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Optimal power dispatch under uncertainty of power demand is tackled via a stochastic 
programming model with simple recourse. The decision variables correspond to generation 
policies of a system comprising thermal units, pumped storage plants and energy contracts. 
The paper is a ease study to test the kernel estimation method in the context of stochastic 
programming. Kernel estimates are used to approximate the unknown probability distribution 
of power demand. General stability results from stochastic programming yield the 
asymptotic stability of optimal solutions. Kernel estimates lead to favourable numerical 
properties of the recourse model (no numerical integration, the optimization problem 
is smooth convex and of moderate dimension). Test runs based on real-life data are 
reported. We compute the value of the stochastic solution for different problem instances 
and compare the stochastic programming solution with deterministic solutions involving 
adjusted demand portions. 
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The dispatch of  electric power is one of  the most challenging contemporary 
planning problems. Mathematical models for optimal power dispatch are usually 
characterized by the combination of  several difficulties such as a very large number 
of  (often also discrete) variables, unavoidable non-linearities (mainly when including 
the transmission network into the model) and last but not least uncertainty of  problem 
data. The latter typically occurs with future demand of electric power but is also 
encountered for the output of  generating units or the reliability of  the transmission 
network (contingencies). A comprehensive power dispatch model reflecting both the 
economical and technological reality almost completely and with sufficient accuracy 
is still beyond the contemporary algorithmic and computational abilities (cf. [32] and, 
for a recent account, [14]). 
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The present paper considers electrical power dispatch from the viewpoint of 
stochastic programming. 

We concentrate on short-term cost-optimal planning of electricity production 
with a fixed configuration of generating units in the presence of uncertainty about 
the power demand. Our model is a simplified one in that we exclude unit commitment 
(start-ups and shut-downs of units) and network questions (transmission losses, phase 
synchronization etc.). We impose a very simple compensation scheme (simple recourse) 
for random deviations between here-and-now scheduling decisions and demand 
realizations. Due to the simple recourse scheme, compensation actions are separated 
and only the one-dimensional marginals of the demand distribution come into play. 
Dependencies between demand values in the different time steps are thus neglected. 
Our model was developed in cooperation with the power company serving the eastern 
part of Germany. Generating units comprise thermal (coal fired) power stations and 
pumped (hydro) storage plants. The latter differ from traditional hydro power stations 
by their dual mode of operation: in addition to the generation there is a pumping 
mode, i.e. water that was used for power generation can be pumped upward and then 
be used for generation again. Therefore, constraints interconnecting all the different 
time intervals are mandatory for each pumped storage plant. For thermal units such 
constraints are comparatively rare: ramping constraints and fuel quotas can be mentioned 
in this respect. For our energy system ramping constraints turned out to be nonbinding 
for almost all units, and fuel quotas, if at all, occurred only very rarely. Let us also 
mention that for pumped storage plants in East Germany inflow to and outflow from the 
reservoirs are negligibly small. Altogether there are 26 thermal units and 5 pumped 
storage plants. Peak loads reached 11000 MW, during the night the power demand 
decreased to around 8000 MW. The 5 pumped storage plants together have a working 
capacity of 7580 MWh with a maximal output of 1600 MW. Pumping efficiencies range 
from 50-73%. Due to technological reasons (formerly almost no, in the meantime only 
some first interconnections between East Germany and the West European power nets 
exist) there is only very limited exchange with external producers or customers. Therefore, 
only a very simple exchange contract was included into our model. 

Basic features of the above model were already presented in [16]. The present 
paper goes beyond [16] by attuning the kernel estimation method, performing numerical 
experiments with real life data and discussing benefits of our stochastic programming 
power dispatch model. Moreover, the underlying theory is developed towards improved 
convergence rates for estimates of optimal solutions. 

We place accent on utilizing modelling techniques, theory and algorithms from 
two-stage stochastic programming to handle the randomness of power demand. The 
models that were in operation at the power company did not include the randomness. 
Fixed demand values based on statistical estimates were in use. Compensating deviations 
between scheduled power and demand realizations was not part of the optimization. 

As a first step towards a more comprehensive power dispatch model we set 
up a stochastic program with simple recourse about which we report here. The model 
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offers here-and-now decisions to the dispatcher to minimize the sum of generation 
costs for the schedule fixed before the realization of the demand plus expected costs 
for compensating deviations occurring after demand realization. For the conversion 
of statistical information into an estimate for the probability distribution of power 
demand we propose (as in [16]) the use of non-parametric kernel estimators (which 
is non-standard in the stochastic programming literature). Of course, there exists the 
alternative to derive discrete probability distributions from the raw data (empirical 
distributions, scenarios) which enables to use adapted solution methods for large- 
scale structured optimization problems. With discrete probability distributions objective 
function values of the stochastic program can be computed by summation.  
Multidimensional integration is then avoided. The simple recourse point of view 
adapted in the present paper leads to separability of second-stage costs and, hence, 
only one-dimensional integrals occur which can be calculated analytically. Therefore 
numerical integration is avoided at the cost of having to confine to a simple (i.e. 
separable) compensation scheme. Our techniques lead to nonlinear (smooth convex) 
models without increased dimension (in contrast to the usually large-scale models 
arising from discrete probability distributions). Numerical treatment of the model becomes 
possible by using standard nonlinear optimization software (e.g. MINOS, [21]). 

Before starting computations based on kernel estimators it is necessary to analyze 
whether this type of approximation is in tune with the stochastic program. In other words, 
we have to check the stability behaviour of optimal solutions with growing sample size. 
Applying recent results from the stability theory for more general recourse models [29] 
we address this issue in our asymptotic analysis in section 3. Section 2 contains a model 
description. In sections 4 and 5 we discuss the numerical treatment and the test runs. 

Our paper should be seen as a first case study to test the kernel estimation 
method at a simplified power dispatch problem. For more information on tackling 
decision problems under uncertainty via stochastic programs with recourse the reader 
is referred to [8, 11, 13, 18, 34]. Further stochastic programs arising in planning of 
electricity production are discussed in [8, 13, 17]. 

2. The model 

Given a fixed configuration of generating units, the problem of optimal load 
dispatch reduces to distributing a load (electric power demand) among the units such 
that the total generation costs are minimal, while additional operational constraints 
are met. In our model, these operational constraints only concern the generating units 
themselves and not the electrical network connecting producers and consumers. The 
reason for such a simplification is that network constraints would lead to a highly 
non-linear problem ([2]). Therefore, the degrees of freedom in the optimization are 
commonly reduced by fitting the output bounds of the units to the capabilities of the 
network or by including an adjusted portion of power demand to compensate trans- 
mission losses. 
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In our model, the generation system comprises thermal units, pumped storage 
plants and energy contracts. The generation process is up to one (or a few) day(s) 
with a discretization into hourly (or half-hourly) time intervals. Let N1 and N2 denote 
the numbers of thermal units and pumped storage plants. Let T be the number of  time 
intervals in the discretization. By yj (i = 1 ..... N1; t = 1 ..... T) we denote the unknown 
levels of  production in the thermal units. For the pumped storage plants we have a 
generation and a pumping (i.e. power consumption) mode whose unknown levels are 
s Jr and w] ( j = 1 . . . . .  N2; t = 1 .... , T) ,  respectively. (In the generation mode the pumped 
storage plant produces electricity and in the pumping mode it acts as a consumer of 
electricity.) Furthermore, there are N 3 energy contracts with external companies whose 
unknown levels are z k (k = 1 ..... N3; t = 1 ..... T).  

