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Abstract. We present a dynamic multistage stochastic programming model for the
cost-optimal generation of electric power in a hydro-thermal system under uncertainty in
load, inflow to reservoirs and prices for fuel and delivery contracts. The stochastic load
process is approximated by a scenario tree obtained by adapting a SARIMA model to
historical data, using empirical means and variances of simulated scenarios to construct
an initial tree, and reducing it by a scenario deletion procedure based on a suitable prob-
ability distance. Our model involves many mixed-integer variables and individual power
unit constraints, but relatively few coupling constraints. Hence we employ stochastic
Lagrangian relaxation that assigns stochastic multipliers to the coupling constraints.
Solving the Lagrangian dual by a proximal bundle method leads to successive decom-
position into single thermal and hydro unit subproblems that are solved by dynamic
programming and a specialized descent algorithm, respectively. The optimal stochastic
multipliers are used in Lagrangian heuristics to construct approximately optimal first
stage decisions. Numerical results are presented for realistic data from a German power
utility, with a time horizon of one week and scenario numbers ranging from 5 to 100. The
corresponding optimization problems have up to 200,000 binary and 350,000 continuous
variables, and more than 500,000 constraints.

Key words. Stochastic programming, Lagrangian relaxation, unit commitment,
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1. Introduction. Many issues motivate a growing interest in mathe-
matical modeling and optimization techniques for operating power systems
and trading electricity. Some of them are related to the ongoing liberal-
ization of electricity markets: electric utilities generate power in a compet-
itive environment, generating and trading activities must be coordinated,
electricity portfolios for spot and option markets become important, and
the electrical load as well as electricity prices become increasingly unpre-
dictable. Further issues are related to the complex nature of mathemat-
ical models for the efficient generation, transmission and distribution of
electric power. They often lead to optimization problems characterized
by combinations of challenges such as mixed-integer decisions, nonlinear
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costs and constraints, huge dimensions and data uncertainty. The latter
aspect mostly concerns uncertainty in electric load forecasts, generator fail-
ures, stream flows to hydro reservoirs, and fuel and electricity prices (see
[20, 22, 24, 31, 44] for relevant earlier work).

The present paper aims at optimizing generation and trading of an
electric hydro-thermal based utility under data uncertainty. More specifi-
cally, we consider a power system comprising thermal units, pumped hydro
storage plants and contracts for delivery and purchase. The relevant un-
certain data comprise electric load, stream flows to hydro units, and fuel
and electricity prices.

We develop a dynamic stochastic programming model where the ex-
pected production costs are minimized subject to operational constraints.
Since the model contains stochastic mixed-integer decisions and is large-
scale, new questions are raised on designing solution algorithms and gener-
ating approximate scenario-based data processes. Our model and solution
techniques are validated on the system of the German utility Vereinigte
Energiewerke AG (VEAG). The VEAG generation system consists of 25
(coal-fired or gas-burning) thermal units and 7 pumped hydro units. Its
total capacity is about 13,000 megawatts (MW) including a hydro capacity
of 1,700 MW; the system peak loads are about 8,600 MW.

Nowadays, solution methods are well developed for linear dynamic
(multistage) stochastic programs without integrality constraints (see the
monographs [4, 26, 57] and the surveys [3, 52]). Most of them are based
on discrete approximations of the stochastic data process in the form of
scenario trees. Recently, some algorithmic progress has also been achieved
in mixed-integer stochastic programming models and applications to power
optimization. The following algorithmic approaches to mixed-integer sto-
chastic programs appear in the literature: (a) stochastic branch and bound
methods [40], (b) scenario decomposition by splitting methods combined
with suitable heuristics [50, 38, 54], (c) scenario decomposition combined
with branch and bound [7, 6], (d) stochastic (augmented) Lagrangian re-
laxation of coupling constraints [1, 8, 9, 48, 11, 51, 55]. The approaches in
(b) and (c) are based on a successive decomposition of the stochastic pro-
gram into finitely many deterministic (or scenario) programs that may be
solved by available conventional techniques. The approach of (d) hinges on
a successive decomposition into finitely many smaller stochastic subprob-
lems for which (efficient) solution techniques must be developed eventually.
Due to the nonconvexity of the underlying stochastic program, the succes-
sive decompositions in (b)–(d) have to be combined with certain global
optimization techniques (branch-and-bound, heuristics, etc.).

The solution approach pursued in the present paper consists in a
stochastic version of classical Lagrangian relaxation [36], which is very
popular in power optimization [2, 18, 23, 37, 53, 59, 61]. Since the coupling
constraints contain random variables, stochastic multipliers are needed for
their dualization, and the dual problem is a nondifferentiable stochastic
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program. The algorithm employed in [8, 9] is based on an augmented La-
grangian containing a quadratic penalization of constraint violation which
is similar to a variance expression. The specific algorithm proposed in [9]
linearizes the nonseparable penalty term and is no longer formally justified
in nonconvex situations. In [1, 48] disaggregated bundle methods are used
to solve a nondifferentiable dual which is obtained from a Lagrangian that
is not based on expected constraint violations. The authors report on ill-
conditioning effects when solving the quadratic subproblems and present
a preconditioner leading to improved convergence results. The solution
method employed in [55] is close to the approach in the present paper. It
it is based on a quadratic approximation strategy of the Lagrangian for
solving the dual and benefits from treating a purely thermal power sys-
tem. The approach of the present paper is based on the Rockafellar-Wets
dualization scheme (see also [11, 51]) and on the same, but stochastic, in-
gredients as in the classical case: a solver for the nondifferentiable dual,
subproblem solvers, and a Lagrangian heuristic. With a state-of-the-art
bundle method for solving the dual, specialized subproblem solvers and
Lagrangian heuristics, this stochastic Lagrangian relaxation algorithm be-
comes rather efficient. Compared to our earlier work [43], the algorithm is
developed for a general stochastic data process (i.e., containing stochastic
prices and inflows, too). Furthermore, it ends with a Lagrangian heuristic
providing nearly optimal primal solutions at each time period. Our numer-
ical results indicate that the algorithm bears potential for solving complex
real-life power scheduling models under uncertainty in reasonable time.

Generation of representative scenario trees is presently an active field
of research; see the survey [14]. Known scenario generation methods may
essentially be classified into two categories: (a) approaches that are embed-
ded in the solution procedure of stochastic programs [10, 30, 27, 21, 17], and
(b) approaches that generate optimal scenario trees for classes of stochas-
tic optimization problems [45, 29, 60, 39]. For power management under
uncertainty discrete time stochastic models are calibrated from historical
time series for the load and stream flows [20, 55]. The calibrated models
can be used to simulate or select a large number of sample paths. These
independently generated data trajectories are combined into scenario trees.
The algorithmic approaches in (a) allow possible updates of the scenario
tree structure as part of the solution procedure in the case of linear or con-
vex stochastic programs without integrality constraints. Since a sequence
of stochastic programs corresponding to subsequent approximations have
to be solved, the computational effort of all these methods is high. The
tree building procedures in (b) control the goodness-of-fit of the approx-
imation by certain distances. An optimal scenario tree is defined as the
tree-structured discrete distribution that minimizes the selected distance.
The resulting scenario trees can be tested within postoptimality analysis
[12, 13]. The iterative procedure in [45] is based on the Wasserstein dis-
tance of probability measures. A weighted least-squares criterion is used
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in [29] to obtain a scenario tree that preserves certain moments or other
statistical properties of the true multivariate distribution; the scenario tree
is obtained by solving highly nonlinear nonconvex programs. [60] proposes
a scenario reduction technique (nonrandom sampling) for the expectation
of path-dependent discount functions.

In our approach to load scenario tree generation, simulation scenarios
are drawn from a SARIMA model for the load. Their empirical means and
standard deviations enter a tree building scheme for the initial (binary)
load scenario tree. In a final step the number of load scenarios is reduced
by a scenario deletion procedure based on a suitable probability distance.

The paper is organized as follows. In §2 we give a description of a
hydro-thermal generation system and develop our stochastic programming
model. In §3 we describe the stochastic Lagrangian relaxation approach
together with its components and report on numerical results for the VEAG
system with uncertain load. In §4 we present our procedure for generating
scenario trees of the electrical load process and report on numerical tests.

2. Power system modeling. We consider a power generation sys-
tem comprising thermal units, pumped storage plants and contracts for
delivery and purchase, and describe a model for its cost-optimal operation
under uncertainty in electrical load (i.e., demand), stream flows in hydro
units and prices for fuel or electricity.

The scheduling horizon for unit commitment is typically discretized
into uniform (e.g., hourly) intervals. Accordingly, the load, stream flows
and prices are assumed to be constant within each time period. The
scheduling decisions for thermal units are: which units to commit in each
period, and at what generating capacity. The decision variables for hydro
plants are the generation and pumping levels for each period. Contracts
for delivery and purchase are regarded as special thermal units. The sched-
ule should minimize the total generation costs, subject to the operational
requirements.

