
tr € {1:T — 1}, so that the data proceg& },_, is determinis- coincide until the periot{n), the time step associated with node
tic. In this context it makes sense to seek scheduling decisigns 1o any noden € ¢ there is assigned a set of scheduling
which minimize the sum of the costs caused by the scheduliggcisions. The sequence of scheduling decisions also form a
decisions for the time spar= 1:1; plus the expected generatingjiscrete-time stochastic process. Of course, the decisions as-
The scheduling decisons of the intervak 1:t; are the deter- peripdt(n), i.e. are nonanticipative. Consequently, if two sce-
ministic (first-stage) decisions, the remaining decision variablggrios are indistinguishable at some nodge. they carry the
depend on the outcome of the stochastic data process. In §jfhe information throughout the period between the beginning
way, we end up with a multistage stochastic program. (Fore the horizon and up untii(n)) the corresponding decisions
detailed introduction to multistage stochastic programming Weroughout the path from the root to nodenust be the same.
refer to [9].)

We now assuTe that we havedescrete distribution pf the A NOTATIONS
data procesgé;}; ;. (This is the standard approach in multi-
stage stochastic programming to avoid theoretical and numer-
ical difficulties caused by multivariate continuous probability Model Parameters

e,

Fig. 1. Example for a scenario tree

distributions.) Its support consists efenarios (i.e., realiza- T number of time intervals

tions or trajectories of&; },_,) that form ascenario tree based 7 {1:T}

on a finite set of nodeg( (cf. Fig. 1). Each node consists | number of thermal units (including contracts)

of a bundle of scenarios sharing a common history. Nodes of {1:1}

the scenario tree at which a bundle of scenarios branches info number of pumped storage hydro units

several disjoint bundles are callbtanching points and the in- 7 {1:3}

tervals between therstages. Theroot noden = 1 stands for a( node set of the scenario tree

periodt = 1. Every other node has a uniqueredecessor node N |2( |, the total number of nodes of the scenario tree
n_ and atransition probability t, > 0, which is the probabil- T, probability of noden

ity of n being the successor of-. The successors to node t(n) time step corresponding to node

form the set( +(n); their transition probabilities add to 1. The path'n) path from the root to node



ay load during period at noden TABLE |

rtn Spinning reserve during perid)dit noden SIZE OF THE SCENARIGTREE MODEL (1)—(4) DEPENDING ON THE
pirp(ir?) minimal output of thermal unitduring period(n) NUMBERS OF SCENARIOS AND NODES FOR =168, =25AND J =7
pm’)( maximal output of thermal unitduring period (n) S N 5 Variables Constraints| Nonzeros
— . . . Inary | confinuous
T minimum uptime of thermal unit 11 168 2200 6652 13441 19657
- minimum downime of thermal uri 20| 70| a0 geset) oo el
Cin cost function at noda for operating thermal unit 100 | 4200 | 105000 163800 336100 491500
Sk cost function for starting-up thermal unit
during period(n)
nj pumping efficiency of pumped storage hydro unit « Operating ranges (1) and minimum up/down-time require-
v;?f‘rf) maximal generation level of pumped storage ments (2a),(2b) of thermal units:
hydro unitj during period (n) - :
WTQ?;‘) maximal pumping level of pumped storage hydro |Oirtn(|2)uin <p'< pirtn(arl\))(u?’ ue{01}, ne«ier, (2a)
unitj duripg period (n) uirLK _ ui“—(m) <u', k=1T -1l nea,icr, (2b)
I;‘t‘(&g; maximal fill of the upper dam of pumped storage -
hydro unitj during period (n) uin*‘”l’ U <1-u, k=1ly-1lnea,ier, (20)
v water inflow in pumped storage hydro unit « Operating ranges (3a) and dynamics of pumped storage hydro
o noden _ units (3b); water storages in the upper dam of a plant at the
1y initial fill (in energy) of the upper dam at period 0 peginning and at the end of the scheduling period (3c).
If”d final fill (in energy) of the upper dam at the end of
periodT 0 < Vi <Viifo),
Decision Variables associated with nate « 0 < WT < Wr,??ﬁ()v nea;, jesj=1:J, (3a)
u’' commitment state of thermal unit 0 < |n<|max
u' € {0,1} (1 if on, O if off) = =)
M (W) nepatii) D=1 —Vanwi+y], nea jes,  (3b)
p' production level for unit _
v generation level of pumped storage hydro (jnit 19=1" 17=19" near, jey, (3c)
wy pumping level of pumped storage hydro ujit . Constraints that couple different units: balance between elec-
I} wat:r sto(;a%e.in the uppe(r ;eservoir of plant tric load and supply (4a); spinning reserve requirement (4b).
at the end of time intervdln I J
In addition, we use the following notation for the sequence of Zpi“ + Z (v’j1 —vv’j‘) >d", nea, (4a)
predecessors of any nodes A( \ {1}: n_1:=n_, N (1) = i= =1
(n_x)— if t(k) > 1; note that(n_¢) =t(n) —k for Kk = 1:t(n) — |
1 _Z(ui”p{{‘(% —-p)>r", neag, (4b)
=