Generation costs of the thermal units are fuel costs which we model as strictly 
convex quadratic functions of  power generation levels with no interdependencies 
between different units. In the literature, this is quite common [6, 15]. Sometimes, 
also piecewise linear convex functions are met [6]. The energy contracts are modelled 
independent of each other here and we assume linear costs functions. The pumped 
storage plants do not cause generation costs. They indirectly contribute to our cost 
function via the generation costs in the thermal units for the electrical energy that 
is needed to pump water upward. Altogether, we have the following cost function for 
the generating units 

y r  Hy + h r y  + g r z ,  (2.1) 

where y ~ R ~'~r, z ~ R N3r, h ~ R Ntr, g ~ R N3r, and H is a positive semidefinite 
diagonal N i T  x N i T  matrix. (Diagonal entries in H and the corresponding components 
in h are zero if the respective unit is switched off in the respective time interval.) 

For each time interval t = 1,..., T the total generation amounts to 

Z Yt + Z Cs/ - w i ) + Z zkt , 
i ~ I I j = l  k = l  

(2.2) 

where It c { 1 ..... NI} is the index set of  units which are on-line in the time interval t. 
Note that the pumping levels w[ enter with a negative sign, since pumping energy 
has to be made available by the system itself and not via external sources. Introducing 
the notation x = (y, s, w, z) r ~ R" (m = T(N l + 2N 2 + N3)) we express the total generation 
as the T-dimensional vector Ax where A is the T x m matrix with entries determined 
by the coefficients in (2.2). 

The differences that occur between the planned generation and the observed 
demand are compensated at costs q~" and q ;  for under- and overdispatching at time 
interval t (t = 1 ..... T), respectively. The power demand is now considered as a T- 
dimensional random vector with distribution # on R r. By Ft (t = 1 ..... T) we denote 
its one-dimensional marginal distribution functions. The expected costs to adjust the 
planned generation x to the actual demand then read 
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where 

T t • . l  f Qt (z - [Ax]t )dFr ('c), 

R 

Qt ('r) = f {q+'r > O, 

[-qTz z < 0 ,  

(2.3) 

and [Ax]t denotes the t-th component of Ax (t = 1 .... , T). Of course, in a general 
power generation system random deviations of the demand can be compensated in 
different ways, for instance by adjusting the output of on-line units (or contracts) or 
by committing further units (or contracts). This leads to complicated functions for 
the expected compensation costs and is referred to as complete recourse in two-stage 
stochastic programming. In this context, the cost function (2.3) corresponds to what 
is called simple recourse. Of course, the simple recourse approach suppresses important 
information on various interconnections both with respect to operational constraints 
and stochastic dependencies between demand values of different time intervals (cf. 
also the general remarks on the purpose of our model made in the introduction). 

Denoting by g(x) the expression in (2.1) we end up with the following cost 
function for our stochastic program with simple recourse 

g(x )+~  Q,(~ -[Axl , )dFt(~) .  (2.4) 
t=l 

R 

The constraints are given by the relations 

az < y < a l ,  0 < s < ~ 2 ,  0 < w < K 3 ,  a 4 - < z - < a  4, (2.5) 

S}n-S~aX <~_,(s/-rljw/)<_S} n, j : l  .... ,N2, ? : 1  .... .  T, (2.6) 
t = l  

T T 

X ( s / - T I j w / ) = b l j ,  j = l  . . . . .  N2, ~_~zk=b2,, k = l  . . . . .  N3, (2.7) 
t=l t=l 

£Y~ <ci, i = l  ..... N 1. (2.8) 
t~T/ 

The box constraints (2.5) model the limitations for the power output. Thermal 
units, pumped storage plants and energy contracts, clearly, have output limitations 
per hour which may vary in time. The inequalities (2.6) express the balance between 
generation and pumping (measured in energy) in the pumped storage plants: S~9 and 
S~ ax denote the initial and maximal stocks in energy in the upper dam. In each 
pumped storage plant the maximal stock in water of the upper dam equals that of 
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the lower dam. Additional in- or outflows are negligibly small. Therefore, pumped 
storage plants operate with a fixed amount of water that is moved up and down 
during the time period { 1 ..... T}. Excessive hydro generation always has to be 
compensated by proper pumping (i.e. consumption of electricity) to ensure the availability 
of the pumped storage plant in later time intervals. The pumping efficiency r/j is then 
put as the quotient of the energy gained when sending the full content of the upper 
dam down and the energy needed to pump the whole content of the lower dam 
upward. The inequalities (2.6) reflect the operational limitations for the pumped 
storage plants at time step L Of course the latter only depend on the initial water 
stocks and the "history" up to time step L (Recall that no additional in- or outflows 
occur.) In (2.7) balances over time for pumped storage plants and energy contracts 
are modeled. For a pumped storage plant, for instance, a typical constraint of this 
type is caused by claiming that at the end of the optimization period there is still a 
sufficient amount of water in the upper dam. Of course, rules for external contracts 
are often much more involved than the simple balances in (2.7). For the application 
mentioned in the introduction, however, these were appropriately accurate. By (2.8) 
it is possible to model fuel quotas for the thermal units: Ti C { 1 ..... T } is a subset 
of (consecutive) time intervals and ?/reflect the maximal outputs for the time period 
7",.. Of course, a constraint of the type (2.8) is not mandatory for each of the thermal 
units. 

Let us mention that there is no principal difficulty to model further operational 
constraints via linear inequalities: intermediate and final water levels in the dams of 
the pumped storage plants, ramping constraints to avoid fluctuating production levels 
in time that are operationally infeasible due to response limitations of the production 
plants. With a time discretization into hourly intervals the latter turned out irrelevant 
for most of the generation units. Our computational results indicate critical fluctuations 
for 4 units only (cf. table 5 in the appendix, unit no. 7 timesteps 8/9 and 17/18, unit 
no. 12 timesteps 8/9, unit no. 13 timesteps 7/8, unit no. 14 timesteps 8/9 and 23/24). 

