
1

Power Management under Uncertainty by Lagrangian Relaxation
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Abstract: The weekly cost-optimal generation of electric power in a hydro-
thermal generation system is modeled as a multistage mixed-integer stochastic
program. The model incorporates uncertainties of electrical load forecasts, of
inflows to pumped storage hydro plants and of fuel or electricity prices. For
its solution a stochastic Lagrangian relaxation scheme is designed by assign-
ing (stochastic) multipliers to all constraints coupling power units. Numerical
results are presented for the generation system of a German utility under un-
certain load. The stochastic load process is approximated by a finite number of
realizations (scenarios) in scenario tree form.
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I. INTRODUCTION

In recent years there has been considerable interest in the
application of mathematical modeling and optimization tech-
niques for operating power systems and trading electricity.
Much of the interest in stochastic power management models
has been stimulated by the ongoing liberalization of electricity
markets: electric utilities generate power in a competitive envi-
ronment, generating and trading activities must be coordinated,
electricity portfolios for spot and option markets become impor-
tant, and the electrical load as well as electricity prices become
increasingly unpredictable.

The present paper aims at optimizing generation and trading
of an electric hydro-thermal based utility under data uncertainty.
More specifically, we consider a power system comprising ther-
mal units, pumped hydro storage plants and contracts for deliv-
ery and purchase. The relevant uncertain data comprise electric
load, stream flows to hydro units, and fuel and electricity prices.
We develop a dynamic stochastic programming model where
the expected production costs are minimized subject to opera-
tional constraints. Since the model contains stochastic mixed-
integer decisions and is large-scale, new questions are raised
on designing solution algorithms and generating approximate
scenario-based data processes. The goal of the paper is to in-
form the reader on how to incorporate fuel and electricity prices
into the stochastic unit commitment problem, how to generate
representative scenario trees for the uncertain data and how we
succeded in solving the resulting large models.

The solution approach pursued in the present paper consists
in a stochastic version of classical Lagrangian relaxation [1],
which is very popular in power optimization [2], [3], [4], [5],
[6], [7], [8]. Since the coupling constraints contain random
variables, stochastic multipliers are needed for their dualiza-
tion, and the dual problem is a nondifferentiable stochastic pro-
gram. Consequently, this approach is based on the same, but
stochastic, ingredients as in the classical case: a solver for the
nondifferentiable dual, subproblem solvers, and a Lagrangian
heuristic. With a state-of-the-art bundle method for solving the

dual, specialized subproblem solvers and Lagrangian heuristics,
thisstochastic Lagrangian relaxation algorithm becomes rather
efficient. Our model and solution techniques are validated on
the system of the German utility Vereinigte Energiewerke AG
(VEAG). The VEAG generation system consists of 25 (coal-
fired or gas-burning) thermal units and 7 pumped hydro units.
Its total capacity is about 13,000 megawatts (MW) including a
hydro capacity of 1,700 MW; the system peak loads are about
8,600 MW. Our numerical results indicate that the algorithm
bears potential for solving complex real-life power scheduling
models under uncertainty in reasonable time.

The stochastic power management model uses a set of sce-
narios to model data uncertainty. In our approach to load sce-
nario tree generation, simulation scenarios are drawn from a
SARIMA model for the load. Their empirical means and stan-
dard deviations enter a tree building scheme for the initial (bi-
nary) load scenario tree. In a final step the number of load sce-
narios is reduced by a scenario deletion procedure based on a
suitable probability distance.

The paper is organized as follows. InxII we give a descrip-
tion of a our stochastic programming model. InxIII we describe
the stochastic Lagrangian relaxation approach together with its
components and report on numerical results for the VEAG sys-
tem with uncertain load. InxIV we present our procedure for
generating scenario trees of the electrical load process and re-
port on numerical tests.

II. POWER SYSTEM MODELING

We consider a power generation system comprising thermal
units, pumped storage plants and contracts for delivery and pur-
chase, and describe a model for its weekly cost-optimal genera-
tion under uncertainty in electrical load, inflows in hydro units
and prices for fuel or contracts.

The scheduling horizon of one week is typically discretized
into uniform (e.g., hourly) intervals. Accordingly, the load,
stream flows and electricity prices are assumed to be constant
within each period. The scheduling decisions for thermal units
are: which units to commit in each period, and at what gener-
ating capacity. The decision variables for the hydro plants are
the generation and pumping levels for each period. Power con-
tracts for delivery and purchase are regarded as special thermal
units. The schedule should minimize the total generation costs,
subject to the operational requirements.