B. MODEL A few comments on the stochastic programming model (1)—(4)

Since the operating costs of hydro plants are usually negiie in order. First, the modeling of the objective and the con-
gible, the total system cost is given by the sum of startup aattaint set by mixed-integer terms is motivated by the far more
operating costs of all thermal units over the whole schedulipgwerful algorithmic tools that are available for mixed-integer
horizon. The objective function to be minimized then is giveprograms. Second, for

by Tini = 1—max{T, 1 - 1,5 — 1} (5)
| =11
Nt ) 4+ 9 (Pt L 1) andt = Tini:0, ur in (1) and (2b)—(2c) are replaced by fixed ini-
> ZQ (P, ') i (1)
nex i= tial valuesu;; € {0,1}, i = 1:1. Third, the nonanticipativity of

The fuel costE£" associated with nodefor operating the ther- the process of scheduling decisions is handled implicitly (i.e., it
mal uniti are piecewise linear convex, strictly monotonicalljs ensured automatically) by the tree-based model (1)—(4). For
increasing. The start-up costs of a thermal unit depend on the= |2(| nodes the model involvedN binary and(l + 2J)N
down-time of the unit. They may vary from a maximum coldeontinuous decision variables. Table | shows how the size of a
start value to a much smaller value when the thermal unit is stilixed-integer LP formulation of the scenario-tree model (1)—
relatively close to its operation temperature. The down-time d@&) increases with the number of nodes (without taking into ac-
pendence of the start-up costs are expressed by a unit-depencnt the constraints of type (2b)—(2c) and the objective func-
step function. Costs for the startup process of power contratité). In contrast, an equivalent formulation of the stochastic
are negligible. program involvingS:= |A(t| scenarios (cf.§2.1 in [10]) has

The minimization is subject to the followingperating con- | TSbinary and(l + 2J)T S continuous decision variables; note
straints: that typicallyN < TS



I11. L AGRANGIAN RELAXATION solution of the dual proble

The stochastic programming model (1)—(4) representy é&proximal bundle method)
large-scale linear mixed-integer optimization problem coupled
both in.time and with r_espect to different gerjeration.units. .T' © | agrange heuristics ’:
model is very demanding from the computational point of view
Even latest mixed-integer programming methodology and soft- l T
ware like CPLEX fail to solve the full problem. Therefor(j,(StOChaS“C) economic diSpach
algorithmic approaches to stochastic power management prob-
lems utilize decomposition techniques. In classical unit com-
mitment, Lagrangian relaxation is very popular and has a long
history. At present, suggested algorithms for solving stochas-The minimization in (7) decomposes into stochastic single
tic power mamagement problems are based on one of the f@hit subproblems. Specifically, the dual function
lowing Lagrangian relaxation schemes: (a) scenario decompo- ' J
sition [11], [12], [13], [14], [15], (b) stochastic (augmented) P(*) :iZlDi 0\>+121D1(?\1)+ > Ta(A2d"+A3r"),  (9)
Lagrangian relaxation of coupling constraints [16], [17], [18 N o ne(