The relations (2.5)-(2.8) determine a polyhedron C C R m. Finally we have the 
following stochastic program with simple recourse 

(2.9) 

Let us remark that the inclusion of the more complex modes of compensation 
indicated after (2.3) would here have led us to a stochastic program with complete 
and mixed-integer recourse, respectively. At the moment, in particular integer recourse 
models fail to be computationally tractable. 

A peculiarity of the above model is that it circumvents Boolean variables to 
avoid simultaneous generation and pumping in the pumped storage plants. Of course, 
there are points x ~ C for which both s Jr°o, wJ°to are non-zero for some Jo ~ { 1 . . . .  • N2 }, 
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to 6 { 1 . . . . .  T }. However, such points cannot be optimal as can be seen as follows: Let 
x be as above and form a new point 2 by replacing s[ ° by s[ ° -  r/, w{ ° and w[ ° by 

• • • 0 0 J o .  0 , 0 

zero. (in case s / j -  r/.io w/°o >0)_ or sJ°bYto zero and w J°to by-(1/r/yo)s/o° + w/o° (in case 
s/o°-r/yo wtJo° < 0), and leave the remaining components fixed. It is easy to see that 

fulfils (2.5)-(2.8) .  Furthermore, lAX]to< [A~]to. Now construct ~ from .~ by 
decreasing a suitable number of outputs Y/o (i ~ { 1 ..... N1 }) such that A t  = Ax. Provided 
that the Y~o (i = 1 ..... Nx) are not too close to their lower bounds (which is no restriction 
in practice) we have that .~ ~ C. However, due to the strict monotonicity of g with 
respect to ytio we have g ( ~ ) <  g(x), by A.i = A x  there is no change in (2.3) and x 
cannot be optimal. 

3. Estimation and asymptotic analysis of the model 

In this section we present a nonparametric estimation procedure for the unknown 
marginal distribution functions Ft (t = 1 ..... T) of the power demand and derive asymptotic 
properties of the estimates of the solution sets to problem (2.9). This excursion to 
mathematical theory is necessary, since it is not a priori clear whether estimating the 
unknown probability distributions in (2.9) produces estimates (of optimal solutions) 
that asymptotically converge to solutions of (2.9). 

The stochastic program with simple recourse (2.9) can be rewritten in the 
following form (cf. e.g. [18]): 

minlg(x) + Q(Z)  : Ax = Z, x ~ C}, (3.1) 
where 

f m i n { q + v  + + q  v : v  + - v -  = ~ - Z , V  +,u-  ~ R T } # ( d ~ )  Q(X)  ;= 

. I  

a r (3.2) 

= - X , ) d F ,  

t--I 
R 

and # denotes the (multivariate) probability distribution of the power demand (on 
Nr), whose marginal distribution functions are Ft(t = 1 ..... .T). Qt is defined as in 
(2.3). q+ and q- denote the vectors of compensation costs introduced in section 2. 
Under the basic assumption that 

0 and f l ' c  ldFt('r) < + ~  (t = 1 . . . . .  T), (3.3) q+ + q;- >_ 

R 

(3.1), (3.2) is a convex program having linear constraints (cf. [18]). 
Let ~lt, ~zt .. . . .  ~,,t .... be an independent sample from the distribution function 

Ft (t = 1 ..... T) on some probability space (f~, A ,  P) k : R --> R a function having the 
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property ~R k(~:)dl: = 1 ("kernel"), and (bn) be a sequence of positive numbers tending 
to zero ("smoothing parameters"). Then we consider the kernel estimates 

u 

Ft (") ( u ) : =  nb----~ i=1 bn" 
- - o o  

dl: ( u ~ R ;  n ~ N )  (3.4) 

for F t (t = 1 ..... T), Ft ('*) may be interpreted as a smoothed empirical distribution function 
to F t . The advantage of kernel estimators for our purposes lies in the fact that (2.9) 
becomes a smooth convex program if the unknown F t are replaced by ~(n). For more 
information and background on kernel-type estimators we refer to [24, 35, 16, 5] and 
the literature cited therein. 

To derive our asymptotic results when the sample size n tends to infinity, we 
still need some notations. Let C~ = C~, (R) denote the class of s-times continuously 
differentiable functions on R such that their sth derivative is bounded on R. A kernel 
k is called a class s kernel for some s ~ I~ if 

f Tik(T) dz = 0, i = 1 1, [ I z l S k ( t )  dz  < 
f 

S + O O .  

, /  

R R 

The following kernels, which, in fact, are both class 2 kernels, will be used 
in this paper: 

kernel • k(z)  : = I 1 - l'r I, I t l  < 1, (i) triangular 
L 0, otherwise; 

(ii) Epanechnikov kernel • 
k(z)  "= I - - ~  ( 1 - ~ ) '  I'rl < 

[ 0, otherwise. 

For a detailed discussion of class s kernels the reader is referred to [10]. For the 
purpose of this paper we need the following result, providing convergence rates for 
the uniform distance 

II Fn - F II, :-- sup t Fn (x) - F(x)I, 
xER 

where /~n is a kernel type estimator (3.4) for a sufficiently smooth distribution function 
F. Its proof is taken from [16] and is included for the convenience of the reader. 

PROPOSITION 3.1 

Let s ~ I~, assume that F ~ C/, and k is a class s kernel. Then 
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liE= - FII . .  -< C~bg +liEn - FII.~, forall  n ~ •, (3.5) 

where Cs:= (l/s!)II F (s) II . . J r  Ix ISk(x)dx and F,  denotes the empirical distribution 
function to F. 

'i u -s  1/2 If, in addition, (bn) is chosen such that t m s p,~,,, on n < 0o there holds that 

( 2n ) 1/2 
(i) l imsup -, -7- " II/~n - V t [ * * < l ,  P- almost surely, and 

n ~ \ log log n 

(ii) limsupnU2E([[~'n - F[I..) < o0. 
tt ---) ,~  

Here E(.) denotes the expected value with respect to P. 

Proof 
From lemma 2.3 in [35] we have the estimate 

l i P .  - F l l ~ - - - l i E .  - F I l • +  s u p  I e P.(x) - F ( x ) l .  
x ~ R  

Since k is a class s kernel, we obtain by Taylor's expansion for each x ~ R, 

E Fn (x) - F(x) = f [F(x - tbn ) - F(x)]k(t)dt 
R 

= f (-tbn)S ~. F(S)( x _ Otbn)k(t)dt, 

R 

with some ® ~ (0,1) depending possibly on x, t and n. This leads to the estimate (3.5). 
(i) then follows from (3.5) and the Smimov-Chung  law of iterated logarithm for the 
empirical distribution functions (cf. e.g. [30]). For (ii) we use the following known 
result for empirical distribution functions: 

E[II F~ - F II~.] = O(n-I/z). []  

Remark 3.2 

For class 2 kernels with compact support (e.g. for both the triangular and 
Epanechnikov kernel) the following convergence result is an immediate consequence 
of corollary 1 in chapter 23.2 of [31]: I f b n =  Cn -~, for all n ~ 1 ,  where a ~(1/4, 1) 
and C is a positive constant, we have 

4-n II V. - F. I1. .~ 0, P- almost surely. 