We use the following notation. There are T time periods. I and J
are the numbers of thermal and hydro units, respectively. For a thermal
unit i in period t, uit ∈ {0, 1} is its commitment (1 if on, 0 if off), and pit

its production, with pit = 0 if uit = 0, pit ∈ [pmin
it , pmax

it ] if uit = 1, where
pmin

it and pmax
it are the minimum and maximum capacities. Additionally,

there are minimum up/down-time requirements: when unit i is switched
on (off), it must remain on (off) for at least τ̄i (τ i, resp.) periods. For a
hydro plant j, vjt and wjt are its generation and pumping levels in period
t, with upper bounds vmax

jt and wmax
jt respectively, and ljt is the storage

volume in the upper dam at the end of period t, with upper bound lmax
jt .

The water balance relates ljt with lj,t−1, vjt, wjt and the water inflow γjt,
using the pumping efficiency ηj . The initial and final volumes are specified
by linj and lend

j .

The basic system requirement is to meet the electric load. Another
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Fig. 1. Typical load curve and hydro-thermal schedule

important requirement is the spinning reserve constraint. To maintain
reliability (compensate sudden load peaks or unforeseen outages of units)
the total commited capacity should exceed the load in every period by a
certain amount (e.g., a fraction of the demand). The load and the spinning
reserve during period t are denoted by dt and rt, respectively.

Figure 1 shows a typical load curve and a corresponding cost-optimal
hydro-thermal schedule. The load curve exhibits a daily cycle; also weekly
cycles may occur (see, e.g., Fig. 5 in §4.1). Efficient operation of pumped
storage hydro plants exploits such cycles by generating during peak load
periods and pumping during off-peak periods.

Since the operating costs of hydro plants are usually negligible, the
total system cost is given by the sum of startup and operating costs of
all thermal units over the whole scheduling horizon. The fuel cost Cit for
operating thermal unit i during period t has the form

Cit(pit, uit) := max
l=1:l̄

{ ailtpit + biltuit } ,(2.1)

with coefficients ailt, bilt such that Cit(·, 1) is convex and increasing on
R+; note that Cit(0, 0) = 0. The startup cost of unit i depends on its
downtime; it may vary from a maximum cold-start value to a much smaller
value when the unit is still relatively close to its operating temperature.
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This is modeled by the startup cost

Sit(ui) := max
τ=0:τc

i

ciτ

(

uit −
τ
∑

κ=1

ui,t−κ

)

,(2.2)

where 0 = ci0 < . . . < ciτc
i

are fixed cost coefficients, τc
i is the cool-down

time of unit i, ciτc
i

is its maximum cold-start cost, ui := (uit)
T
t=1, and

uiτ ∈ {0, 1} for τ = 1 − τc
i : 0 are given initial values.

2.1. Stochastic model. In electric utilities, schedulers forecast the
electric load for the required time span. Since the load is mainly driven
by meteorological parameters (temperature, cloud cover, etc.), the actual
load deviates from its prediction. Of course, the load uncertainty increases
with the length of the planning horizon. Other sources of uncertainty
are generator outages, stream flows in hydro units, and prices of fuel and
electricity.

To formulate a power generation model that incorporates fluctuations
in stream inflows in hydro plants, and fuel and electricity prices in addition
to the load uncertainty, we use a probabilistic description of uncertainty.
Thus

{ρt := (dt, rt,γt,at, bt, ct) }
T
t=1(2.3)

is assumed to be a discrete-time stochastic process on some probability
space (Ω,F ,P), where dt, rt and γt represent the load, the spinning reserve
and the water inflows in period t, while at, bt and ct collect the cost
coefficients of (2.1) and (2.2) (we use bold characters to emphasize random
elements).

The scheduling decisions for period t are made after learning the re-
alization of the stochastic variables for that period. Denote by Ft ⊆ F the
σ-field generated by {ρτ}

t
τ=1, i.e., the events observable till period t. Since

the information on ρ1 is complete, F1 = {∅,Ω}, i.e., ρ1 is deterministic. By
assuming FT = F we require that full information be available at the end of
the planning horizon. The sequence of scheduling decisions {ut,pt,vt,wt}
also forms a stochastic process on (Ω,F ,P), which is assumed to be adapted
to the filtration of σ-fields, i.e., nonanticipative. Nonanticipativity means
that the decisions (ut,pt,vt,wt) may depend only on the data observable
till period t, or equivalently that (ut,pt,vt,wt) is Ft-measurable.

In a stochastic programming framework, an optimal schedule is ob-
tained by minimizing the expectation of the costs caused by all nonanti-
cipative decisions while meeting the operational constraints. Formally, our
stochastic problem is stated as:

min E

{

T
∑

t=1

I
∑

i=1

[ Cit(pit,uit) + Sit(ui) ]

}

s.t.(2.4)
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pmin
it uit ≤ pit ≤ pmax

it uit, uit ∈ {0, 1}, t = 1:T, i = 1: I,(2.5a)

uiτ − ui,τ−1 ≤ uit, τ = t− τ̄i + 1: t− 1, t = 1:T, i = 1: I,(2.5b)

ui,τ−1 − uiτ ≤ 1 − uit, τ = t− τ i + 1: t− 1, t = 1:T, i = 1: I,(2.5c)

0 ≤ vjt ≤ vmax
jt , 0 ≤ wjt ≤ wmax

jt , 0 ≤ ljt ≤ lmax
jt , t = 1:T, j = 1: J,(2.6a)

ljt = lj,t−1 − vjt + ηjwjt + γjt, t = 1:T, j = 1: J,(2.6b)

lj0 = linj , ljT = lend
j , j = 1: J,(2.6c)

I
∑

i=1

pit +

J
∑

j=1

(vjt − wjt) ≥ dt, t = 1:T,(2.7a)

I
∑

i=1

(uitp
max
it − pit) ≥ rt, t = 1:T,(2.7b)

(u,p,v,w) ∈
T
×

t=1
L∞

(

Ω,Ft,P ; R2(I+J)
)

,(2.8)

where (2.4) is the expected cost (cf. (2.1))–(2.2)), (2.5) describes the oper-
ating ranges and minimum up/down-time requirements of thermal units,
(2.6) models the operating ranges and dynamics of hydro units (with lt
treated as state variables), (2.7) imposes the load and reserve require-
ments, (2.8) expresses the nonanticipativity constraint (since all decision
variables are uniformly bounded, we may restrict attention to decisions in
L∞(Ω,F , P ; R2(I+J))), and for

τini := 1 − max
i=1:I

{ τc
i , τ̄i − 1, τ i − 1 }(2.9)

and τ = τini: 0, uiτ in (2.4) (cf. (2.2)) and (2.5b)–(2.5c) are replaced by
fixed initial values uiτ ∈ {0, 1}, i = 1: I.
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Fig. 2. Example of a scenario tree

2.2. Scenario tree model. To develop algorithms for problem (2.4)–
(2.8), we now assume that we have a discrete distribution of the data pro-
cess {ρt}

T
t=1 (cf. (2.3)). Its support consists of scenarios (i.e., realizations

of {ρt}
T
t=1) that form a scenario tree based on a finite set of nodes N (cf.

Fig. 2). The root node n = 1 stands for period t = 1. Every other node n
has a unique predecessor node n− and a transition probability πn/n

−

> 0,
which is the probability of n being the successor of n−. The successors to
node n form the set N+(n); their transition probabilities add to 1. The
probability πn of each node n is generated recursively by

π1 = 1, πn = πn/n
−

πn
−

for n 6= 1.

Nodes n with N+(n) = ∅ are called leaves; they constitute the terminal
set NT . A scenario corresponds to a path from the root node to a leaf.
The probabilities {πn}n∈NT

provide a distribution for the set of all scenar-
ios. Conversely, given such scenario probabilities, the remaining node and
transition probabilities are generated recursively by

πn =
∑

n+∈N+(n)

πn+ , πn+/n = πn+/πn for n+ ∈ N+(n).