The basic system requirement is to meet the electric load. An-
other important requirement is the spinning reserve constraint:
to maintain reliability (compensate sudden load peaks or un-
foreseen outages of units) the total commited capacity should



exceed the load in every period by a certain amount. Other op-
erating constraints which have to be incorporated are generat-
ing limits for thermal and hydro units. Each generating unit can
only be operated within a feasible range defined by its minimum
and maximum capacities. Water utilization for power genera-
tion in a pumped storage hydro unit is further limited by the
storage volume in the upper and lower dam of the unit. For
thermal units there are additional minimum up/down-time re-
quirements: when a unit is switched on (off), it must remain on
(off) for a certain number of time steps. Contracts for delivery
and purchase have minimum up/downtime of one period.

To schedule the generation in a power system schedulers
forecast the electric load for the specific time span. Since the
electric load is mainly driven by meteorological parameters
(temperature, cloud cover, etc.) the actual system load devi-
ates from the prediction. Uncertainty on the generating system
is not limited to that of electric load. Other sources of uncer-
tainty are generator outages, inflows to hydro units, and prices
of fuel and electricity. To formulate a power generation model
that incorporates fluctuations in stream inflows in hydro plants,
and fuel and electricity prices in addition to the load uncertainty,
we use a probabilistic description of uncertainty. Letξt collect
the uncertain data in periodt, t = 1:T , i.e., the load and the
spinning reserve, water inflows, and coefficients of cost func-
tions for thermal units and power contracts. Then we assume
that fξt gT

t=1 is a discrete-time stochastic process. Of course,
at the beginning of the scheduling horizon we only know the
probability distribution of the data processfξt gT

t=1 and not its
precise outcome. Nevertheless we are forced to take decisions.
In practice the data forecast may be reliable until some period
t1 2 f1:T �1g, so that the data processfξtgt1

t=1 is determinis-
tic. In this context it makes sense to seek scheduling decisions
which minimize the sum of the costs caused by the scheduling
decisions for the time spant = 1:t1 plus the expected generating
costs fort = t1+1:T while meeting the operational constraints.
The scheduling decisons of the intervalt = 1:t1 are the deter-
ministic (first-stage) decisions, the remaining decision variables
depend on the outcome of the stochastic data process. In this
way, we end up with a multistage stochastic program. (For a
detailed introduction to multistage stochastic programming we
refer to [9].)

We now assume that we have adiscrete distribution of the
data processfξtgT

t=1. (This is the standard approach in multi-
stage stochastic programming to avoid theoretical and numer-
ical difficulties caused by multivariate continuous probability
distributions.) Its support consists ofscenarios (i.e., realiza-
tions or trajectories offξtgT

t=1) that form ascenario tree based
on a finite set of nodesN (cf. Fig. 1). Each node consists
of a bundle of scenarios sharing a common history. Nodes of
the scenario tree at which a bundle of scenarios branches into
several disjoint bundles are calledbranching points and the in-
tervals between themstages. The root noden = 1 stands for
periodt = 1. Every other noden has a uniquepredecessor node
n� and atransition probability τn > 0, which is the probabil-
ity of n being the successor ofn�. The successors to noden
form the setN +(n); their transition probabilities add to 1. The

1 t1 t2 T

Fig. 1. Example for a scenario tree

probabilityπn of each noden is generated recursively by

π1 = 1; πn = τnπn� for n 6= 1:
Nodesn with N +(n) = /0 are calledleaves; they constitute the
terminal setN T . A scenario corresponds to a path from the root
node to a leaf. The probabilitiesfπngn2N T

provide a distribu-
tion for the set of all scenarios. Conversely, given such scenario
probabilities, the remaining node and transition probabilities are
generated recursively by

πn = ∑
n+2N +(n)πn+ ; τn+ = πn+=πn for n+ 2 N +(n):

Each noden corresponds to a set of realizations offξtgT
t=1 that

coincide until the periodt(n), the time step associated with node
n. To any noden 2 N there is assigned a set of scheduling
decisions. The sequence of scheduling decisions also form a
discrete-time stochastic process. Of course, the decisions as-
signed to noden may depend only on the data observable till
periodt(n), i.e. are nonanticipative. Consequently, if two sce-
narios are indistinguishable at some noden (i.e. they carry the
same information throughout the period between the beginning
of the horizon and up untilt(n)) the corresponding decisions
throughout the path from the root to noden must be the same.

A. NOTATIONS

Model Parameters
T number of time intervals
T f1:Tg
I number of thermal units (including contracts)
I f1:Ig
J number of pumped storage hydro units
J f1:Jg
N node set of the scenario tree
N jN j, the total number of nodes of the scenario tree
πn probability of noden
t(n) time step corresponding to noden
path(n) path from the root to noden



dn
t load during periodt at noden

rn
t spinning reserve during periodt at noden

pmin
it(n) minimal output of thermal uniti during periodt(n)

pmax
it(n) maximal output of thermal uniti during periodt(n)

τ̄i minimum uptime of thermal uniti
τi minimum downtime of thermal uniti
Cn

i cost function at noden for operating thermal uniti
Sn

i cost function for starting-up thermal uniti
during periodt(n)