[19], [20], [21]. The approaches in (a) successively decompg@gy be evaluated by solving thigermal suibproblems
the stochastic program into finitely many deterministic (or sceD;(A) = min S [an{qn(pin’uin) — (\T—AD)p"} (10)

solution of subproblems
(stochastic dynamic programming)
(descent algorithm)

Fig. 2. Structure of the stochastic Lagrangian relaxatiethod

nario) programs that may be solved by available conventional i nex’ i
techniques. The approach of (b) hinges on a successive decom- athn
position into finitely many smaller stochastic subproblems for —A%ul p{;}?")‘+ Sk (ulp i ))} s.t.(2) ¢,

which (efficient) solution techniques must be developed even-

tually. Due to the nonconvexity of the underlying stochast here we used separability and exchanged expectation with

rBigimization overp;) and thehydro subproblems

program, the successive decompositions in (a)—(b) have to
combined with certain global optimization techniques (branch-  p;(A;) = min z TAT(W! — V) s.t. (3) ¢ (11)
and-bound, heuristics, etc.). Vi) | neae

Let us now briefly describe the stochastic Lagrangian rela&oth subproblems represent multistage stochastic programming
ation approach followed in [20], [22], [10] together with itsmodels for the operation of a single unit. While the thermal
component. subproblem (10) is a combinatorial multistage program involv-

Problem (1)—(4) is almost separable with respect to unit8g stochastic costs, the hydro subproblem (11) is a linear mul-
since only constraints (4) couple different units. This struéistage model with stochastic costs and stochastic right-hand
ture allows us to apply a stochastic version of Lagrangian relgtdes.
ation by associating a stochastic Lagrange multiplimith the ~ Extending Lagrangian relaxation approaches for determinis-
coupling constraints (4). For convex multistage stochastic piiés power management models, our method for solving the tree-
grams, this approach is justified by the general duality theoryle®sed model (1)—(4) consists of the following ingredients:

[23]. Hence suppose momentarily the constrajhe {0,1} of (&) Solving the dual problem (8) by a proximal bundle method
(2a) is relaxed tai! € [0,1], so that problem (1)—(4) becomeg’sing function and subgradient information;

convex. Then (cf. [20§4]) with z:= (u, p,v,w) and multipli- (b) Efficient solvers for the single unit subproblems: dynamic
ersh i= (A peor =t (ALA2) € RY x RN, whereN :=|a(|, the programming for (10) and a special descent algorithm for (11);

Lagrangian (c) Lagrange heuristics for determining a nearly optimal first-
[ stage decision.
L(z;N) = z nn{
nex. i= gredients as in the classical case: a solver for the nondiffer-

ZI [Ci”(pi”,ui”) +g (uf’aﬂ(”))] (6) Thus, the approach is based on the same,staghastic, in-
[ J entiable dual, subproblem solvers, and a Lagrange heuristics.
+)\T[dn - Zpin— >V —W?)] The interaction of these components is illustrated in Figure 2.
= =1 They are now briefly discussed; the interested reader is refered
nfn < nemax  .n to [10] for a more detailed account. For a single unit, the hy-
+A2 [r - Zl(ui Pit(n) — Pi )] , dro subproblem (11) is solved by a specialized descent method
and thedual function = that generates a finite sequence of feasible hydro decisions with
decreasing objective value and terminates with an optimal so-
D(A) :=min{L(z;\) s.t. constraints (2)—(3) (7) lution. The outer minimimum of the thermal subproblem (10)

X with respect to the commitment staieis solved by dynamic
programming. Minimization with respect @ is done by a re-
vised economic dispatch algorithm. Values for Lagrangian mul-

etfpliers used for defining the thermal and hydro subproblems are
Obtained by maximizing the dual functidd (cf. (9)). Since
costsC" are polyhedral irp]". there exist subgradients &l (D is concave) the dual problem

thedual problemreads

max{D(A) : A € RN} . ®)
The dual functiorD is concave and polyhedral, since the fu