Let path(n) denote the path from the root to node n. Then node
n corresponds to a set of realizations of {ρt}

T
t=1 that coincide until the

period t(n) := | path(n)| associated with node n; their common value ρt(n)

is denoted by ρn := (dn, rn, γn, an, bn, cn). Let the decisions for period t be
made after learning the realization of {ρt}

t
τ=1. The scheduling decisions

(un, pn, vn, wn) assigned to nodes n in Nt := {n : t(n) = t} are realizations
of the stochastic decisions (ut,pt,vt,wt); note that

∑

n∈Nt
πn = 1.
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Let u
path(n)
i := (uν

i )ν∈path(n). We use the following notation for the
sequence of predecessors of any node n ∈ N \ {1}: n−1 := n−, n−(κ+1) :=
(n−κ)− if t(κ) > 1; note that t(n−κ) = t(n)−κ for κ = 1: t(n)−1. To handle
the initial values uτ

i = uiτ with τ = τini: 0 (cf. (2.9)), we let nκ := κ− t(n)
for κ = t(n) + τini: t(n) (as if the original tree were augmented with nodes
τ = τini: 0 with associated periods t(τ) = τ). Then (cf. (2.1) and (2.2))

Cn
i (pn

i , u
n
i ) := max

l=1:l̄
{ an

ilp
n
i + bnilu

n
i }

and

Sn
i

(

u
path(n)
i

)

:= max
τ=0:τc

i

cniτ

(

un
i −

τ
∑

κ=1

u
n
−κ

i

)

(2.10)

are the fuel and startup costs of unit i at node n.
The scenario-tree form of the stochastic problem (2.4)–(2.8) reads:

min
∑

n∈N

πn

I
∑

i=1

[

Cn
i (pn

i , u
n
i ) + Sn

i

(

u
path(n)
i

)]

s.t.(2.11)

pmin
it(n)u

n
i ≤ pn

i ≤ pmax
it(n)u

n
i , un

i ∈ {0, 1}, n ∈ N , i = 1: I,(2.12a)

u
n
−κ

i − u
n
−(κ+1)

i ≤ un
i , κ = 1: τ̄i − 1, n ∈ N , i = 1: I,(2.12b)

u
n
−(κ+1)

i − u
n
−κ

i ≤ 1 − un
i , κ = 1: τ i − 1, n ∈ N , i = 1: I,(2.12c)

0 ≤ vn
j ≤ vmax

jt(n), 0 ≤ wn
j ≤ wmax

jt(n), 0 ≤ lnj ≤ lmax
jt(n), n ∈ N , j = 1: J,(2.13a)

lnj = l
n
−

j − vn
j + ηjw

n
j + γn

j , n ∈ N , j = 1: J,(2.13b)

l0j = linj , lnj = lend
j , n ∈ NT , j = 1: J,(2.13c)

I
∑

i=1

pn
i +

J
∑

j=1

(vn
j − wn

j ) ≥ dn, n ∈ N ,(2.14a)

I
∑

i=1

(un
i p

max
it(n) − pn

i ) ≥ rn, n ∈ N ,(2.14b)
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Table 1

Size of the scenario-tree model (2.11)–(2.14) depending on the numbers of scenarios
and nodes for T = 168, I = 25 and J = 7

S N Variables Constraints Nonzeros
binary continuous

1 168 4200 6652 13441 19657
20 1176 29400 45864 94100 137612
50 2478 61950 96642 198290 289976

100 4200 105000 163800 336100 491500

Note that the objective and constraints of (2.11)–(2.14) correspond directly
to (2.4)–(2.7), whereas the nonanticipativity constraint (2.8) is handled
implicitly (i.e., it is ensured automatically) by the tree-based model.

The tree-based form (2.11)–(2.14) for N := |N | nodes involves IN
binary and (I + 2J)N continuous decision variables. In contrast, the
stochastic program (2.4)–(2.8) for S := |NT | scenarios has ITS binary and
(I + 2J)TS continuous decision variables; note that typically N ≪ TS.

Table 1 shows how the size of a mixed-integer LP formulation of the
scenario-tree model (2.11)–(2.14) increases with the number of nodes (with-
out taking into account the constraints of type (2.12b)–(2.12c) and the
objective function).

3. Stochastic Lagrangian relaxation. In this section we develop
Lagrangian duals of the stochastic program (2.4)–(2.8) and its tree-based
version (2.11)–(2.14). We also describe the structure of Lagrangian relax-
ation, the bundle method used for solving the dual problem, the algorithms
for solving subproblems and two Lagrangian heuristics for recovering pri-
mal solutions. Finally, we give numerical results.

3.1. Dual stochastic problem. Problem (2.4)–(2.8) is almost sep-
arable with respect to units, since only constraints (2.7) couple different
units. This structure allows us to apply a stochastic version of Lagrangian
relaxation by associating a stochastic Lagrange multiplier λ with the cou-
pling constraints (2.7). For convex multistage stochastic programs, this
approach is justified by the general duality theory of [49]. Hence suppose
momentarily the constraint uit ∈ {0, 1} of (2.5a) is relaxed to uit ∈ [0, 1],
so that problem (2.4)–(2.8) becomes convex. Then (cf. [11, §4]) with mul-
tipliers λ = (λ1,λ2) belonging to ×T

t=1 L
1(Ω,Ft,P ; R2

+), the Lagrangian

L(u,p,v,w; λ) := E

T
∑

t=1

{

I
∑

i=1

[ Cit(pit,uit) + Sit(ui) ](3.1)

+ λ1
t

[

dt −
I
∑

i=1

pit −
J
∑

j=1

(vjt − wjt)
]

+ λ2
t

[

rt −
I
∑

i=1

(uitp
max
it − pit)

]







,
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and the dual function

D(λ) := min
(u,p,v,w)

L(u,p,v,w; λ) s.t. constraints (2.5)–(2.6),(3.2)

the dual problem reads

max

{

D(λ) : λ ∈
T
×

t=1
L1(Ω,Ft,P ; R2

+)

}

.(3.3)

In particular, this means that the stochastic multiplier process {λt}T
t=1 is

nonnegative P-almost surely and adapted to the filtration {Ft}T
t=1. In the

general case of integrality constraints in (2.5a), the optimal value of the
dual problem (3.3) only provides a lower bound for the optimal cost of the
nonconvex primal problem (the duality gap is discussed in [11, §4]).

The minimization in (3.2) decomposes into stochastic single unit sub-
problems. Specifically, the dual function

D(λ) =

I
∑

i=1

Di(λ) +

J
∑

j=1

D̂j(λ
1) + E

T
∑

t=1

(λ1
t dt + λ

2
t rt)(3.4)

may be evaluated by solving the thermal subproblems

Di(λ) := min
ui

{

E

T
∑

t=1

[ min
p

it

{Cit(pit,uit) − (λ1
t − λ2

t )pit}(3.5)

− λ
2
t uitp

max
it + Sit(ui)] s.t. (ui,pi) ∈

T
×

t=1
L∞(Ω,Ft,P ; R2) and (2.5)

}

(where we used separability and exchanged expectation with minimization
over pi) and the hydro subproblems

D̂j(λ
1) := min

(vj ,wj)

{

E

T
∑

t=1

λ1
t (wjt − vjt) s.t.(3.6)

(vj ,wj) ∈
T
×

t=1
L∞(Ω,Ft,P ; R2) and (2.6)

}

.

Both subproblems represent multistage stochastic programming models for
the operation of a single unit. While the thermal subproblem (3.5) is
a combinatorial multistage program involving stochastic costs, the hydro
subproblem (3.6) is a linear multistage model with stochastic costs and
stochastic right-hand sides.

3.2. Dual scenario-based problem. Let us now assume that a dis-
crete distribution of the data process {ρt}

T
t=1 is given in the scenario tree

form discussed in §2.2. Then {λt}T
t=1, being adapted to the filtration

{Ft}T
t=1 generated by {ρt}

T
t=1, has the tree structure of {ρt}

T
t=1, and is
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nonnegative P-almost surely. Accordingly, the multipliers λn ∈ R
2
+ as-

signed to nodes n in Nt := {n : t(n) = t} are realizations of the stochastic
multipliers λt, for t = 1:T . Letting λ := (λn)n∈N =: (λ1, λ2) ∈ R

N
+ × R

N
+ ,

where N := |N |, we may rewrite the dual problem (3.3), the decomposed
dual objective (3.4) and the Lagrangian subproblems (3.5)–(3.6) as follows:

max
{

D(λ) : λ ∈ R
2N
+

}

,(3.7)

D(λ) =

I
∑

i=1

Di(λ) +

J
∑

j=1

D̂j(λ1) +
∑

n∈N

πn (λn
1d

n + λn
2 r

n) ,(3.8)

Di(λ) = min
ui

{

∑

n∈N

πn

[

min
pn

i

{Cn
i (pn

i , u
n
i ) − (λn

1 − λn
2 )pn

i }(3.9)

− λn
2u

n
i p

max
it(n) + Sn

i

(

u
path(n)
i

)

]

s.t. (2.12)

}

,

D̂j(λ1) = min
(vj ,wj)

{

∑

n∈N

πnλ
n
1 (wn

j − vn
j ) s.t. (2.13)

}

.(3.10)

Alternatively, these expressions may be derived from the Lagrangian

L(u, p, v, w;λ) :=
∑

n∈N

πn

{

I
∑

i=1

Cn
i (pn

i , u
n
i ) +

I
∑

i=1

Sn
i

(

u
path(n)
i

)

(3.11)

+ λn
1

[

dn −
I
∑

i=1

pn
i −

J
∑

j=1

(vn
j − wn

j )
]

+ λn
2

[

rn −
I
∑

i=1

(un
i p

max
it(n) − pn

i )
]







,

and the definition of the dual function

D(λ) := min
(u,p,v,w)

L(u, p, v, w;λ) s.t. constraints (2.12)–(2.13).(3.12)

The dual function D is concave and polyhedral, since the fuel costs
(2.1) are polyhedral.