η j pumping efficiency of pumped storage hydro unitj
vmax

jt(n) maximal generation level of pumped storage
hydro unit j during periodt(n)

wmax
jt(n) maximal pumping level of pumped storage hydro

unit j during periodt(n)
lmax

jt(n) maximal fill of the upper dam of pumped storage
hydro unit j during periodt(n)

γn
j water inflow in pumped storage hydro unitj at

noden
lin

j initial fill (in energy) of the upper dam at period 0
lend

j final fill (in energy) of the upper dam at the end of
periodT

Decision Variables associated with noden 2 N
un

i commitment state of thermal uniti
un

i 2 f0;1g (1 if on, 0 if off)

upath(n)
i (un

i )n2path(n)
pn

i production level for uniti
vn

j generation level of pumped storage hydro unitj
wn

j pumping level of pumped storage hydro unitj
ln

j water storage in the upper reservoir of plantj
at the end of time intervalt(n)

In addition, we use the following notation for the sequence of
predecessors of any noden 2 N n f1g: n�1 := n�, n�(κ+1) :=(n�κ)� if t(κ)> 1; note thatt(n�κ) = t(n)�κ for κ = 1:t(n)�
1.

B. MODEL

Since the operating costs of hydro plants are usually negli-
gible, the total system cost is given by the sum of startup and
operating costs of all thermal units over the whole scheduling
horizon. The objective function to be minimized then is given
by

∑
n2N πn

(
I

∑
i=1

Cn
i (pn

i ;un
i )+Sn

i

�
upath(n)

i

�) : (1)

The fuel costsCn
i associated with noden for operating the ther-

mal unit i are piecewise linear convex, strictly monotonically
increasing. The start-up costs of a thermal unit depend on the
down-time of the unit. They may vary from a maximum cold-
start value to a much smaller value when the thermal unit is still
relatively close to its operation temperature. The down-time de-
pendence of the start-up costs are expressed by a unit-dependent
step function. Costs for the startup process of power contracts
are negligible.

The minimization is subject to the followingoperating con-
straints:

TABLE I

SIZE OF THE SCENARIO-TREE MODEL (1)–(4)DEPENDING ON THE

NUMBERS OF SCENARIOS AND NODES FORT = 168,I = 25 AND J = 7

S N Variables Constraints Nonzeros
binary continuous

1 168 4200 6652 13441 19657
20 1176 29400 45864 94100 137612
50 2478 61950 96642 198290 289976

100 4200 105000 163800 336100 491500� Operating ranges (1) and minimum up/down-time require-
ments (2a),(2b) of thermal units:

pmin
it(n)un

i � pn
i � pmax

it(n)un
i ; un

i 2 f0;1g; n 2 N ; i 2 I ; (2a)

un�κ
i �u

n�(κ+1)
i � un

i ; κ = 1:τ̄i�1; n 2 N ; i 2 I ; (2b)

u
n�(κ+1)
i �un�κ

i � 1�un
i ; κ = 1:τi�1; n 2 N ; i 2 I ; (2c)� Operating ranges (3a) and dynamics of pumped storage hydro

units (3b); water storages in the upper dam of a plant at the
beginning and at the end of the scheduling period (3c).

0 � vn
j � vmax

jt(n);
0 � wn

j � wmax
jt(n); n 2 N ; j 2 J j = 1:J; (3a)

0 � ln
j � lmax

jt(n);
ln

j = ln�
j � vn

j +η jw
n
j + γn

j ; n 2 N ; j 2 J ; (3b)

l0
j = lin

j ; ln
j = lend

j ; n 2 N T ; j 2 J ; (3c)� Constraints that couple different units: balance between elec-
tric load and supply (4a); spinning reserve requirement (4b).

I

∑
i=1

pn
i + J

∑
j=1

(vn
j �wn

j)� dn; n 2 N ; (4a)

I

∑
i=1

(un
i pmax

it(n)� pn
i )� rn; n 2 N ; (4b)

A few comments on the stochastic programming model (1)–(4)
are in order. First, the modeling of the objective and the con-
straint set by mixed-integer terms is motivated by the far more
powerful algorithmic tools that are available for mixed-integer
programs. Second, for

τini := 1�max
i=1:I

fτc
i ; τ̄i �1;τi�1g (5)

andτ = τini :0, uiτ in (1) and (2b)–(2c) are replaced by fixed ini-
tial valuesuiτ 2 f0;1g, i = 1:I. Third, the nonanticipativity of
the process of scheduling decisions is handled implicitly (i.e., it
is ensured automatically) by the tree-based model (1)–(4). For
N := jN j nodes the model involvesIN binary and(I + 2J)N
continuous decision variables. Table I shows how the size of a
mixed-integer LP formulation of the scenario-tree model (1)–
(4) increases with the number of nodes (without taking into ac-
count the constraints of type (2b)–(2c) and the objective func-
tion). In contrast, an equivalent formulation of the stochastic
program involvingS := jN T j scenarios (cf.x2.1 in [10]) has
IT S binary and(I +2J)TS continuous decision variables; note
that typicallyN � T S.