Let ~deno te  the set of optimal solutions to (2.9) (or (3.1), respectively) and ~,, 
the corresponding solution set if Ft is replaced by Ft(n)(t = 1 ..... T) in (2.9). The 
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following result states two types of asymptotic properties of the Hausdorff distance 
dt~(~, ~n) as the sample size n tends to infinity. It extends the results of [16] by using 
a recent quantitative stability result for stochastic programs with recourse [29]. 

THEOREM 3.3 

Let q ; +  q? > 0 ,  J . l ' r ldF t ( l : )  <+0~ and F t E  C~ for some s e n  and all 
t =  1 .... ,T. Let k be a class s kernel and assume that (bn) has the property 
limsupn~** bSn 1/2 < +oo. 

Furthermore, assume that there exists an open neighbourhood U of the set 
A(~g) C R "r and a constant r > 0 such that 

T 

l I  Ft'('rt ) > r, for all (~:1 . . . . .  "r r )  ~ U. (3.6) 
t = l  

Then there exist constants L, K > 0 such that 

(a) l i m s u p /  2n  / 1~ dn (IV, ~n ) < LT P-almost surely, 
n ~** log log n 

(b) limsupnU2E[dH(~g, (/n)] < K, and 
n --q, ~ 

l (c) liminf P(n~2dH (lg, On ) < u) _> 1 + 2ry. (-1)J exp - 2 j  2 
n---* ~ j= l  

for all u _> 0 if lim b~n u2 = O. 
n --..~ c,o 

Proof 
Due to general measurability results for set-valued mappings (theorems 2.J 

and 2.K in [26]) the Hausdorff distance dH(~g, ~ )  is an extended-real valued random 
variable (on (fl, A ,  P)). For the following we introduce the notation 

~n,t : =  s u p [ F t ( ~ )  - Ft(n)(~')[ ( n  E [ ~ ;  t = 1 . . . . .  T). 

The assumptions on Ft, k and (bn) imply (proposition 3.1) the asymptotic properties 

l imsup( 2n )tt2r/n, t <1 P -almost surely, and 
n~** ~ log lognJ  

(3.7) 

l im sup nl/2E [T/n,t ] ( q- oo. (3.8) 
n-->~ 
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Let ~ C f~ be such that P ( ~ )  = 1 and (3.7) holds on ~2. Corollary 2,13 in [29] then 
implies that there exists a constant L > 0 such that for each element of ~ the inequality 

T 

d H (IV, ~/n ) < L ~  On,t holds for sufficiently large n ~ N. (3.9) 
t=l 

Hence, (a) follows from (3.7) and (3.9). 
To prove (b), let t~ > 0 be chosen such that for all elements in £)n : = { co ~ [2 • 

~tr=~ r/n,t(to) < tS} (3.9) is valid. Then 

" (" 1 <_ L~,E[rln, tl+diam(C)P ~rl . . t  >- ~ 
t=l  t=l  

< L + ~ d i a m ( C )  ~_.E[rln,,],  
t=l  

where we used Chebyshev's  inequality, and diam(C) denotes the diameter of the 
bounded set C. Assertion (b) now follows from (3.8). 

To show (c) we first proceed in the same way as in the proof of proposition 
3.3 in [29]. Assume that l i m n ~ ,  b~n t:2 = 0, and let u > 0, n ~1~. We consider the 
following events in A :  

A o := Lnl t2~r ln ,  t < u , 
t=l 

B8 := ~ r l ~ , t  < ~  , 
t=l  

Then we obtain the estimate: 

. : 1  . . . . .  

where L > 0, t~ > 0 are chosen as before. 

P(n~/2dH(v/,¢/,,) < u) >_ e({nU2dn(v/,~/,.,) < u} :', Bs ) 

( l(t ; >- P(ao n 8,~) > e NA, n 8,5 >- P At - P(~,~) 
t--1 

= i - e ~, - e(N) > ~ + Y. (P(A,) - 11 - e(N) 
t--l 

=I+ P nl/2rl,,,t < -~-~ -I - P rl,,,,t >6 . 

t = l  \ 
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(3.7) implies, in particular, l i m n ~ ,  P(Y~tT__I r/~,t > 6) = 0. 
(3.5) yields the estimate 

r/.., _< Rb. ~ + sup IF,(~) - F,C")(r)l 
rER 

for all n ~ •, t = 1,.. . ,T, and some constant /~ > 0. Here Ft(n)denotes the empirical 
distribution function for F t and sample size n. Hence, we can continue our estimate 
and obtain: 

l iminfP(nl /EdH(N,  O n ) < u ) > _ l +  l i m i n f P  ~Jb~n I/2 +~n,t < u - I  , 
n -"t" ~ n "-~ e'o 

where 

(,,.t :=  nil2 sup I N ( ~ ) -  Ft(")('OI (n ~ N,t  ~ I1 . . . . .  r l ) .  

The Kolmogorov limit theorem (see e.g. [30]) then implies that the sequence ((~,t) 
converges in distribution to a random variable ( which is independent of t and has 
the distribution function 

F((r) = 1 - 2 ~ (-1) j - t  exp( -2 j2 r  2 ). 
j = l  

Hence, the sequence (/fbnSnU2+ (n. t )also converges in distribution to ( a n d  the 
Portmanteau Theorem implies 

l iminfPIKbSnnU2+~n"< u ~, - ~  >F~ - ~  ) 

This argument completes the proof. [ ]  

Remark 3.4 

For the class 2 kernels described above, theorem 3.3 says that, if all marginal 
distribution functions Ft, t = 1 ..... T, belong to C 2, then bn : = const, n -c~ with a > 1/4 
is an appropriate choice and leads to "optimal" convergence rates for the optimal 
sets. For the validity of  theorem 3.3 it is obviously not mandatory to select the same 
sequence of bn for all t = 1 .. . . .  T. In fact, in section 4 we will select sequences (bn) 
that depend on t. 

Remark 3.5 

The proper selection of b,, is discussed in [1]: For a symmetric class 2 kernel 
whose support is a bounded interval, a = 1/3 is an asymptotically optimal choice. 
Moreover, it is suggested in [1] to choose bn = 0.5 (7t n-ll3, where cr t denotes the 
standard deviation of ~lt. 
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Remark 3.6 

The convergence rate in part (b) of theorem 3.3 improves an earlier result, 
which was obtained in [16] using material from [28]. Part (c) of theorem 3.3 was 
inspired bythe  work in [12] on normalized convergence in stochastic programming. 
the following large deviation estimate is a particular consequence of theorem 3.3(c): 

P(dt t  (IV, ~n ) > u) < 2T  exp -2n 

for all u > 0 and sufficiently large n ~ 1~. (Consider only the first member of the 
alternating series on the right and pass over to the complementary event on the left.) 