3.3. Structure of the solution method. Extending Lagrangian
relaxation approaches for deterministic power management models, our
method for solving the tree-based model (2.11)–(2.14) consists of the fol-
lowing ingredients:

(a) Solving the dual problem (3.7) by a proximal bundle method using
function and subgradient information;
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solution of the dual problem

(proximal bundle method)

?
Lagrange heuristics

?6
(stochastic) economic dispatch

-
�

-
�

solution of subproblems

(stochastic dynamic programming)

(descent algorithm)

Fig. 3. Structure of the stochastic Lagrangian relaxation method

(b) Efficient solvers for the single unit subproblems: dynamic pro-
gramming for (3.9) and a special descent algorithm for (3.10);

(c) Lagrangian heuristics for determining a nearly optimal first-stage
decision that employ economic dispatch.
These components are discussed in the following subsections; their interac-
tion is illustrated in Fig. 3.

3.4. Proximal bundle method. The tree-based problem (2.11)–
(2.14) has the following form:

ψmin
0 := min ψ0(z) s.t. ψl(z) ≤ 0, l = 1:L, z ∈ Z(3.13)

with z := (z1, . . . , zI+J) and Z := Z1 × · · · × ZI+J , where Zi is the set of
points zi := (un

i , p
n
i )n∈N satisfying (2.12) for i = 1: I, ZI+j is the set of

points zI+j := (vn
j , w

n
j )n∈N satisfying (2.13) for j = 1: J , L := 2N , and

ψ0(z) :=

I
∑

i=1

∑

n∈N

πn

{

Cn
i (pn

i , u
n
i ) + Sn

i

(

u
path(n)
i

)}

,(3.14a)

ψn(z) := dn −
I
∑

i=1

pn
i −

J
∑

j=1

(vn
j − wn

j ), n = 1:N,(3.14b)

ψN+n(z) := rn −
I
∑

i=1

(un
i p

max
it(n) − pn

i ), n = N + 1: 2N.(3.14c)

Note that each function ψl, l = 0:L, is continuous on the compact set Z.
Let Λ denote the dual space R

L of multipliers λ = (λ1, λ2) ∈ R
N ×R

N

equipped with the probabilistic inner product

〈λ, µ〉Π :=
N
∑

n=1

πn (λn
1µ

n
1 + λn

2µ
n
2 ) = 〈Πλ, µ〉 ,(3.15)
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where Π ∈ R
L×L is a diagonal matrix with entries Πnn := ΠN+n,N+n :=

πn, n = 1:N , and 〈·, ·〉 is the standard inner product on R
L. Then, with

the constraint function ψ := (ψ1, . . . , ψL), the Lagrangian (3.11) becomes

L(z;λ) := ψ0(z) + 〈λ, ψ(z)〉Π(3.16)

(cf. (3.14)). Thus the dual function (3.12) of problem (3.13)

D(λ) := min
z∈Z

L(z;λ) = min
z∈Z

{ψ0(z) + 〈λ, ψ(z)〉Π}

may be evaluated at λ by finding a partial Lagrangian solution

z(λ) ∈ Z(λ) := Arg min
z∈Z

L(z;λ) = Arg min
z∈Z

{ψ0(z) + 〈λ, ψ(z)〉Π} ,(3.17)

which provides a subgradient gD(λ) := ψ(z(λ)) of D at λ, i.e.,

D(µ) ≤ L(z(λ);µ) = D(λ) + 〈µ− λ, gD(λ)〉Π ∀µ.(3.18)

Clearly, gD(·) is bounded, since ψ is continuous on the compact Z.
Suppose the primal problem (3.13) (≡(2.11)–(2.14)) is feasible. Then

it has a nonempty solution set Z∗ (by Weierstrass). Further, the lower
bound D∗ := sup

R
L
+
D ≤ ψmin

0 (weak duality) yields D∗ < ∞, so the dual

optimal set Λ∗ := max
R

L
+
D is nonempty (since D is polyhedral).

In effect, the proximal bundle method [32], [28, §XV.3] may be used for
solving the dual problem [18]. This method generates a sequence {λk

c}
∞
k=1 ⊂

R
L
+ converging to some λ∗ ∈ Λ∗, and trial points λk ∈ R

L
+ for evaluating the

Lagrangian solutions zk := z(λk) (cf. (3.17)), the subgradients gk
D := ψ(zk)

of D and its linearizations (cf. (3.18))

Dk(·) := D(λk) +
〈

· − λk, gk
D

〉

Π
≥ D(·),

starting from an arbitrary point λ1
c = λ1 ∈ R

L
+. Iteration k uses the

polyhedral model of D

Dk(·) := min
l∈Lk

Dl(·) with k ∈ Lk ⊂ {1: k}(3.19)

for finding the next trial point

λk+1 := arg max
{

Dk(λ) − 1
2uk|λ− λk

c |
2
Π : λ ∈ R

L
+

}

,(3.20)

where the proximity weight uk > 0 and the penalty term | · |2Π := 〈·, ·〉Π
should keep λk+1 close to the prox-center λk

c . An ascent step to λk+1
c =

λk+1 occurs if λk+1 is significantly better than λk
c as measured by

D(λk+1) ≥ D(λk
c ) + κδk,(3.21)

where κ ∈ (0, 1) is a fixed Armijo-like parameter and

δk := Dk(λk+1) −D(λk
c ) ≥ 0
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is the predicted ascent (if δk = 0 then λk
c ∈ D∗ and the method may stop).

Otherwise, a null step λk+1
c = λk

c improves the next model Dk+1 with the
new linearization Dk+1 (cf. (3.19)).

The choice of weights uk is discussed in [18, 32]. For choosing Lk+1,
subgradient selection exploits the fact that the QP method of [34] for solv-
ing subproblem (3.20) produces multipliers νk

l ≥ 0 of the linear pieces Dl in

(3.19) such that
∑

l∈Lk νk
l = 1 and the set L̂k := {l ∈ Lk : νk

l > 0} satisfies

|L̂k| ≤ L+ 1. To save storage without impairing convergence, it suffices to
choose Lk+1 ⊃ L̂k ∪ {k + 1}, i.e., we may drop inactive linearizations Dl

with νk
l = 0. (The multipliers νk

l could be used for constructing a general-
ized solution to a relaxed version of problem (3.13), and for recovering good
primal feasible solutions; this idea is exploited for deterministic unit com-
mitment in [18], but its stochastic extension requires further work.) Since
subgradient selection may require too much storage (up to L+ 2 lineariza-
tions), alternatively one may employ subgradient aggregation [32], in which
groups of past linearizations are replaced by their convex combinations so
that at most NGRAD ≥ 2 linearizations are stored.

The proximal bundle method has very strong convergence properties.
First, because D is polyhedral, for subgradient selection the convergence
is finite [33] (i.e., δk = 0 and λk

c ∈ Λ∗ for some k) if the dual problem
(3.7) satisfies a mild technical condition, or “sufficiently many” iterations
require an exact ascent step, i.e., (3.21) with κ = 1. For subgradient
aggregation, finite convergence need not occur, but λk

c → λ∗ ∈ Λ∗ and {zk}
converges to Z(λ∗) (cf. (3.17)). In particular, the thermal unit schedules

u
(k)
i of zk

i = (u
(k)
i , p

(k)
i ) converge to “dual optimal” schedules; this may

be exploited in Lagrangian heuristics for recovering a good primal feasible
solution. Further, δk → 0, so that for any optimality tolerance opt tol > 0,
the method eventually meets the stopping criterion

δk ≤ opt tol
(

1 + |D(λk
c )|
)

.(3.22)

Usually, when opt tol = 10−m is used, upon termination the dual objective
value D(λk

c ) has m correct digits [18].

We may add that using the probabilistic inner product (3.15) and

norm | · |Π := 〈·, ·〉
1/2
Π in the Lagrangian (3.16) and the bundle subproblem

(3.20) is natural in the stochastic setting. It may also enable faster conver-
gence. Namely, in a similar context [1] reports poor bundle performance
for Π replaced by the identity matrix in (3.16) and (3.20), and much better
performance for Π replaced by Π1/2 in (3.16) and by the identity matrix
in (3.20); the latter version corresponds to ours (expressed in variables
λ̄ = Π1/2λ).