III. L AGRANGIAN RELAXATION

The stochastic programming model (1)–(4) represents a
large-scale linear mixed-integer optimization problem coupled
both in time and with respect to different generation units. The
model is very demanding from the computational point of view.
Even latest mixed-integer programming methodology and soft-
ware like CPLEX fail to solve the full problem. Therefore,
algorithmic approaches to stochastic power management prob-
lems utilize decomposition techniques. In classical unit com-
mitment, Lagrangian relaxation is very popular and has a long
history. At present, suggested algorithms for solving stochas-
tic power mamagement problems are based on one of the fol-
lowing Lagrangian relaxation schemes: (a) scenario decompo-
sition [11], [12], [13], [14], [15], (b) stochastic (augmented)
Lagrangian relaxation of coupling constraints [16], [17], [18],
[19], [20], [21]. The approaches in (a) successively decompose
the stochastic program into finitely many deterministic (or sce-
nario) programs that may be solved by available conventional
techniques. The approach of (b) hinges on a successive decom-
position into finitely many smaller stochastic subproblems for
which (efficient) solution techniques must be developed even-
tually. Due to the nonconvexity of the underlying stochastic
program, the successive decompositions in (a)–(b) have to be
combined with certain global optimization techniques (branch-
and-bound, heuristics, etc.).

Let us now briefly describe the stochastic Lagrangian relax-
ation approach followed in [20], [22], [10] together with its
component.

Problem (1)–(4) is almost separable with respect to units,
since only constraints (4) couple different units. This struc-
ture allows us to apply a stochastic version of Lagrangian relax-
ation by associating a stochastic Lagrange multiplierλ with the
coupling constraints (4). For convex multistage stochastic pro-
grams, this approach is justified by the general duality theory of
[23]. Hence suppose momentarily the constraintun

i 2 f0;1g of
(2a) is relaxed toun

i 2 [0;1], so that problem (1)–(4) becomes
convex. Then (cf. [20,x4]) with z := (u; p;v;w) and multipli-
ersλ := (λn)n2N =: (λ1;λ2) 2 RN+ �RN+ , whereN := jN j, the
Lagrangian

L(z ;λ) := ∑
n2N πn

(
I

∑
i=1

h
Cn

i (pn
i ;un

i )+Sn
i

�
upath(n)

i

�i
(6)+λn

1

h
dn� I

∑
i=1

pn
i � J

∑
j=1

(vn
j �wn

j)i+λn
2

h
rn� I

∑
i=1

(un
i pmax

it(n)� pn
i )i) ;

and thedual function

D(λ) := min
x
fL(z ;λ) s.t. constraints (2)–(3)g ; (7)

thedual problem reads

max
�

D(λ) : λ 2 R2N+ 	 : (8)
The dual functionD is concave and polyhedral, since the fuel

costsCn
i are polyhedral inpn

i .

solution of the dual problem

(proximal bundle method)?
Lagrange heuristics?6

(stochastic) economic dispatch

-� -� solution of subproblems

(stochastic dynamic programming)

(descent algorithm)

Fig. 2. Structure of the stochastic Lagrangian relaxation method

The minimization in (7) decomposes into stochastic single
unit subproblems. Specifically, the dual function

D(λ) = I

∑
i=1

Di(λ)+ J

∑
j=1

D̂ j(λ1)+ ∑
n2N πn (λn

1dn +λn
2rn) ; (9)

may be evaluated by solving thethermal subproblems

Di(λ) = min
ui

(
∑

n2N πn

�
min

pn
i

fCn
i (pn

i ;un
i )� (λn

1�λn
2)pn

i g (10)�λn
2un

i pmax
it(n)+Sn

i

�
upath(n)

i

��
s.t. (2));

(where we used separability and exchanged expectation with
minimization overpi) and thehydro subproblems

D̂ j(λ1) = min(v j ;w j)(∑
n2N πnλn

1(wn
j � vn

j) s.t. (3)) : (11)

Both subproblems represent multistage stochastic programming
models for the operation of a single unit. While the thermal
subproblem (10) is a combinatorial multistage program involv-
ing stochastic costs, the hydro subproblem (11) is a linear mul-
tistage model with stochastic costs and stochastic right-hand
sides.