TABLE Il

(9) may be solved by the modern proximal bundle method [24]
COMPUTING TIMES AND GAPS WITHLH1 (NOA 3.0: opttol = 1073,

for concave nondifferentable maximization. The proximal bun-

dle method has very strong convergence properties. Starting NGRAD =50)
values for the Lagrangian multipliarwe determine as follows. S N | tme[s] | gap[%] N | time[s] | gap[%]
o ; 20 | 1982 89 0.15 [ 1627 94 0.10
The initial yal_ue§ for the components of t_he mult_lpIPej are 20 | 1681 68 037 | 1805 35 0.07
zero. A priority list scheme of thermal units provides the ini- 50 | 4530 475 0.18 | 4060 274 0.10
i A 50 | 4041 313 0.10 | 4457 288 0.43
t_|al values fo_r the mulpp!lem. When '_[he bundle method de- 100 | 9230 1183 011 | 9224 1072 013
livers an optimal multiplie\*, the optimal valueD(A*) pro- 100 | 7727 930 0.09 | 8867 | 1234 0.30

vides a lower bound for the optimal cost of the model (1)—(4).

In general, however, the “dual optimal” scheduling decisions o o . )
Z(\*) = (U(A*), p(A*),v(A*),w(A*)) violate the load and reser\,ec_ompletes LH1 by providing (dete_rmlnlst!c) scheduling deci-
constraints (4) such that a low-cost primal feasible solution h&€Ns{pt, %, w } for the whole planning horizon= 1.T.

to be determined by bagrangian heuristics. Two Lagrangian The second Lagrangian heuristic LH2 is based on the obser-
heuristics have been developed that determine nearly optitfaiion that usually the binary decisions A" + e1) change
first stage decision§(u”, p",v",W") }c,., Starting from the S|gn|_f|c_:§intly relative tau(A*) even for smalk > 0, and ensure
optimal multiplierA* andz(A*). While the first heuristics pro- feasibility fore large enough. (Heredenotes thé-vector with
vides a nearly optimal decision only at nodes 2, the re- Unit components.) Hence, LH2 starts by finding somme 0

sult of the second one is a nearly optimal solution at every nogiéch thaiz(A* + e1) satisfies all constraints (2)—(4). Then tak-

ina. ing u(A* +€1) as a starting point, a finite sequence of binary
Our first heuristic LH1 starts by computing mean values §cisions is constructed such that their components are decreas-
the scenario-based stochastic procegse¢ andl; = Ij(\*), ing. This is done by slelecrt]mr% a nO(ni@E X where the avail-
j = 1:J, i.e., we determiné = E[€], \* = E[\*] andi; = E[|;]. aPle reserve capacity;_, (u'pi&) — p) —r" is maximal, and
For instance, we have switching some unit off at n and some predecessor and suc-
(dzr—t’%a—tjhgt) = E_t - z HE" cessor nodes. This unitand the neighboring nodes ofare
nea detected by stochastic dynamic programming. Next, a stochas-
_ z Th(d™, F, ", a", b, 7). tic economic dispatch problem is solved by the descent method
e Con Ty described in [22] and [10]. This procedure, which generates a

sequence of scheduling decisions at all nodes, is continued until
dpfeasibility is detected during economic dispatch. The heuris-
Yjf terminates with the scheduling decision having minimal cost

Next, replacingy( by {1:T} andg by &, we consider determin-
istic single-scenario versions of the model (1)—(4) and the th
mal subproblems (10). Then we find deterministic generati
and pumping decisiong andw; that satisfy the constraints (3)(1)'

with [ gn_dy,— replaced b.y.j andyj, respectively. Further_more,A_ Numerical results

deterministic on/off decisiong are computed by dynamic pro-

gramming as solutions of the thermal subproblems (10) with theThe stochastic Lagrangian relaxation algorithm was imple-
multiplier A and the cost coefficients b andc replaced by\*, mented in C++ except for the proximal bundle method, for

a, b andc. In the next step, the hydro decisionsandw; are Which the Fortran package NOA 3.0 [25] was used as a callable
rescheduled in order to meet, as much as possible, the modifiBtry. For numerical tests we considered the hydro-thermal

reserve constraint power system of VEAG (withlT = 168,1 = 25 andJ = 7)
! max e T — . under uncertain load (i.e., the remaining data were determinis-
i;u“ Pit > O+t JZl(WJ't —Vir) t=1T, (12) tic). A bunch of load scenario trees was constructed as follows.