3.5. Descent algorithm for stochastic hydro units and eco-

nomic dispatch. The hydro subproblem (3.10) for unit j is solved by
a specialized descent method that generates a finite sequence of feasible
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hydro decisions (vj , wj) with decreasing objective values

Ψ(vj , wj) :=
∑

n∈N

πnλ
n
1 (vn

j − wn
j )

and terminates with an optimal solution. The method begins by finding
a feasible hydro decision (vj , wj) that satisfies (2.13). The next feasible
iterate (ṽj , w̃j) with Ψ(ṽj , w̃j) < Ψ(vj , wj) is chosen so that the difference
(ṽn

j , w̃
n
j )− (vn

j , w
n
j ) is nonzero only for n belonging to a rather small subset

NG of N . Here the subscript G refers to a subset of N with the following
properties: There exist nG ∈ G and LG ⊆ G such that nG ∈ path(n) for
each n ∈ G, N+(n) ∩ G = ∅ for each n ∈ LG, and N+(n) ⊆ G for each
n ∈ G\LG. Since such a subset G corresponds to a subtree with root node
nG and leaves in LG, it is called a descent subtree in what follows.

It is shown in [42] that for each nonoptimal feasible hydro decision
(vj , wj) there exist a descent subtree G and a hydro decision (ṽj , w̃j) such
that ṽn

j = vn
j and w̃n

j = wn
j for each node n ∈ N\NG with NG = {nG}∪LG,

and
∑

n∈NG

πnλ
n
1 (ṽn

j − vn
j − (w̃n

j − wn
j )) < 0,

which implies Ψ(ṽj , w̃j) < Ψ(vj , wj). Moreover, there exists a constant

δG 6= 0 such that l̃nj = lnj +δG for n ∈ G\LG and l̃nj = lnj for n ∈ N\(G\LG),

where l̃j and lj are the corresponding storage volumes. If δG > 0 then
ṽnG

j < vnG

j or w̃nG

j > wnG

j , and w̃n
j < wn

j or ṽn
j > vn

j for each n ∈ LG,
and similarly for δG < 0. For a precise description of the iterative scheme
we refer to [42]. It is also shown there that for each nonoptimal feasible
hydro decision, a descent subtree leading to steepest descent of Ψ can be
determined with complexity that grows linearly with N . Implementation
issues and numerical results of the descent algorithm are given in [41, 42].

We now turn to the next item of Fig. 3. When the binary decisions un
i

are fixed, the tree-based model (2.11)–(2.14) becomes an economic dispatch
problem. This problem can be reformulated as

min
∑

n∈N

πnΦn





J
∑

j=1

(vn
j − wn

j )



 s.t. (2.13),(3.23)

where Φn are the optimal value functions of the following one-parametric
thermal subproblems

Φn(θ) := min
p

{

I
∑

i=1

Cn
i (pi, u

n
i ) : pmin

it(n)u
n
i ≤ pi ≤ pmax

it(n)u
n
i , i = 1: I,

dn − θ ≤
I
∑

i=1

pi ≤
I
∑

i=1

pmax
it(n)u

n
i − rn

}

.
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Such piecewise linear functions may be evaluated via efficient algorithms
(e.g., [56]). If the functions Φn were differentiable, successive linearization
combined with the above descent technique could be used to solve (3.23).
This suggests replacing each Φn by a differentiable function Φ̃n that is
obtained from Φn by smoothing its kinks with quadratic functions on small
intervals. Then successive linearization and descent may be combined with
progressive reduction of the smoothing intervals. More information on this
economic dispatch algorithm and its numerical performance may be found
in [42, 43].

3.6. Dynamic programming for stochastic thermal units. To
solve the thermal subproblem (3.9) for unit i by dynamic programming,
the startup costs (2.2) and the minimum up/down-times (2.12b)–(2.12c)
are incorporated in its state space Si := {−τ̂i:−1} ∪ {1: τ̄i} with τ̂i :=
max{τc

i , τ i}. Unit i is in state s > 0 (s < 0) if it has been up (down) for
at least s (−s, resp.) time periods. The set Ti ⊆ Si × Si of feasible state
transitions of unit i is given by

Ti := {(s, s+ 1) for s = 1: τ̄i − 1, (τ̄i, τ̄i), (τ̄i,−1), (−τ̂i,−τ̂i),

(s, s− 1) for s = −τ̂i − 1:−1, (s, 1) for s = −τ̂i:−τ i} .

To formulate the dynamic programming recursion, we set for all nodes
n ∈ N and integers s, s̃

αn
i (s) :=

{

0 if s < 1,
min

pmin
it(n)

≤p≤pmax
it(n)

[Cn
i (p, 1) − (λn

1 − λn
2 )p] − λn

2 p
max
it(n) else,

βn
i (s, s̃) :=

{

cni,−s if s ∈ {−τc
i :−1} and s̃ > 0,

0 otherwise,

where cniτ are the startup cost coefficients of (2.10). Thus αn
i (s) is the

weight of node n in state s, and βn
i (s, s̃) is the weight for the arc from state

s to state s̃ at node n in the dynamic programming graph. Then we have

Di(λ) = min
ui

∑

n∈N

πn

[

αn
i (un

i ) + max
τ=0:τc

i

cniτ

(

un
i −

τ
∑

κ=1

u
n
−κ

i

)]

= min

{

∑

n∈N

πn [αn
i (sn) + βn

i (sn
− , sn)] : (sn

− , sn) ∈ Ti, n ∈ N

}

= η0
i (s0i ),

where s0i is the initial state determined by the given {uiτ}0
τ=τini

, and η0
i (s)

is determined by the backward recursion

ηn
i (s) = αn

i (s) +
∑

n+∈N+(n)

πn+/n min
(s,s̃)∈Ti

{

β
n+

i (s, s̃) + η
n+

i (s̃)
}

, s ∈ Si,
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for n ∈ N ∪ {0} with α0
i (s) ≡ 0, N+(0) = {1}, π1/0 = 1. Now, the dy-

namic programming algorithm works as follows. First the cost-to-go ηn
i (s)

is computed for all states s ∈ Si and nodes n ∈ N via the backward re-
cursion, which also yields η0

i (s0i ). Then the optimal scheduling decisions
{(un

i (λ), pn
i (λ))}n∈N are obtained by forward tracing the tree. Implemen-

tation issues are discussed in more detail in [42].

3.7. Lagrangian heuristics. When the bundle method delivers an
optimal multiplier λ∗, the optimal value D(λ∗) provides a lower bound
for the optimal cost of the model (2.11)–(2.14). In general, however, the
“dual optimal” scheduling decisions z(λ∗) = (u(λ∗), p(λ∗), v(λ∗), w(λ∗))
(cf. (3.17)) violate the load and reserve constraints (2.14).

In practice the data forecast may be reliable until some period t1 ∈
{1:T−1}, so that the data process {ρt}

t1
t=1 is deterministic. Thus it is useful

to distinguish the deterministic first stage comprising periods t = 1: t1. The
nodes of the first stage form the set Nfirst := ∪t1

t=1Nt (see also Fig. 2).
In the following, we describe two Lagrangian heuristics that determine

nearly optimal first stage decisions {(un, pn, vn, wn)}n∈Nfirst
starting from

the optimal multiplier λ∗ and z(λ∗). While the first heuristic provides a
nearly optimal decision only at nodes n ∈ Nfirst, the result of the second
one is a nearly optimal solution at every node in N .

Our first heuristic LH1 starts by computing mean values of the scena-
rio-based stochastic processes ρ, λ∗ and lj = lj(λ

∗), j = 1: J , i.e., we
determine ρ̄ = E[ρ], λ̄∗ = E[λ∗] and l̄j = E[lj ]. For instance, we have

(d̄t, r̄t, γ̄t, āt, b̄t, c̄t) = ρ̄t =
∑

n∈Nt

πnρ
n =

∑

n∈Nt

πn(dn, rn, γn, an, bn, cn).

Next, replacing N by {1:T } and ρ by ρ̄, we consider deterministic single-
scenario versions of the model (2.11)–(2.14) and the thermal subproblems
(3.9). Then we find deterministic generation and pumping decisions vj and
wj that satisfy the constraints (2.13) with lj and γj replaced by l̄j and γ̄j ,
respectively. Furthermore, deterministic on/off decisions ui are computed
by dynamic programming as solutions of the thermal subproblems (3.9)
with the multiplier λ and the cost coefficients a, b and c replaced by λ̄∗, ā,
b̄ and c̄. In the next step, the hydro decisions vj and wj are rescheduled in
order to meet, as much as possible, the modified reserve constraint

I
∑

i=1

uitp
max
it ≥ d̄t + r̄t +

J
∑

j=1

(wjt − vjt) t = 1:T,(3.24)

i.e., the sum of the load and reserve constraints (2.14a) and (2.14b) with
d and r replaced by d̄ and r̄. To this end our procedure reduces the right-
hand side of (3.24) by modifying the hydro schedules at those t where the
constraint is violated and its right-hand side is largest in a certain set of
neighboring time periods. This procedure is repeated several times (see also
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[23]). In the next step the hydro variables are fixed, and following [61] we
search for binary variables ui that satisfy the constraint (3.24). The main
idea is to select the period t where (3.24) is most violated and to increase λ̄∗t
as much as necessary to switch on in the thermal subproblems just as many
units as needed to satisfy (3.24) at t. This is repeated until the constraint
(3.24) is satisfied in all periods. Since this technique does not distinguish
between identical units, which appear quite often in practice, the startup
costs of such units are slightly modified. Once the binary decisions ui are
fixed, the economic dispatch algorithm (see §3.5 and [43]) completes LH1
by providing (deterministic) scheduling decisions {pt, vt, wt} for the whole
planning horizon t = 1:T .