Extending Lagrangian relaxation approaches for determinis-
tic power management models, our method for solving the tree-
based model (1)–(4) consists of the following ingredients:
(a) Solving the dual problem (8) by a proximal bundle method
using function and subgradient information;
(b) Efficient solvers for the single unit subproblems: dynamic
programming for (10) and a special descent algorithm for (11);
(c) Lagrange heuristics for determining a nearly optimal first-
stage decision.
Thus, the approach is based on the same, butstochastic, in-
gredients as in the classical case: a solver for the nondiffer-
entiable dual, subproblem solvers, and a Lagrange heuristics.
The interaction of these components is illustrated in Figure 2.
They are now briefly discussed; the interested reader is refered
to [10] for a more detailed account. For a single unit, the hy-
dro subproblem (11) is solved by a specialized descent method
that generates a finite sequence of feasible hydro decisions with
decreasing objective value and terminates with an optimal so-
lution. The outer minimimum of the thermal subproblem (10)
with respect to the commitment stateui is solved by dynamic
programming. Minimization with respect topi is done by a re-
vised economic dispatch algorithm. Values for Lagrangian mul-
tipliers used for defining the thermal and hydro subproblems are
obtained by maximizing the dual functionD (cf. (9)). Since
there exist subgradients odD (D is concave) the dual problem



(9) may be solved by the modern proximal bundle method [24]
for concave nondifferentable maximization. The proximal bun-
dle method has very strong convergence properties. Starting
values for the Lagrangian multiplierλ we determine as follows.
The initial values for the components of the multiplierλ2 are
zero. A priority list scheme of thermal units provides the ini-
tial values for the multiplierλ1. When the bundle method de-
livers an optimal multiplierλ�, the optimal valueD(λ�) pro-
vides a lower bound for the optimal cost of the model (1)–(4).
In general, however, the “dual optimal” scheduling decisions
z(λ�)= (u(λ�); p(λ�);v(λ�);w(λ�)) violate the load and reserve
constraints (4) such that a low-cost primal feasible solution has
to be determined by aLagrangian heuristics. Two Lagrangian
heuristics have been developed that determine nearly optimal
first stage decisionsf(un; pn;vn;wn)gn2N first

starting from the
optimal multiplierλ� andz(λ�). While the first heuristics pro-
vides a nearly optimal decision only at nodesn 2 N first, the re-
sult of the second one is a nearly optimal solution at every node
in N .

Our first heuristic LH1 starts by computing mean values of
the scenario-based stochastic processesξ, λ� and l j = l j(λ�),
j = 1:J, i.e., we determinēξ = E [ξ], λ̄� = E [λ� ] andl̄ j = E [l j ].
For instance, we have(d̄t ; r̄t ; γ̄t ; āt ; b̄t ; c̄t) = ξ̄t = ∑

n2N t

πnξn= ∑
n2N t

πn(dn;rn;γn;an;bn;cn):
Next, replacingN by f1:Tg andξ by ξ̄, we consider determin-
istic single-scenario versions of the model (1)–(4) and the ther-
mal subproblems (10). Then we find deterministic generation
and pumping decisionsv j andw j that satisfy the constraints (3)
with l j andγ j replaced bȳl j andγ̄ j, respectively. Furthermore,
deterministic on/off decisionsui are computed by dynamic pro-
gramming as solutions of the thermal subproblems (10) with the
multiplier λ and the cost coefficientsa, b andc replaced bȳλ�,
ā, b̄ and c̄. In the next step, the hydro decisionsv j andw j are
rescheduled in order to meet, as much as possible, the modified
reserve constraint

I

∑
i=1

uit pmax
it � d̄t + r̄t + J

∑
j=1

(w jt � v jt) t = 1:T; (12)

i.e., the sum of the load and reserve constraints (4a) and (4b)
with d andr replaced byd̄ andr̄. To this end our procedure re-
duces the right-hand side of (12) by modifying the hydro sched-
ules at thoset where the constraint is violated and its right-hand
side is largest in a certain set of neighboring time periods. This
procedure is repeated several times (see also [4]). In the next
step the hydro variables are fixed, and following [8] we search
for binary variablesui that satisfy the constraint (12). The main
idea is to select the periodt where (12) is most violated and to
increasēλ�t as much as necessary to switch on in the thermal
subproblems just as many units as needed to satisfy (12) att.
This is repeated until the constraint (12) is satisfied in all peri-
ods. Since this technique does not distinguish between identi-
cal units that appear quite often in practice, the startup costs of
such units are slightly modified. Once the binary decisionsui

are fixed, the economic dispatch algorithm (see [22] and [10])

TABLE II

COMPUTING TIMES AND GAPS WITHLH1 (NOA 3.0: opttol = 10�3,

NGRAD= 50)

S N time[s] gap[%] N time[s] gap[%]
20 1982 89 0.15 1627 94 0.10
20 1651 68 0.37 1805 85 0.07
50 4530 475 0.18 4060 274 0.10
50 4041 313 0.10 4457 288 0.43

100 9230 1183 0.11 9224 1072 0.13
100 7727 930 0.09 8867 1234 0.30

completes LH1 by providing (deterministic) scheduling deci-
sionsfpt ;vt ;wtg for the whole planning horizont = 1:T .