i.e.. the sum of the load and reserve constraints (4a) and ( rting with a reference _Ioad s_cenario obtained from real_-life
with d andr replaced byd andr. To this end our procedure re-data,S— 1 random branching points were selected successively
duces the right-hand side of (12) by modifying the hydro Sche@__prodgce a scenario tree.wﬂudentlcal scenarios. Then a

ules at thosewhere the constraint is violated and its right-hanffliScretized) Brownian motion was added to each node of the

side is largest in a certain set of neighboring time periods. THigEnario tree. The test runs were performed on an HP 9000

procedure is repeated several times (see also [4]). In the rig0/J280) computer with 180 MHz frequency and 768 MByte

step the hydro variables are fixed, and following [8] we sear@@in memory under HP-UX 10.20. _ _

for binary variablesi that satisfy the constraint (12). The main FirSt we consider the Lagrangian relaxation algorithm based
idea is to select the periddvhere (12) is most violated and to®n LH1. Table Il shows computing times and gaps for different
increase\; as much as necessary to switch on in the thernfdymbers of scenanoSXgnd four randomly generated scenario
subproblems just as many units as needed to satisfy (12) 4{€€S, €ach having a different number of nodgy (The gap
This is repeated until the constraint (12) is satisfied in all peffers to the reIaEvel difference

ods. Since this technique does not distinguish between identi- 1 [Cit (pit, Uit) + St (Ui)] = D

cal units that appear quite often in practice, the startup costs of D. t;i;

such units are slightly modified. Once the binary decisians of the cost of the scheduling decisi@n p,v,w) and the optimal
are fixed, the economic dispatch algorithm (see [22] and [1@flue D.. of the dual problem. We note that, in general, this



TABLE Il 10000
COMPUTING TIMES AND GAPS WITHLH2 (NOA 3.0: opttol = 1073,

NGRAD = 200) 8000
S N [ NOAtime[s] | total time[s] | gap[%]
1 168 10 16 0.20 6000 -
5 542 65 101 0.19
10 983 128 230 0.71
21 | 2098 351 531 0.39 4000 |
24 | 2175 374 695 0.83
27 | 2208 380 8349 0.73
32 | 2173 359 3337 0.66 2000 |
34 | 3043 497 1499 0.95
39 | 3848 874 4092 0.82

gap does not provide a quality measure for the approximate first 2% 20 yra— P Y ST
stage solution (it may even become nonpositive). When reading
the computing times in Table Il, it is worth recalling tHét=
4000 and\ = 8000 correspond to 10000 and 200000 binary Fig. 3. Optimal stochastic solution for one week
variables in the model (1)—(4), respectively.
gr;r?gilzn”rleli:faiir(t; (;c;g:)p;il:r'zlrr:]g btg:;‘j g:dLHggpasp:)?ireéh; I;al,[ Identify a sfcatistical (time series or regression). mode_l of the
o . eI%ad, and use it for generating a large number of simulation sce-
problems with different numbe&andN of scenarios and nodes arios
?J trr?g?glzgi/)\//iggr:)eor:;%dolf t?]i ?g;r:i?/relo dturgﬁtsy' g'jif)re the gap re{%ri)etermine an initial structure of the load tree. CompL_Jte_ sce-
nario values, using the sample means and standard deviations of

1 ' t the simulated scenarios
— ch(ph,u) + S (P )] —p, | . simu ' . .
D. (n;[n"iZ[ (P ) Sn( ! )] 3. Reduce the number of scenarios in the tree optimally.

Clearly, this bound provides an accuracy certificate for the ap-'n STEP 1 the probability distribution of the random load is
proximate primal-feasible solutiof{u", p, v, "))} e, - modeled. For load profiles there exist advanced discrete time

stochastic models (regression or time series models). They have

therm. generation hydro generation ------- load

While the “deterministic” Lagrangian heuristics LH1 re . Lo i
quires only short computing times, this becomes quite diﬂ‘eretﬂtbe caI|b.rated. from historical '9a,d profiles. )
for the “stochastic” heuristics LH2. Table 11l gives more insight F0r the identification of a statistical model we were given an
into the (total) computing times of different test runs. Highé?owly load profile of one year. I_3ecause .Of missing meteoro-
computing times are always due to very many economic d|89|cal p_arameters we could not fit regression models (cf. [15_]).
patches required by LH2. It is worth mentioning here that L olternatively, the seasonal components and the correlation

is quite sensitive to the accuracy of the dual solution, i.e., to tiBUCtUre of the Ioagdprocgss can be describeseasonal au-
optimality tolerance of the proximal bundle method. The advalpregressive integrated moving average (SARIMA) processes.