The second Lagrangian heuristic LH2 is based on the observation that
usually the binary decisions in u(λ∗ + ε1) change significantly relative to
u(λ∗) even for small ε > 0, and ensure feasibility for ε large enough. (Here
1 denotes the L-vector with unit components.) Hence, LH2 starts by find-
ing some ε > 0 such that z(λ∗ + ε1) satisfies all constraints (2.12)–(2.14).
Then taking u(λ∗ + ε1) as a starting point, a finite sequence of binary
decisions is constructed such that their components are decreasing. This
is done by selecting a node n ∈ N where the available reserve capacity
∑I

i=1(u
n
i p

max
it(n) − pn

i ) − rn is maximal, and switching some unit i off at n
and some predecessor and successor nodes. This unit i and the neighbor-
ing nodes of n are detected by stochastic dynamic programming. Next,
a stochastic economic dispatch problem is solved by the descent method
described in §3.5 and [43]. This procedure, which generates a sequence
of scheduling decisions at all nodes, is continued until infeasibility is de-
tected during economic dispatch, at which point the procedure returns the
scheduling decision having minimal cost (2.11) from those calculated so far.
The LH2 heuristic is described in more detail in [42, §4.4].

3.8. Numerical results. The stochastic Lagrangian relaxation algo-
rithm was implemented in C++ except for the proximal bundle method, for
which the Fortran package NOA 3.0 [35] was used as a callable library. For
numerical tests we considered the hydro-thermal power system of VEAG
(with T = 168, I = 25 and J = 7) under uncertain load (i.e., the remaining
data were deterministic). A bunch of load scenario trees was constructed
as follows. Starting with a reference load scenario obtained from real-life
data, S− 1 random branching points were selected successively to produce
a scenario tree with S identical scenarios. Then a (discretized) Brownian
motion was added to each node of the scenario tree. The test runs were
performed on an HP 9000 (780/J280) computer with 180 MHz frequency
and 768 MByte main memory under HP-UX 10.20.

First we consider the Lagrangian relaxation algorithm based on LH1.
Table 2 shows computing times and gaps for different numbers of scenarios
(S) and four randomly generated scenario trees, each having a different
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Table 2

Computing times and gaps with LH1 (NOA 3.0: opt tol = 10−3, NGRAD = 50)

S N time[s] gap[%] N time[s] gap[%]
20 1982 89 0.15 1627 94 0.10
20 1651 68 0.37 1805 85 0.07
50 4530 475 0.18 4060 274 0.10
50 4041 313 0.10 4457 288 0.43

100 9230 1183 0.11 9224 1072 0.13
100 7727 930 0.09 8867 1234 0.30

Table 3

Computing times and gaps with LH2 (NOA 3.0: opt tol = 10−5, NGRAD = 200)

S N NOA time[s] total time[s] gap[%]
1 168 10 16 0.20
5 542 65 101 0.19

10 983 128 230 0.71
21 2098 351 531 0.39
24 2175 374 695 0.83
27 2208 380 8349 0.73
32 2173 359 3337 0.66
34 3043 497 1499 0.95
39 3848 874 4092 0.82

number of nodes (N). The gap refers to the relative difference

1

D∗

(

T
∑

t=1

I
∑

i=1

[Cit(pit, uit) + Sit(ui)] −D∗

)

of the cost of the scheduling decision (u, p, v, w) and the optimal value D∗

of the dual problem. We note that, in general, this gap does not provide
a quality measure for the approximate first stage solution (it may even
become nonpositive). When reading the computing times in Table 2, it is
worth recalling that N = 4000 and N = 8000 correspond to 100, 000 and
200, 000 binary variables in the model (2.11)–(2.14), respectively.

Table 3 reports computing times and gaps for the Lagrangian relax-
ation algorithm based on LH2 applied to test problems with different num-
bers S and N of scenarios and nodes of randomly generated load scenario
trees. Here the gap refers to the following bound of the relative duality gap

1

D∗

(

∑

n∈N

πn

I
∑

i=1

[

Cn
i (pn

i , u
n
i ) + Sn

i

(

u
path(n)
i

)]

−D∗

)

.

Clearly, this bound provides an accuracy certificate for the approximate
primal-feasible solution {(un, pn, vn, wn)}n∈N .

While the “deterministic” heuristic LH1 requires only short computing
times, this becomes quite different for the “stochastic” heuristic LH2. Table
3 gives more insight into the (total) computing times of different test runs.
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Fig. 4. Optimal stochastic solution for one week

Higher computing times are always due to very many economic dispatches
required by LH2. It is worth mentioning here that LH2 is quite sensitive
to the accuracy of the dual solution, i.e., to the optimality tolerance of
the proximal bundle method. The advantage of using LH1 consists in
low running times even for mid-size scenario trees, while its drawbacks
are that only first-stage solutions are provided with no accuracy bounds.
The advantage of LH2 is that it produces a “stochastic” solution together
with a guaranteed accuracy bound, but at the expense of higher computing
times even for scenario trees of smaller size. For further information the
interested reader is referred to [42].

Another test employed a load scenario tree with sixteen scenarios and
912 nodes that was generated from real-life VEAG data by the technique
described in §4.4. As before, we had T = 168, I = 25, J = 7. In effect,
the scenario tree formulation of our optimization model had 22,800 binary
and 41,952 continuous variables, 92,224 constraints and 242,704 nonzeros.
Figure 4 provides the final output of the Lagrangian relaxation algorithm
using LH2. It presents 16 realizations of load and generation levels.

4. Generation of load scenario trees. Our generation of load sce-
nario trees for the stochastic power generation model (2.11)–(2.14) proceeds
according to the following steps:

1. Identify a statistical (time series or regression) model of the load,
and use it for generating a large number of simulation scenarios.

2. Determine an initial structure of the load tree. Compute scenario
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values, using the sample means and standard deviations of the simulated
scenarios.

3. Reduce the number of scenarios in the tree optimally.
These steps are explained in the following subsections.

4.1. Identification of a time series for the electric load. For
the identification of a statistical model we got from the VEAG utility an
hourly load profile for one year. We could not fit regression models because
of missing meteorological parameters.

To select a suitable class of models for the set of observed load data
{dt}t∈I with I ⊂ Z := {0,±1,±2, . . .}, {dt}t∈I is considered as part of a
realization of the stochastic load process {dt}t∈Z. A time series model for
{dt}t∈I is a specification of the joint distributions of {dt}t∈Z. We now recall
some concepts of time series analysis.

A complete time series model for a stochastic process {Xt}t∈Z should
specify the distribution of any random vector (Xi1 , . . . , Xil

). Often the
analysis focuses on the second-order properties of {Xt}: the expected val-
ues EXt and the covariances cov(Xt, Xs) := E[(Xt − EXt)(Xs −EXs)] for
all t, s. In the particular case of Gaussian time series all random vari-
ables Xt are normally distributed. Therefore all the joint distributions
are multivariate normal and completely characterized by the second-order
properties of {Xt}. Classical time series analysis relies on the concept of
stationarity. Recall that {Xt} is stationary if EX2

t < ∞, EXt is constant
and cov(Xr, Xs) = cov(Xr+t, Xs+t), ∀r, s, t ∈ Z.

To select an appropriate model for observed data, their properties are
analyzed first. In particular, the data graph is searched for any seasonal
(periodic) or trend (nonconstant mean) components, outlying observations
or sharp changes in behavior. Then suitable transformations are applied
to the data to get a new stationary series (residuals) with zero mean and
unit variance. The trend and seasonal components may be removed by
estimating these components and subtracting them from the data; this is
the classical decomposition model incorporating trend, a seasonal compo-
nent and random noise. Another transformation is called differencing; it
replaces {Xt} by {Yt := Xt −Xt−s} for some lag s ∈ N, thus eliminating
a seasonal component of period s.