The second Lagrangian heuristic LH2 is based on the obser-
vation that usually the binary decisions inu(λ� + ε1) change
significantly relative tou(λ�) even for smallε > 0, and ensure
feasibility forε large enough. (Here 1denotes theL-vector with
unit components.) Hence, LH2 starts by finding someε > 0
such thatz(λ�+ ε1) satisfies all constraints (2)–(4). Then tak-
ing u(λ�+ ε1) as a starting point, a finite sequence of binary
decisions is constructed such that their components are decreas-
ing. This is done by selecting a noden 2 N where the avail-
able reserve capacity∑I

i=1(un
i pmax

it(n)� pn
i )� rn is maximal, and

switching some uniti off at n and some predecessor and suc-
cessor nodes. This uniti and the neighboring nodes ofn are
detected by stochastic dynamic programming. Next, a stochas-
tic economic dispatch problem is solved by the descent method
described in [22] and [10]. This procedure, which generates a
sequence of scheduling decisions at all nodes, is continued until
infeasibility is detected during economic dispatch. The heuris-
tic terminates with the scheduling decision having minimal cost
(1).

A. Numerical results

The stochastic Lagrangian relaxation algorithm was imple-
mented in C++ except for the proximal bundle method, for
which the Fortran package NOA 3.0 [25] was used as a callable
library. For numerical tests we considered the hydro-thermal
power system of VEAG (withT = 168, I = 25 andJ = 7)
under uncertain load (i.e., the remaining data were determinis-
tic). A bunch of load scenario trees was constructed as follows.
Starting with a reference load scenario obtained from real-life
data,S�1 random branching points were selected successively
to produce a scenario tree withS identical scenarios. Then a
(discretized) Brownian motion was added to each node of the
scenario tree. The test runs were performed on an HP 9000
(780/J280) computer with 180 MHz frequency and 768 MByte
main memory under HP-UX 10.20.

First we consider the Lagrangian relaxation algorithm based
on LH1. Table II shows computing times and gaps for different
numbers of scenarios (S) and four randomly generated scenario
trees, each having a different number of nodes (N). The gap
refers to the relative difference

1
D�  T

∑
t=1

I

∑
i=1

[Cit(pit ;uit)+Sit(ui)]�D�!
of the cost of the scheduling decision(u; p;v;w) and the optimal
value D� of the dual problem. We note that, in general, this



TABLE III

COMPUTING TIMES AND GAPS WITHLH2 (NOA 3.0: opttol = 10�5,

NGRAD= 200)

S N NOA time[s] total time[s] gap[%]
1 168 10 16 0.20
5 542 65 101 0.19

10 983 128 230 0.71
21 2098 351 531 0.39
24 2175 374 695 0.83
27 2208 380 8349 0.73
32 2173 359 3337 0.66
34 3043 497 1499 0.95
39 3848 874 4092 0.82

gap does not provide a quality measure for the approximate first
stage solution (it may even become nonpositive). When reading
the computing times in Table II, it is worth recalling thatN =
4000 andN = 8000 correspond to 100;000 and 200;000 binary
variables in the model (1)–(4), respectively.

Table III reports computing times and gaps for the La-
grangian relaxation algorithm based on LH2 applied to test
problems with different numbersS andN of scenarios and nodes
of randomly generated load scenario trees. Here the gap refers
to the following bound of the relative duality gap

1
D�  ∑

n2N πn

I

∑
i=1

h
Cn

i (pn
i ;un

i )+Sn
i

�
upath(n)

i

�i�D�! :
Clearly, this bound provides an accuracy certificate for the ap-
proximate primal-feasible solutionf(un; pn;vn;wn))gn2N .

While the “deterministic” Lagrangian heuristics LH1 re-
quires only short computing times, this becomes quite different
for the “stochastic” heuristics LH2. Table III gives more insight
into the (total) computing times of different test runs. Higher
computing times are always due to very many economic dis-
patches required by LH2. It is worth mentioning here that LH2
is quite sensitive to the accuracy of the dual solution, i.e., to the
optimality tolerance of the proximal bundle method. The advan-
tage of using LH1 consists in low running times even for mid-
size scenario trees, while its drawbacks are that only first-stage
solutions are provided with no accuracy bounds. The advantage
of LH2 is that it produces a “stochastic” solution together with
a guaranteed accuracy bound, but at the expense of higher com-
puting times even for scenario trees of smaller size. For further
information the interested reader is referred to [26].

Another test employed a load scenario tree with sixteen sce-
narios and 912 nodes that was generated from real-life VEAG
data by the technique described inxIV. As before, we had
T = 168, I = 25, J = 7. In effect, the scenario tree formula-
tion of our optimization model had 22,800 binary and 41,952
continuous variables, 92,224 constraints and 242,704 nonzeros.
Figure 3 provides the final output of the Lagrangian relaxation
algorithm using LH2. It presents 16 realizations of load and
generation levels.