Remark 3. 7 

Condition (3.6) is the only critical assumption when applying theorem 3.3 to 
the model (2.9). It is natural to assume that the demand distributions Ft(t = I . . . . .  T)  
are strictly monotonically increasing on their supports. Hence, (3.6) is violated only 
in the degenerate situation where optimal tenders fall outside the interior of the 
support of/.t. This, however, was never observed in our test runs. 

Altogether, the asymptotic analysis of the present section gives a justification 
for replacing, in our model (2.9), the distributions F t by estimates Ft ('0 provided that 
a (sufficiently) large sample for the random power demand is available. 

4. Numerical treatment 

The statistical information about the power demand that was accessible to us 
consisted of records of hourly load for a 3-year period. In a first step, seasonal 
influences were removed and the daily records were assigned to certain categories 
characterizing similar days (for instance, mid-week working day, working day before/ 
after a Sunday/public holiday, Saturday, Sunday/public holiday etc.). Then, independent 
samples of electric power demand for the single time intervals can be read off the 
records after having categorized the day for which the power dispatch is to be carded 
out. Let us mention, in this context, that in [20] the same statistical material was used 
to derive load forecasts. 

In the literature both normal [8] and non-normal [7] distributions are suggested 
for the one-dimensional marginal distribution functions Ft(t = 1 . . . . .  T).  Our empirical 
data, however, did not give rise to the normality assumption (especially for day-time 
intervals). For an illustration please refer to figure 1 showing a kernel estimate for 
the density and the distribution function of power demand for a midweek working 
day and the time interval 1 p.m. to 2 p.m. In both cases the triangular kernel with 
sample size n = 436 and smoothing parameter b n = 50 (el. section 3) was used. 
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An alternative to setting up continuous distributions for the random demand 
values would consist in estimating the unknown distributions by (discrete) empirical 
measures. The sample size then corresponds to the cardinality of the support of the 
empirical measure. Our quadratic two-stage stochastic program becomes a large scale 
quadratic program with structured constraint matrix. Each mass point of the probability 
measure induces a block in the constraint matrix. Therefore, when following the 
above idea, large sample sizes would yield huge models. Although there are efficient 
procedures for exploiting this structure by decomposition techniques (see e.g. 
[19,22,23,25,33]), we have preferred to convert the statistical information into a 
continuous probability distribution which makes the problem size independent on the 
size of the sample. For this advantage we have to pay by more complicated formulae 
for objective function values and gradients. Growing sample sizes only influence 
these formulae but not the size of the. problem. Using kernel estimators we capture 
the whole available statistical information. Clearly, since our sample sizes are in 
magnitudes of several hundreds, empirical measures would have led to linear programs 
that are intractable even when using the most advanced decomposition techniques. 
To arrive at moderate problem sizes one possibility is to decrease the number of mass 
points, for instance by importance (re)sampling [9]. 

After having selected proper candidates for the marginal distribution functions 
Ft (t = 1 ..... T) there is, in principle, no difficulty to solve the stochastic program 
(2.9). Of course, we ensure that the assumptions in (3.3) are met such that (2.9) 
becomes a convex optimization problem with linear constraints. In contrast to stochastic 
programs with more complicated recourse we can benefit from the simplicity of the 
second stage and obtain explicit formulas for the function Q in (3.2) and its gradient 
(cf. [18]). It holds 

T 

Q(Z) = ~_~ Q, (Zt),  
t= i  

Zt 

a t ( x t )  = q + ( d t  - Z t )  - (q+ + q t  ) f ('r - Zt) dFt ('r), 
- e J o  

where d t = ~_**** ~:dFt(~:) and, provided that Ft is continuous, 

(4.1) 

Ot (xt)  = -q+ + (q+ + qi- ) Ft (Zt). (4.2) dz, 

Now let t ~ { 1 ..... T} and ~lt ..... ~,u be an independent sample of the electric power 
demand for the time interval t. The sample is extracted from the raw statistical data 
as described at the beginning of this section. The asymptotic results derived in 
section 3 (theorem 3.3, remark 3.7) justify to replace in our calculation the unknown 
distribution function F t by the kernel estimate Ft(n~(cf. (3.4)) 
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U 

Ft(n)(u) := nb. -~  dz  
i=l 

~ o o  

( u E R ;  h E N ) .  (4.3) 

For notational comfort we introduce 

U U 

KI(U) = f k('r)d'r and K 2 ( u  ) = f vk(v)d . 
- - o o  - o , a  

In (4.1), we have to compute an integral I_" (z - u ) d ~  (n) (z). Using the representation 
of ~(,0 we obtain 

u 

f ('r - u)d~(")( 'r)  

- - o o  

= rib. i--i 

U 

u f k(('r - ~it )bn 1 )dz 

= 1 ('~*bn + ~it )k(z* )dz* 
n 

(u- ~i,)b; l 

- u f k(z* )dz* 
- o o  

where we have used the transformation "r*= ('r - ~it)b~ 1. Therefore, 

T x-" 0<.)(~. 0 <")(x) = ~  , ,~,), 
t= l  

O-}n)(,7(,t) = q+(dt - Z , ) - ( q  + + qT) 1 ~ { ( ~ i t  -- Xt)'~I((Xt -¢ i t )b~  I) (4.4) 
i=1 

+ bnK2 ((Zt - ~it )bn 1 )}, 

where d t =  (1/n)~= 1 ~it. 
According to (4.2) the term for the (estimated) partial derivative reads 

d 
dx, 
- - O : n ) ( Z t )  = -q+ + (q+ + q~) 

n 

E "~1 ((~,t -- ~it ) b n  1 )" (4 .5)  
i=1 

Let us now discuss some aspects of efficiently calculating the expressions in 
(4.4) and (4.5). 
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(i) The function Q}n~and its derivative do not directly depend on the kernel function 
k, but on the integrals K l and K2. To reduce computation time we avoid 
numerical integration by selecting only such kernels k for which K i  and K2 
can be computed explicitly. For the triangular kernel (cf. section 3) this leads 
to the following formulas: 

0 u < - l ,  

½ + u + ½ u  2 - l < u _ < 0 ,  
Kl(u) = ½_u+½u 2 0 < u < l ,  

1 u > I ;  

o lul _>1, 
K2(u)= - +½u 2 +½u 3 - l<u_<0,  

- ' ~ + ½ u 2  - l u  3 0 < u < l .  