Figures 5 and 6 highlight the periodic components of our historical
data. In the week and month load data there is clearly a recurring pattern
with the seasonal period of 24 (one day). There are further periodic com-
ponents of length 168 (one week) and change points in the year data due
to the start/end of the daylight saving time.

Most approaches for fitting a time series to the deseasonalized data
rely on linear models. Autoregressive moving average (ARMA) models
are characterized by finite-order linear difference equations with constant
coefficients. The process {Xt} is called ARMA(p, q) if it is stationary and

Xt − φ1Xt−1 − . . .− φpXt−p = Zt + θ1Zt−1 + . . .+ θqZt−q ∀t,(4.1)
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Fig. 6. Time plot of the load profile for one year

where (φk)p
k=1 and (θl)

q
l=1 are real coefficients and {Zt}t∈Z is the white

noise process WN(0, σ2) with zero mean and variance σ2, i.e., EZt = 0,
EZ2

t = σ2, ∀t ∈ Z, and EZrZt = 0 if r 6= t. Using the backward shift
operator B defined by BℓXt := Xt−ℓ for t, ℓ ∈ Z, the ARMA equations
(4.1) can be rewritten as

φ(B)Xt = θ(B)Zt, ∀t ∈ Z, {Zt} ∼ WN(0, σ2),

where φ and θ denote the polynomials φ(z) = 1 − φ1z − . . . − φpz
p,

θ(z) = 1 + θ1z + . . . + θqz
q. An ARMA(p, q) process {Xt}t∈Z is said to

be causal (or future-independent) if there exists a real sequence {ψℓ} such
that

∑∞
ℓ=0 ψℓ <∞ and

Xt =

∞
∑

ℓ=0

ψℓZt−ℓ, ∀t ∈ Z.

If the differenced series {Yt = (1 − Bs)Xt}t∈Z is an ARMA(p, q) process
then the model for the original series {Xt} reads φ(B)(1−Bs)Xt = θ(B)Zt;
further, {Xt} belongs to the class of seasonal autoregressive integrated mov-
ing average (SARIMA) processes if {Yt} is causal. General SARIMA
processes are defined as follows. The process {Xt}t∈Z is said to be a
SARIMA(p, d, q) × (P,D,Q)S process with period s if the differenced pro-
cess Yt := (1 −B)d(1 −BS)DXt is the causal ARMA process

φ(B)Φ(Bs)Yt = θ(B)Θ(Bs)Zt, {Zt} ∼WN(0, σ2),

where φ(z) = 1−. . .−φpz
p, Φ(z) = 1−. . .−ΦP z

P , θ(z) = 1+. . .+θqz
q and

Θ(z) = 1+ . . .+ΘQz
Q. Then the model for {Xt}t∈Z reads φ(B)Φ(BS)(1−

B)d(1 −BS)DXt = θ(B)Θ(BS)Zt.
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There is no single systematic approach to identifying SARIMA mod-
els of higher order; see, e.g., [5]. To determine a suitable SARIMA model
for a given time series, the differencing orders d, D and the length S of
the seasonal component must be identified. Characteristics of the origi-
nal time series like trend and substantial periodic components are reflected
in the empirical autocorrelation function, the empirical counterpart of the
autocorrelation function cov(Xℓ, X0)/ var(X0), ℓ ∈ Z. The length of the
seasonal component S can be discovered by inspecting the periodicity of the
empirical autocorrelation function, and the seasonal components are elimi-
nated by differencing the data D times with lag S. Next, d is chosen so that
differencing d times with lag 1 gives residuals Yt := (1 −B)d(1 −BS)DXt

that are stationary in appearance. The behavior of the differenced (desea-
sonalized) series is described by two coupled ARMA models. The model
orders P and Q should to be chosen so that the empirical autocorrelation
function is consistent with that of an ARMA(P,Q) model for multiples of
the period S. The orders p and q should be selected so that the empirical
autocorrelation function within the period S shows the same behavior as
the autocorrelation function of an ARMA(p, q) process. Finally, the model

coefficients (φℓ)
p
ℓ=1, (Φℓ)

P
ℓ=1, (θℓ)

q
ℓ=1, (Θℓ)

Q
ℓ=1 and the white noise vari-

ance σ2 can be estimated via parameter estimation procedures for ARMA
processes. If the white noise process {Zt} is Gaussian, the most efficient
estimates are produced by the maximum likelihood method. Since such
estimates are found as optimal solutions to a highly nonlinear nonconvex
optimization problem, good initial values for the model coefficients are
needed. They can be obtained by the Hannan-Rissanen algorithm (cf. [5,
§5]) that solves the problem of order selection and parameter estimation
for ARMA processes simultaneously.

In our case, differencing the hourly load profile with lag 168 (one week)
gave residuals that were stationary in appearance. The residuals were
treated as part of a realization of the stochastic process {Yt := dt−dt−168}.
The Hannan-Rissanen algorithm from the Mathematica Time Series Pack
[58] selected for {Yt} an ARMA(7,9) model that served as an initial model
for the maximum likelihood method. For the resulting maximum likelihood
estimates (φ̂ℓ)

7
ℓ=1 and (θ̂ℓ)

9
ℓ=1, the time series model for {Yt} reads

Yt − φ̂1Yt−1 − . . .− φ̂7Yt−7 = Zt + θ̂1Zt−1 + . . .+ θ̂9Zt−9, t ∈ Z,

where the estimated model coefficients and random noise process are

(φ̂1, . . . , φ̂7) = (2.79,−4.35, 5.16,−4.88, 3.67,−1.92, 0.50),

(θ̂1, . . . , θ̂9) = (−1.27, 1.53,−1.35, 0.88,−0.31,−0.06, 0.18, 0.11, 0.07),

{Zt} ∼ N(0, 11729.02), t ∈ Z.

Accordingly, the time series model for the load process {dt}t∈Z is the
SARIMA(7, 0, 9) × (0, 1, 0)168 model

dt = φ̂1dt−1 + . . .+ φ̂7dt−7 − dt−168 − φ̂1dt−169 − . . .− φ̂7dt−175(4.2)
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+ Zt + θ̂1Zt−1 + . . .+ θ̂9Zt−9, t ∈ Z.

Suppose there is a reliable load prediction {dt}
t1
t=1 for the first-stage

(deterministic) time span t = 1: t1, t1 < T . A large number (M) of sim-
ulated load scenarios d̃ℓ = (d̃ℓ

t)
T
t=t1+1, ℓ = 1:M , may be generated using

the SARIMA equation (4.2) with M i.i.d. realizations of {Zt}T
t=t1−8, and

starting values {dt}
t1
t=t1−174 (supplied by the power utility). The empirical

means d̄t and standard deviations σ̄t of the simulated load scenarios are
defined by

d̄t =
1

M

M
∑

ℓ=1

d̃ℓ
t, σ̄2

t =
1

M − 1

M
∑

ℓ=1

(d̃ℓ
t − d̄t)

2, t = t1 + 1:T.(4.3)

4.2. The initial load scenario tree. An important initial decision
is the choice of the number of stages and of the branching scheme for the
scenario tree, i.e., the number and positions of branching levels and the
branching degree in every node. We choose the following initial structure
of the load scenario tree:

• A balanced tree with K branching periods tk, k = 1:K. The
branching periods tk, k = 2:K, are equidistant within the time
span t = t1:T , i.e., tk := t1 + (T − t1)(k − 1)/K, k = 2:K.

• |N+(n)| =

{

2, n ∈ Ntk
= {n : t(n) = tk}, k = 1:K,

1, otherwise.

Thus, the tree consists of S := 2K scenarios ds = (ds
t )

T
t=1, s = 1:S. The

branching points tk, k = 2:K, should correspond to the (normally fixed)
times when already observable meteorological and load data provide the
opportunity to re-adjust the unit commitment. For the planning horizon
of one week with an hourly discretization, tk = 12 + 12k for k = 1: 12 is a
reasonable choice for the generation system of the utility VEAG. For longer
scheduling periods, non-equidistant branching points would be preferable
in order to restrict the number of scenarios. By assigning two successors to
any node n in Ntk

, k = 1:K, we may distinguish the events “low load” and
“high load” for periods t = tk + 1: tk+1, where tK+1 := T . An additional
event such as “medium load” could easily be included, but it would increase
the scenario number to S = 3K .

It remains to specify the scenario values and their probabilities. To
this end, we first compute the empirical means {d̄t}T

t=t1+1 and the stan-

dard deviations {σ̄tk
}K+1

k=2 (cf. (4.3)). The load predicted for the first-stage
periods t = 1: t1 yields the first t1 components for all scenarios. (If no load
prediction were available, one could use the empirical means.) To each
scenario s = 1:S we assign a vector ωs = (ωs

k)K
k=1 with ωs

k ∈ {−1, 1} that
describes the path in the binary tree corresponding to scenario s. Specifi-
cally, we set ωs

k = −1 (ωs
k = 1) if the values of scenario s for t = tk +1: tk+1

are realizations of the event “low load” (“high load”). The value of scenario
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s for periods t = t1 + 1:T is defined as

ds
t := d̄t +

k−1
∑

i=1

ωs
i

σ̄ti+1

2(K+1−i)/2
+ ωs

k

σ̄tk+1

2(K+1−k)/2

t− tk
tk+1 − tk

(4.4)

for t = tk + 1: tk+1, k = 1:K.