IV. GENERATION OF LOAD SCENARIO TREES

To build representative scenario trees is presently an active
field of research; see the survey [27]. We approximate the
stochastic load process by a scenario tree within three steps:
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Fig. 3. Optimal stochastic solution for one week

1. Identify a statistical (time series or regression) model of the
load, and use it for generating a large number of simulation sce-
narios.
2. Determine an initial structure of the load tree. Compute sce-
nario values, using the sample means and standard deviations of
the simulated scenarios.
3. Reduce the number of scenarios in the tree optimally.

In STEP 1 the probability distribution of the random load is
modeled. For load profiles there exist advanced discrete time
stochastic models (regression or time series models). They have
to be calibrated from historical load profiles.

For the identification of a statistical model we were given an
hourly load profile of one year. Because of missing meteoro-
logical parameters we could not fit regression models (cf. [15]).
Alternatively, the seasonal components and the correlation
structure of the load process can be described byseasonal au-
toregressive integrated moving average (SARIMA) processes.
Estimation and test procedures from theMathematica Time Se-
ries Pack [28] were used to identified a SARIMA(7;0;9)�(0;1;0)168 model for the loaddt in periodt. Introducingyt :=
dt �dt�168 it reads

yt � φ̂1yt�1� : : :� φ̂7yt�7 = Zt + θ̂1Zt�1+ : : :+ θ̂9Zt�9: (13)
The estimated model coefficients are(φ̂1; : : : ; φ̂7) = (2:79;�4:35;5:16;�4:88;3:67;�1:92;0:50);(θ̂1; : : : ; θ̂9) = (�1:27;1:53;�1:35;0:88;�0:31;�0:06;0:18;0:11;0:07):
Zt , t 2 Z, are independent, normally distributed random vari-

ables with mean 0 and standard deviation 108.3.
According to the SARIMA equation (13) a large number (M)

of simulated load scenarios (sample paths)̃d
` = (d̃t̀ )T

t=t1+1, `=
1:M, are generated usingM i.i.d. realizations ofZt , t = t1�8:T ,
and starting valuesdt , t = t1�174:t1. Theempirical means d̄t

andstandard deviations σ̄t of the simulated load scenarios are
defined by

d̄t = 1
M

M

∑̀=1

d̃t̀ ; σ̄2
t = 1

M�1

M

∑̀=1

(d̃t̀ � d̄t)2; t = t1+1:T:
In STEP 2 the branching scheme of the of the initial load
scenario tree is selected, i.e., the number and position of the
branching points and the branching degree in every node. The



following initial structure of the load scenario tree was used for
a planning horizon of one week:� A balanced tree with 12 branching pointstk = 12+12k, k =
1:11.� All branching points have branching degree 2; i.e., at any
branching point a bundle of scenarios branches into two disjoint
bundles.
Thus, the tree consists ofS := 212 scenariosds = (ds

t )T
t=1,

s = 1:S. The branching pointstk, k = 2:12, are chosen at the
(normally fixed) times when already observable meteorologi-
cal and load data provide the opportunity to re-adjust the unit
commitment. For longer planning periods a non-equidistant po-
sition of the branching points is preferable in order to restrict
the number of scenarios. By assigning two successors to any
noden in N tk , k = 1:K, it is possible to distinguish the events
with the verbal description “low load” and “high load” in the
time periodt = tk + 1:tk+1. (For convenience of notation set
tK+1 := T .) An additional event like “medium” load can easily
be included, but increases the scenario number toS = 3K.

It remains to specify the scenario values and their probabil-
ities. First compute the empirical means̄dt , t = t1+ 1:T , and
the standard deviations̄σt for t = tk, k = 2:K+1. The predicted
load for the planning periodt = 1:t1 yields the firstt1 compo-
nents for all scenarios. (If no load prediction is available one can
use the empirical means fort = 1:t1). To any scenarios, s = 1:S
there is assigned a vectorωs = (ωs

k)K+1
k=2 with ωs

k 2 f�1;1g for
k = 2:K + 1. It provides a unique description of the path in
the binary tree that corresponds to scenarios. In particular, set
ωs

k :=�1 (ωs
k := 1) if the values of scenarios for t = tk +1:tk+1

are realizations of the event with the verbal description “low
load” (“high load”) for this time span. The value of scenarios
for t = t1:T is defined as

ds
t := d̄t + k�1

∑
i=2

ωs
i

σ̄ti

2(K+2�i)=2
+ωs

k
σ̄tk

2(K+2�k)=2

t� tk�1

tk� tk�1
(14)

for t = tk�1+1:tk; k = 2:K +1.
We let all scenarios have equal probabilitiesS�1 = 2�K. (Al-

ternative scenario probabilities might be computed from his-
tograms of the simulated scenarios.)