(ii) To calculate one function value OCn)(,7(,)the integrals K l  and K2 must be 
computed at n T  points. Transforming the sample (~lt,--., ~nt) (t = 1 ..... T) into 
ordered samples (~lt ..... ~t) such that ~lt < ~2t <.- .  < ~nt can save computation 
time. Indeed, if k is symmetric (as e.g. the triangular and Epanechnikov kernels 
in section 3) and k('r)= 0 for ['rl >-a (for some a > 0), then 

and 

f 
9(1 ( (Zt  - ~it )bg 1 ) = l 

K 2  ((,~t - ~it ) b n  1 ) = 0 

0 if ~it < Z t  - abn, 

1 if ~it >- X,t -I-abn 

if ~it ~ [Zt - abn, Zt  + abn ]. 

Hence, to calculate (4.4) and (4.5) we pass over to the ordered sample and 
evaluate K t  and K2 only at those points for which 

Xt - abn < ~it < ,7(,t + abn (t = 1 . . . . .  T). 

(iii) According to remarks 3.4 and 3.5 we select bn = bn, t = 0 . 5  ~tn -113, where 6" t 
denotes the sample standard deviation of ~lt ..... ~nt- 

A program system STOCHOPT for estimating unknown distribution functions 
via kernel estimators and solving stochastic programs with simple recourse has been 
developed. It uses MINOS 5.1 [21] for the non-linear programming part and, hence, 
benefits from the sparsity and linearity of the constraints. 

Let us mention that our approach to solving (2.9) via kernel estimators also 
applies if the second-stage is more general such that (2.9) becomes a stochastic 
program with (non-linear) convex simple recourse (cf. e.g. [27] for the linear/quadratic 
case). Again, the function Q is separable (cf. (4.1)) and explicit formulae for the 
objective function are available [27]. 
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5. Test  r u n s  

In [16], first test runs with STOCHOPT for a model with a comparatively 
small number  of decision variables were carried out. In the present paper we report 
on test runs with STOCHOPT for the much larger model (2.9). The model  was 
validated by solving its full sized version with a time horizon of one day for several 
instances based on real data reflecting the energy situation in the eastern part of 
Germany during the time period from 1986 to 1989. The instances refer to different 
day categories arising in the analysis of  the demand curves (recall the discussion at 
the beginning of this section). Our test runs were directed to measuring the (economic) 
impact of solving the stochastic program (2.9) instead of running a purely deterministic 
model  where the random demand is replaced by its expectation d ~ R r, where 
dt = ~  zdFt  ( z )  (t = 1 ..... T ) .  The  latter would lead to the quadratic program 

min{ g(x) : x ~ C, Ax  = d }, (5.1) 

where the notation is as in section 2. Let Xd denote an optimal solution to (5.1). If 
we plan the electricity production of  our generation system according to the policy 
x d, our expected costs for adjusting this policy to the actual demand amount  to 
Q(Axa) = Q(d)  (cf. (2.3), (3.2)). Altogether we end up with the total costs g(xd) + Q(Axd). 
Of course, from a numerical point of view it needs much less effort to run the above 
procedure compared to solving the stochastic program (2.9) (no examination of  Q is 
needed to find the policy!). On the other hand, we cannot expect that the generation 
policy xd is optimal for (2.9). Let Xop t denote an optimal solution to (2.9). In the 
literature ([3]) the difference 

VSS = g(xd) + Q(Axd) - g(Xopt) - Q(Axopt) 

is called the value of the stochastic solution (cf. also [4] for a recent application in 
financial planning). It reflects the benefit of solving the stochastic program (2.9) 
versus resorting to the deterministic procedure explained above. 

Our test runs were based on the following power generation system: 

number of 

number of 

number of 

number of 

number of 

thermal units (N1): 26, 

on-line thermal units (card It, t = 1 ..... T): 24, 

pumped storage plants (all on-line, N2): 5, 

energy contracts (N3): 1, 

(hourly) time intervals (T): 24. 

For the penalty costs q+, q- in (2.9) we elaborate two cases. First we assume 
that there are no extra costs for overdispatching (i.e. qi- = ... = q r  = 0) and a penalty 
for underdispatching that is constant in time (i.e. q~ = . . .  = q~. = q÷+ with some 
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parameter q++ > 0). On the one hand, this is inconsistent since there is no penalty for 
overdispatch. On the other hand, the above mentioned power company had some 
difficulties to quantify costs for overdispatching (e.g. costs for frequency errors), 
such that putting q - =  0 had a certain relevance. To see how the model behaves in 
the more realistic situation where q - ~  0 we ran a second series of tests where the 
overdispatching costs were set to 80% of the costs for underdispatching. 

Of course, there is no problem in running further test series. One only has to 
adapt q÷ and q- properly. 

Table 1 compares the amounts of accumulated under- and overdispatching for 
different penalty levels. It is seen that overdispatching vanishes as soon as it is 
substantially penalized. 

Tables 2 and 3 display the value of the stochastic solution for different penalty 
levels. 

Let us add a few comments on the test runs. We confine ourselves to the case 
q- = 0. When evaluating the value of the stochastic solution it is useful to know that 
the average generation costs of the thermal power stations involved in the test run 

Table 1 

Accumulated under- and overdispatching for different penalty levels. 

Accumulated 
q++ q-- Overload Underload 

10 0 0 20766 
10 8 0 21310 

20 0 0 20768 
20 16 0 20898 

30 0 0 18936 
30 24 0 19068 

40 0 0 6576 
40 32 0 8229 

50 0 0 3312 
50 40 0 5289 

60 0 126 1735 
60 48 0 4128 

70 0 333 878 
70 56 0 3343 

80 0 588 398 
80 64 0 2908 

90 0 955 169 
90 72 0 2522 

100 0 1401 12 
100 80 0 2163 



154 N. Gri~we et al., Power dispatch under uncertain demand 

Table 2 

Comparison of optimal costs (no penalty for overdispatching). 

Penalty costs for g(xopt) + Q(Axopt) g(xd) + Q(Ax a) VSS 
underdispatching 

q++ (xl06) (xl06) (xl03) 

10 8.15900 8.69617 537.170 
20 8.37030 8.72000 349.700 
30 8.57512 8.74383 168.710 
40 8.70952 8.76766 58.140 
50 8.76486 8.79149 26.630 
60 8.80322 8.81531 12.090 
70 8.83292 8.83914 6.220 
80 8.85794 8.86297 5.030 

Table 3 

Comparison of optimal costs (including penalty for overdispatching). 