We let all scenarios have equal probabilities S−1 = 2−K . (Alternative
scenario probabilities might be computed from histograms of the simulated
scenarios.)

A few comments on the tree construction formula (4.4) are in order.

First, for t = t1 + 1:T , the mean scenario value 1
S

∑S
s=1 d

s
t coincides with

the empirical mean d̄t. Second, the symmetry of the load tree is consistent
with the normality assumptions imposed on the time series model for the
load process. Third, for k = 1:K, the events “low load” (“high load”) for
t = tk + 1: tk+1 are expressed in terms of scaled empirical standard devia-
tions σ̄tk+1

. To model increasing load uncertainty, the variances var(dt) of
scenario values are strictly increasing with t. The extremal scenario s with
ωs

k = 1 for all k has in the final period T the value

ds
T = d̄T + 2−K/2σ̄t2 + · · · + 2−1/2σ̄T .

Thus unrealistic (“too large”) load values are avoided. Further,

var(dtk+1
) = 2−K σ̄2

t2 + · · · + 2−(K+1−k)σ̄2
tk+1

, k = 1:K,

so for σ̄tk+1
≈ σ̄, k = 1:K, we have var(dT ) ≈ σ̄2( 1

2K + · · · + 1
2 ) ≈ σ̄2

(models with faster growth of variances are discussed in [15, 25]). Finally,
we add that the scenario values between the tk’s are linearly interpolated
so as to save work required for computing σ̄2

t for all t = t1 + 1:T .
Figure 7 shows ten scenarios (including the extremal paths correspond-

ing to “low load” and “high load” for the time span t = t1 +1 : T ) of a load
scenario tree generated via the scheme (4.4) with 212 = 4096 scenarios for a
planning horizon of one week with an hourly discretization and branching
points tk = 12 + 12k, k = 1: 12.

Calibration of scenario trees generated by the scheme (4.4) is studied
in the forthcoming paper [25].

4.3. Optimal reduction of the scenario tree. As shown in §4.2,
the probability distribution of the load may be approximated by a dis-
crete probability distribution with a finite number of scenarios. Since the
mixed-integer model (2.11)–(2.14) is large even for relatively few nodes, a
compromise between acceptable computing times and the quality of the ap-
proximate scenario tree is unavoidable. Therefore, one often has to reduce
the number of scenarios of the initial scenario tree.

Our reduction argument is based on certain probability metrics that
measure the distance between the initial discrete approximation and the



POWER MANAGEMENT IN A HYDRO-THERMAL SYSTEM 27

24 168

3000

4000

5000

6000

7000

8000

Fig. 7. Ten selected scenarios of a load scenario tree for one week

reduced one. Quantitative stability results for stochastic programs (cf.
[16, 19, 47]) indicate which probability metric is canonically associated to
a given model and/or to a specific type of approximation. In particular,
the results in [15, 16, 47] suggest considering the Fortet-Mourier metrics
ζh, h ≥ 1, for a multistage stochastic program like (3.3).

For h ≥ 1 we denote by Gh the class of functions g : R
T → R satisfying

the Lipschitzian property

|g(ω) − g(ω′)| ≤ ch(ω, ω′) for all ω, ω′ ∈ R
T ,

where ch(ω, ω′) := max{1, ‖ω‖h−1, ‖ω′‖h−1}‖ω − ω′‖ and ‖ · ‖ is the Eu-
clidean norm on R

T . Furthermore, we denote by Mh the set of all (Borel)
probability measures µ such that

∫

RT ‖ω‖hµ(dω) < ∞. Then the Fortet-
Mourier metric ζh of (Borel) probability measures µ, ν ∈ Mh is

ζh(µ, ν) := sup

{

∣

∣

∣

∫

RT

g(ω)µ(dω) −

∫

RT

g(ω)ν(dω)
∣

∣

∣ : g ∈ Gh

}

.(4.5)

For h = 1, ζ1 is also known as the (L1-) Wasserstein or Kantorovich met-
ric. The metric ζh enjoys a well developed duality theory and convergence
analysis (cf. [46, Chap. 5]).

Let δω denote the probability measure on R
T having unit mass at

ω ∈ R
T . Consider now two discrete probability measures

µ :=
S
∑

s=1

αsδωs
and ν :=

S̃
∑

s=1

α̃sδω̃s
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with supports {ωs}S
s=1, {ω̃σ}S̃

σ=1, and nonnegative weights αs, α̃σ such that
∑

s αs =
∑

σ α̃σ = 1. Then the dual transportation problem

ζh(µ, ν) = sup







S
∑

s=1

αsξs +

S̃
∑

σ=1

α̃σ ξ̃σ : ξs + ξ̃σ ≤ ch(ωs, ω̃σ)







is the finite-dimensional analogue of (4.5). When the two measures µ and
ν have the same support {ωs}S

s=1, but different weights, upper and lower
bounds for ζh(µ, ν) can be derived [15].

Now, let µ =
∑S

s=1 αsδωs
be a discrete probability distribution on

RT that is regarded as a good initial approximation for the probability
distribution entering a given stochastic program. For ℓ = 1:S, let

ρℓ(µ) := min

{

ζh

(

µ,

S
∑

s=1

α̃sδωs

)

: α̃s ≥ 0,

S
∑

s=1

α̃s = 1, α̃ℓ = 0

}

.

Thus ρℓ(µ) is the distance of µ to a closest probability distribution having
support {ωs : s = 1:S, s 6= ℓ}, i.e., corresponding to deleting scenario ℓ of
µ. Then we have (cf. [15])

ρℓ(µ) ≤ αℓ min
s6=ℓ

ch(ωℓ, ωs) for every ℓ ∈ {1:S},(4.6)

with the upper bounds attained if ch satisfies the triangle inequality, i.e.,
for h = 1.

An optimal rule for deleting one scenario of µ may be stated as:

Remove scenario ωk with k ∈ Arg min
ℓ=1:S

ρℓ(µ).

Replacing ρℓ(µ) above by the upper bounds of (4.6) yields the more easily
implementable deletion rule:

Delete scenario ωk with k ∈ Arg min
ℓ=1:S

{

αℓ min
s6=ℓ

ch(ωℓ, ωs)

}

.

Then, roughly speaking, deletion occurs where scenarios are close as mea-
sured by the distance ch or where probabilities are small. The reduced
discrete probability measure

∑S
s=1,s6=k βsδωs

has S − 1 scenarios, where

βsk
:= αsk

+ αk for some sk ∈ Arg min
s6=k

ch(ωk, ωs),

βs := αs for all s /∈ {sk, k}.

This reduction procedure may be repeated until a prescribed number S̃ of
scenarios in the reduced measure is attained.
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Fig. 8. Shifted supports of the reduced scenario tree
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Fig. 9. Difference of mean values of the reduced and initial scenario trees

4.4. Example of scenario reduction. To test our approach, we
generated a load scenario tree via the scheme (4.4) for an hourly discretized
time horizon of one week (T = 168) with branching points tk = 12 + 12k,
k = 1: 12 (cf. Fig. 7). The initial number of scenarios S = 4096 was reduced
to 16 by applying the scenario reduction rule of §4.3.

Figure 8 shows the position of the shifted supports (ds
t − d̄t)

168
t=1, s =

1: 16, of the reduced scenario tree within the extremal paths of the initial
scenario tree indicated by dashed lines, with grey levels proportional to
scenario probabilities. The probabilities βs, s = 1: 16, assigned to scenarios
in the reduced tree vary between 0.04 and 0.11.

The reduction technique of §4.3 produces a discrete approximation
whose moments differ in general from those of the initial approximation
generated by (4.4). For example, Figure 9 shows the difference between

the mean scenario value
∑16

s=1 βsd
s
t of the reduced tree and the empirical

mean d̄t of the simulation scenarios for t = t1 + 1:T . Figure 10 compares
the standard deviation at the branching periods tk, k = 1: 12, for the initial
approximation and the reduced scenario tree.
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Fig. 10. Standard deviations of the initial (left) and reduced (right) scenario trees
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[36] C. Lemaréchal, Lagrangian decomposition and nonsmooth optimization: Bundle
algorithm, prox iteration, augmented Lagrangian, in Nonsmooth Optimization,
Methods and Applications, F. Giannessi, ed., Gordon and Breach, Philadel-
phia, 1992, pp. 201–216.
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