tage of using LH1 consists in low running times even for midzStimation and test procedurt_es fro_n_1 Wathematica Time Se-
size scenario trees, while its drawbacks are that only first-std{fes Fack [28] were used to identified a SARIMA,0,9) x
solutions are provided with no accuracy bounds. The advantdgel 0168 model for the loadt in periodt. Introducingy; :=
of LH2 is that it produces a “stochastic” solution together witft — %168t reads

a guaranteed accuracy bound, but at the expense of higher co— (blyt_l - (})7yt_7 =Z+01Z_1+...+69Z_og. (13)
puting times even for scenario trees of smaller size. For furthBne estimated model coefficients are
information the interested reader is referred to [26]. (@,...,¢7) = (2.79,—4.355.16,—4.883.67,—1.92,0.50),

Another test employed a load scenario tree with sixteen sq@s, ... .8,) = (-127,153 135088 0.31—0.06,0.180.110.07).

narios and 912 nodes that was generated from real-life VEAG t € 7, are independent, normally distributed random vari-
data by the technique described §iv. As before, we had ables with mean 0 and standard deviation 108.3.

T =168,1 =25,J =7. In effect, the scenario tree formula- According to the SARIMA equation (13) a large numbei) (
tion of our optimization model had 22,800 binary and 41,9%% gmulated load scenarios (sample pathsz)% - (d"'f)T (=

continuous variables, 92,224 constraints and 242,704 nonze{oRy are generated using i.i.d. realizations oZ;, t t::{f“_lg-r

Figure 3 provides the final output of the Lagrangian relaxatigfyg starting values;, t =t — 174:;. Theempirical means d;

algorithm using LH2. It presents 16 realizations of load anghqgandard deviations 6; of the simulated load scenarios are
generation levels. defined by

M

M
1 4 1 ~ —
IV. GENERATION OF LOAD SCENARIO TREES d = M d, 6? = M—l/z (d, _dt)Z, t=t;+1:T.
1 T =

To build representative scenario trees is presently an actineSTEP 2 the branching scheme of the of the initial load
field of research; see the survey [27]. We approximate tBeenario tree is selected, i.e., the number and position of the
stochastic load process by a scenario tree within three stepsbranching points and the branching degree in every node. The



following initial structure of the load scenario tree was used f&P% |
a planning horizon of one week:
« A balanced tree with 12 branching poirtigs= 12+ 12k, k= 7000 |
1:11.
« All branching points have branching degree 2; i.e., at arsgoo |
branching point a bundle of scenarios branches into two disjoint
bundles. 5000 |
Thus, the tree consists & := 2'? scenariosd® = (df)_,,
s=1:S The branching pointt, k= 2:12, are chosen at the ,,,, |
(normally fixed) times when already observable meteorologi-
cal and load data provide the opportunity to re-adjust the ugi&oo
commitment. For longer planning periods a hon-equidistant po-
sition of the branching points is preferable in order to restrict
the number of scenarios. By assigning two successors to any 2 168
nodenin A(y,, k= 1:K, it is possible to distinguish the events

with the verbal description “low load” and “high load” in the Fig. 4. Ten selected scenarios of a load scenario tree fowee&
time periodt =ty + 1:tx.1. (For convenience of notation set

tk+1 := T.) An additional event like “medium” load can easily . . y - Y .
be included, but increases the scenario nUMbBetEX. corresponding to “low load” and “high load” for the time span

; ) . . t.—=1t;+1:T) of aload scenario tree generated via the scheme
It remains to specify the scenario values and their pmbab(lh)lwith 212): 4096 scenarios for agplanning horizon of one

ities. First compute the empirical meattst =t; + 1:T, and : . o . .
T — . . week with an hourly discretization and branching poipts-
the standard deviatioms fort =ty, k= 2:K + 1. The predicted 12412 k=1:12.