Penalty costs for g(Xopt) + Q(Axo~ g(xd) + Q(Axa) VSS 
underdispatching overdispatching 

q++ q-- (xl06) (xl06) (xl03) 

10 8 8.16110 8.71524 554.140 
20 16 8.37529 8.75812 382.830 
30 24 8.58288 8.80102 218.140 
40 32 8.72565 8.84390 118.250 
50 40 8.80028 8.88679 86.510 
60 48 8.86154 8.92964 68.100 
70 56 8.91678 8.97257 55.790 
80 64 8.96879 9.01546 46.670 

approximately corresponded to q÷÷= 40. Moderate variations around q÷÷= 40 may 
occur due to changing market situations. Of course, penalties below 30 and above 
50 are purely academic. However, our results for these values also indicate the 
validity of our model: if q÷÷ is small, cheap compensation clearly outperforms production 
and the "savings" in the last column are utopic, if q÷÷ is large, the model tends to 
avoid infeasibilities and compensation is reduced to a negligible amount. The stochastic 
program (2.9) yields a generation policy that minimizes the sum of generation costs 
plus expected future costs for compensating a possible underdispatch. As an alternative, 
engineers often avoid the consideration of future compensation costs and add adjusted 
demand portions (about 3 to 5%) to load predictions in certain time intervals (e.g. 
during times of peak load). To see how this compares to (2.9) we have solved the 
quadratic program (5.1) with a demand portion of 3% added to the expected demand 
d during times of peak load (time intervals 9 to 14). The optimal solution is displayed 
in table 6 in the appendix. The optimal costs compare as follows 
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optimal value of (2.9) (with q++ = 40): 8.70952 x 106; 

optimal value of (5.1) (with adjusted demand d): 8.84922 x 106. 

This corresponds to savings of about 1.6% when using the stochastic program (2.9). 
Let us now turn to a comparison of generation policies. Table 4 displays the 

aggregated outputs for thermal units and pumped storage plants under varying 
compensation costs q++ and for the expected-value deterministic model (5.1). 

Table 4 

Comparison of aggregated generation policies (q--= 0). 

Stochastic power dispatch model (2.9) 

Pumped storage plants 
Thermal units  generation 

T T N2 

q++ Z Z Yl,o,t Z Z slop' 
t=l i e l  f t=l j = l  

10 2.186670E+05 3204 
20 2.186670 E+ 05 3203 
30 2.204970E+05 3204 
40 2.328440E+05 3166 
50 2.360800E+05 3085 
60 2.377810E+05 3086 
70 2.388450E+05 3085 
80 2.395810E+05 3084 

pumping 

T Nz 

Z Z w o,, 
t=l j = l  

4461 
4462 
4461 
4410 
4301 
4300 
4299 
4299 

Expected-value deterministic model (5.1) 

Pumped storage plants 
Thermal units  generat ion pumping 

T T N2 T N2 

Z Z yi. . Z Z  Lo,. Z Z'Lo., 
/=1 i e l  t I=l j = l  t=l  7=1 

2.393920E+05 3087 4303 

If q÷+ is small (< 30), i.e. if compensation prices are undervalued in relation 
to production prices in the thermal units, then the thermal units will work at their 
lower output bounds since it is advantageous to use the compensation instead. Moreover, 
pumped storage plants will be heavily used since filling the upper dam is comparatively 
cheap. For q÷+ = 40, compensation and production prices are in a rough equilibrium 
which is reflected by a balanced relation between the outputs of thermal units and 
pumped storage plants. For q÷÷> 50 compensation becomes more expensive than 
production. Therefore, thermal units will act in a way that deviations between production 
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and demand are avoided. According to the ranking of their cost functions, more and 
more thermal units are driven to their upper bounds when q÷+ is increasing. The 
generation policies for the pumped storage plants are getting very close to the policy 
occurring in the expected-value deterministic model (5.1) where the equilibrium 
between total output and demand is mandatory (constraint Ax  = d). 

To give an impression on detailed generation policies we refer to the appendix 
(tables 7 -9 )  where optimal solutions for q++= 30, 40, 50 are displayed. 

We end this section by studying the model's behaviour under changes of the 
demand distribution with accent on changes of the sample sizes used for computing 
the kernel estimators. To this end, we resampled from the estimated marginal distribution 
functions Ft (n). For different fixed sample sizes we applied our kernel estimation 
procedure and solved the resulting stochastic program. Per sample size ten different 
samples were processed and the mean as well as the standard deviation of optimal 
values were computed. Figures 2 and 3 display the dependence of these quantities 
on the sample size. Both figures show significant instabilities for sample sizes below 
100. On the other hand, for sample sizes above 300 the means stabilize and the 
standard deviations are acceptably small. This indicates that, if available, larger 
samples should be fully exploited for the estimation of the demand distribution. 
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Figure 2. Mean optimal values. 
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A p p e n d i x  Table 5(a) 

Stochastic power dispatch model (q++ = 40, q-- = 0), optimal outputs of the thermal units. 

Times~p Thermal unit no. 
T 1 2 3 4 5 6 7 8 9 10 11 12 

1 285 350 310 485 230 390 850 850 224 80 350 700 
2 285 350 310 485 230 410 850 850 224 80 350 700 
3 285 350 310 485 230 440 850 850 224 80 350 700 
4 285 350 310 485 230 460 850 850 224 80 350 700 
5 285 350 310 485 230 510 850 850 224 80 350 700 

6 285 350 310 485 230 540 850 850 "224 80 350 700 
7 285 350 310 485 230 540 850 850 224 80 350 700 
8 285 350 310 485 330 540 860 850 224 80 400 700 
9 285 420 310 555 380 540 880 1000 224 80 400 932 

10 285 420 310 555 380 540 910 1000 224 80 400 932 

11 285 420 3t0 555 380 540 930 1000 224 80 400 932 
12 285 420 310 555 380 540 980 1000 224 80 400 932 
13 285 420 310 555 380 540 I010 1000 224 80 400 932 
14 285 420 310 555 380 540 1010 1000 224 80 400 932 
15 285 383 310 555 380 540 1010 1000 224 80 400 932 

• • • continues 
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Table 5(a) (continued) 

Timestep Thermal unit no. 
T 1 2 3 4 5 6 7 8 9 10 11 12 

16 285 350 310 513 380 540 1010 1000 224 80 400 807 
17 285 350 310 485 380 540 I010 1000 224 80 400 784 
18 285 350 3t0 485 380 540 1010 850 224 80 400 700 
19 285 350 310 485 330 540 1010 850 224 80 400 700 
20 285 350 310 485 330 540 1010 850 224 80 400 700 

21 285 350 310 485 380 540 I010 971 224 80 400 700 
22 285 350 310 485 330 540 1010 850 224 80 400 700 
23 285 350 310 485 330 540 1010 850 224 80 400 700 
24 285 350 310 485 330 540 1010 850 224 80 400 700 

Table 5(b) 

Stochastic power dispatch model (q÷÷ =40, q- -=0) ,  optimal outpu~ of the thermal units. 

Times~p Therm~ unit n o .  