A few comments on the tree construction formula (14) are in
order. First, fort = t1+1:T , the mean scenario value1S ∑S

s=1ds
t

coincides with the empirical mean̄dt . Second, the symme-
try of the load tree is consistent with the normality assump-
tions imposed on the time series model for the load process.
Third, for k = 1:K, the events “low load” (“high load”) for
t = tk +1:tk+1 are expressed in terms of scaled empirical stan-
dard deviations̄σtk+1. To model increasing load uncertainty, the
variances var(dt) of scenario values are strictly increasing with
t. The extremal scenarios with ωs

k = 1 for all k has in the final
periodT the value

ds
T = d̄T +2�K=2σ̄t2 + � � �+2�1=2σ̄T :

Thus unrealistic (“too large”) load values are avoided. Further,
for σ̄tk+1 � σ̄, k = 1:K, we have var(dT ) � σ̄2( 1

2K + � � �+ 1
2) �

σ̄2. Finally, we add that the scenario values between thetk’s are
linearly interpolated so as to save work required for computing
σ̄2

t for all t = t1+1:T .
Figure 4 shows ten scenarios (including the extremal paths

24 168

3000

4000

5000

6000

7000

8000

Fig. 4. Ten selected scenarios of a load scenario tree for oneweek

corresponding to “low load” and “high load” for the time span
t = t1+1 : T ) of a load scenario tree generated via the scheme
(14) with 212 = 4096 scenarios for a planning horizon of one
week with an hourly discretization and branching pointstk =
12+12k, k = 1:12.

Since the mixed-integer model (1)–(4) is large even for rela-
tively few nodes, the number of scenarios of the initial scenario
tree has to be reduced in STEP 3. Our reduction argument is
based on certain probability metrics that measure the distance
between the initial discrete approximation of the distribution
underlying the load and the reduced one.

The scenario reduction procedure works as follows:
1. Initialization: SetS0 := S.
Compute the Euclidian distancesc between all scenarios in the
initial scenario tree:

c(ds1;ds2) :=vuut T

∑
t=t1

�
ds1

t �ds2
t

�2; s1;s2 2 f1 : S0g (15)

2. Select scenarios� 2 f1; : : : ;S0g, such that

πs� min
s 6=s� c(ds;ds�) = min

m=1;:::;S0 πm min
s 6=m

c(ds;dm): (16)

and delete scenariods� from the tree.
3. Update the probabilities of the scenarios in the reduced tree:
SetS0 := S0�1 and

πs :=( πs +πs� ; if s = s for somes 2 Argmin
s 6=s� c(ds;ds�)

πs; if s 6= s
(17)

4. Stopping criterion:
If (S0 > N) then goto 2., else STOP.

A. Example of load scenario generation

To test our approach, we generated a load scenario tree via the
scheme (14) for an hourly discretized time horizon of one week
(T = 168) with branching pointstk = 12+ 12k, k = 1:12 (cf.
Fig. 4). The initial number of scenariosS = 4096 was reduced
to 16 by applying the scenario reduction rule.

Figure 5 shows the position of the shifted supports(ds
t �
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Fig. 5. Shifted supports of the reduced scenario tree

d̄t)168
t=1, s = 1:16, of the reduced scenario tree within the ex-

tremal paths of the initial scenario tree indicated by dashed
lines, with grey levels proportional to scenario probabilities.
The probabilitiesβs, s = 1:16, assigned to scenarios in the re-
duced tree vary between 0.04 and 0.11.
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[10] N. Gröwe-Kuska, K. C. Kiwiel, M. P. Nowak, W. Römisch,and I. Wegner,
“Power management in a hydro-thermal system under uncertainty by la-
grangian relaxation,” Preprint 19-99, Institut für Mathematik, Humboldt-
Univ. Berlin, Berlin, Germany, 1999, submitted to the IMA Volumes in
Mathematics and its Applications, Springer Verlag.

[11] C. C. Carøe and R. Schultz, “Dual decomposition in stochastic integer
programming,”Oper. Res. Lett., vol. 24, pp. 37–45, 1999.

[12] C. C. Carøe and R. Schultz, “A two-stage stochastic program for unit com-
mitment under uncertainty in a hydro-thermal power system,” Preprint

98-13, Konrad-Zuse-Zentrum für Informationstechnik, Berlin, Germany,
1998.

[13] A. Løkketangen and D. L. Woodruff, “Progressive hedging and tabu
search applied to mixed integer(0;1) multi-stage stochastic program-
ming,” J. Heuristics, vol. 2, pp. 111–128, 1996.

[14] S. Takriti, J. R. Birge, and E. Long, “A stochastic modelfor the unit
commitment problem,”IEEE Trans. Power Systems, vol. 11, pp. 1497–
1508, 1996.

[15] S. Takriti, B. Krasenbrink, and L. S.-Y. Wu, “Incorporating fuel con-
straints and electricity spot prices into the stochastic unit commitment
problem,” Research Report RC 21066, Mathematical SciencesDept.,
IBM Research Division, T.J. Watson Research Center, Yorktown Heights,
New York, 1997, To appear in Ann. Oper. Res.
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