load for the planning periotl= 1:t; yields the firstt; compo- . : . .

nents for all spcenari(?sl.o(lf no load p?lediction is available gne can>nce the mixed-integer model (1)~(4) is large even for rela-
use the empirical means foe= 1:ty). To any scenaris, s= 1:S tively few nodes, the number of scenarios of the_lnltlal scenario
there is assigned a vectaf = (6)<* with wf € {—1,1} for tree has to be reduced in STEP 3. Our reduction argument is
k=2:K+1. It provides a unique description of the path iIl?ased on certain probability metrics that measure the distance

the binary tree that corresponds to scenaritn particular, set between the initial discrete approximation of the distribution

w; = —1 (w := 1) if the values of scenarifor t =t + 1:t;1 un_?ﬁrlymg thg Ioag anq the redL:jced onel.( tollows:
are realizations of the event with the verbal description “low e scenario reduction procedure works as follows:

load” (“high load”) for this time span. The value of scenasio 1+ Initialization: SetS := S o
fort =t,: T is defined as Compute the Euclidian distancebetween all scenarios in the

k—1 initial scenario tree:

dts:zd:-l- %wls ati +('0IS< 6-tk t—1tk_1 - :
1 Z (d*—d?)%, s,s€{1:S} (15
=0

2(K+2-i)/2 2(K+2-k)/2 te —ty1
2. Select scenarig € {1,...,S}, such that

fort =tx_1+1ity, kK= 22K+ 1.
We let all scenarios have equal probabilitgs = 27K, (Al-

ternative scenario probabilities might be computed from his- i o o X ) s m

tograms of the simulated scenarios.) T Q'SQC(d d7) = mn Tﬁngg',qc(d ,d%). (16)

A few comments on the tree construction formula (14) are i}, 4 qelete scenarits from the tree.

. o ) . S
order. First, fot =t; + 1:T, the mean scenario valggy S, df 3 Update the probabilities of the scenarios in the reduced tree:
coincides with the empirical meady. Second, the symme- SetS =S —1and

try of the load tree is consistent with the normality assump-

tions imposed on the time series model for the load process. {

(14)
o(d,d%) =

. ) Ts+ T, if S=Sfor somese Argminc(ds,ds)
Third, for k = 1:K, the events “low load” (*high load”) for T5:= . s#s*
t =t + 1:t,1 are expressed in terms of scaled empirical stan- T, if s#53
dard deviationsy, , ,. To model increasing load uncertainty, the ) o 17)
variances vdid) of scenario values are strictly increasing witt#: Stopping criterion:
t. The extremal scenar@with w5 = 1 for all k has in the final If (S >N) then goto 2., else STOP.
periodT the value

d$ = dr +27K/25y, + -+ 27Y 207

Thus unrealistic (“too large”) load values are avoided. Further, To test our approach, we generated a load scenario tree via the
for Gy, ~ 0, k= 1:K, we have vaftr) ~ 0%(5 +---+3) ~ scheme (14) for an hourly discretized time horizon of one week
o2. Finally, we add that the scenario values betweemtsare (T = 168) with branching pointt = 12+ 12k, k = 1:12 (cf.
linearly interpolated so as to save work required for computirkgg. 4). The initial number of scenari@= 4096 was reduced
offorallt =t + 1:T. to 16 by applying the scenario reduction rule.

Figure 4 shows ten scenarios (including the extremal pathdmigure 5 shows the position of the shifted suppqd&—

A. Example of load scenario generation



1000
[13]
500 [14]
0 [15]
-500 t [16]
~1000 | (17]

1 24 36 48 60 72 84 96 108 120 132 144 156 168
(18]
Fig. 5. Shifted supports of the reduced scenario tree

[19]

)28, s = 1:16, of the reduced scenario tree within the exs
he | .  re {e]
tremal paths of the initial scenario tree indicated by dash
lines, with grey levels proportional to scenario probabilities.
The probabilitief3s, s= 1:16, assigned to scenarios in the re-
duced tree vary between 0.04 and 0.11. (21]
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