T 13 14 15 16 17 18 19 20 21 22 23 24 

I 810 700 385 720 270 93 161 142 108 21 13 265 
2 810 700 385 660 270 93 161 142 108 21 13 265 
3 810 700 385 660 270 93 161 142 108 21 13 265 
4 810 700 385 660 270 93 161 142 108 21 13 300 
5 810 700 385 660 270 93 161 142 108 21 13 300 

6 810 700 385 660 270 93 161 142 108 21 13 300 
7 810 700 395 660 270 93 161 142 108 21 13 300 
8 987 700 395 770 297 93 161 142 108 21 13 305 
9 1000 1000 395 770 297 93 161 142 108 21 13 305 

10 1000 1000 395 770 297 93 161 142 108 21 13 305 

11 t000 1000 395 770 297 93 161 142 108 21 13 305 
12 1000 1000 395 770 297 93 161 142 108 21 13 305 
13 1000 I000 395 780 297 93 161 142 108 21 13 305 
14 I000 I000 395 770 297 93 161 142 108 21 13 305 
15 I000 1000 395 770 297 93 161 142 108 21 13 300 

16 1000 1000 395 770 297 93 161 142 108 21 13 300 
17 1000 I000 395 770 297 93 161 142 108 21 13 300 
18 1000 949 395 770 297 93 161 142 108 21 13 300 
19 1000 825 395 770 297 93 161 142 108 21 13 300 
20 1000 960 395 720 297 93 161 142 108 21 13 300 

21 1000 1000 395 720 297 93 161 142 108 21 13 300 
22 t000 1000 395 720 297 93 161 142 108 21 13 300 
23 1000 1000 395 720 297 93 161 142 108 21 13 300 
24 1000 779 395 720 297 93 161 142 108 21 13 300 
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Table 6 

Expected-value deterministic model with reserve adjustment: optimal solution. 

Pumped storage plants 
Time Optimal tender Thermal units generation pumping Energy contract 

Na N2 

s j w j t [Ax°p t ]' Z Y~.opt Z ,.opt Z ,.ot~t I Zt.opt 
t~l~ 1=1 j=l 

9067 9017 0 0 50 

8460 8799 0 389 50 

8160 8829 0 719 50 

8052 8884 0 882 50 

8049 8947 0 948 50 

6 8246 8964 0 768 50 

7 8204 8987 0 833 50 

8 9686 9636 0 0 50 

9 11656 10877 729 0 50 

10 11968 10907 1111 0 -50  

11 11767 10927 890 0 -50  

12 12089 10977 1062 0 50 

13 12170 11017 1103 0 50 

14 11768 11007 711 0 50 

15 10872 10922 0 0 -50  

16 10593 10643 0 0 -50  

17 10582 10632 0 0 -50  

18 10077 10586 0 459 -50  

19 9961 10586 0 575 -50  

20 9971 10536 0 515 -50  

21 10285 10536 0 201 -50  

22 10088 10536 0 398 -50  

23 10047 10536 0 439 -50  

24 9761 10536 0 725 -50  

Optimal value: 8.849223E+06 
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Table 7 

Stochastic power dispatch model: optimal solution for q÷÷ = 30, q--  = 0. 

Pumped storage plants 
Time Optimal tender Thermal units generation pumping Energy contract 

N2 Nz 
t [Axopt], ~ t ~ t.opt ~ ,,opt Z ! Yt,opt 5J wJ t,opt 

i~it j=l j--I 

I 8900 8732 118 0 50 

2 8417 8752 0 385 50 

3 8121 8782 0 711 50 

4 8018 8837 0 869 50 

5 8011 8887 0 926 50 

6 8209 8917 0 758 50 

7 8165 8927 0 812 50 

8 9279 9229 0 0 50 

9 9909 9249 610 0 50 

10 10667 9279 1438 0 -50  

11 10287 9299 1038 0 -50  

12 9299 9349 0 0 -50  

13 9339 9389 0 0 -50  

14 9329 9379 0 0 -50  

15 9424 9374 0 0 50 

16 9374 9374 0 0 0 

17 9374 9374 0 0 0 

18 9324 9374 0 0 -50  

19 9324 9374 0 0 -50  

20 9274 9324 0 0 -50  

21 9324 9324 0 0 0 

22 9274 9324 0 0 -50  

23 9324 9324 0 0 0 

24 9274 9324 0 0 -50  

Optimal value: 8.575120E+06 
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Table 8 

Stochastic power dispatch model: optimal solution for q÷÷ = 40, q--  = 0. 

Pumped storage plants 
Time Optimal tender Thermal units generation pumping Energy contract 

N2 N2 
Sj w j  l , ta op,], EY .op, E ,.op, E ,.op, 

iEl~ j= l  j= l  

1 8923 8792 81 0 50 

2 8425 8752 0 377 50 

3 8129 8782 0 703 50 

4 8026 8837 0 861 50 

5 8019 8887 0 918 50 

6 8217 8917 0 750 50 

7 8176 8927 0 801 50 

8 9456 9406 0 0 50 

9 10710 10311 349 0 50 

10 11044 10341 703 0 0 

11 10798 10361 487 0 -50  

12 11098 10411 737 0 -50  

13 11105 10451 604 0 50 

14 10696 10441 205 0 50 

15 10399 10399 0 0 0 

16 10149 10199 0 0 -50  

17 10098 10148 0 0 -50  

18 9763 9813 0 0 -50  

19 9639 9689 0 0 -50  

20 9724 9774 0 0 -50  

21 9935 9985 0 0 -50  

22 9764 9814 0 0 -50  

23 9764 9814 0 0 -50  

24 9543 9593 0 0 -50  

Optimal value: 8.709516E+06 
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Table 9 

Stochastic power dispatch model: optimal solution for q+* = 50, q-- = 0. 

Pumped storage plants 
Time Optimal tender Thermal units generation pumping Energy contract 

N:z N2 
i S j wJ , tAxon, l, Er,.o  E E ,.o,, ' Zt,opt 

i~l, j=l  j=l  

1 8987 8937 0 0 50 

2 8439 8752 0 363 50 

3 8147 8782 0 685 50 

4 8043 8837 0 844 50 

5 8040 8887 0 897 50 

6 8234 8917 0 733 50 

7 8198 8927 0 779 50 

8 9589 9539 0 0 50 

9 10917 10523 344 0 50 

10 11200 10553 686 0 -39 

11 10997 10573 474 0 -50  

12 11300 10623 627 0 50 

13 11364 10663 651 0 50 

14 10956 10653 303 0 0 

15 10637 10648 0 0 -11 

16 10384 10434 0 0 -50  

17 10357 10407 0 0 -50  

18 9874 9924 0 0 -50  

19 9814 9864 0 0 -50  

20 9802 9852 0 0 -50  

21 10100 10150 0 0 -50  

22 9932 9982 0 0 -50  

23 9895 9945 0 0 -50  

24 9658 9708 0 0 -50  

Optimal value: 8.764862E+06 
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