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Hydro-Storage Subproblems in Power Generation:
An Approach with a Relaxation Method for

Network Flow Problems
Holger Heitsch and Werner Römisch

Abstract— Mathematical models for the electricity portfolio
management of a utility that owns a hydro-thermal generation sys-
tem and trades on the power market often lead to complex stochas-
tic optimization problems. We present a new approach to solving
stochastic hydro-storage subproblems that occur when stochastic
Lagrangian relaxation is applied to solving such models. The spe-
cial structure of such hydro-storage subproblems allows the design
of a stochastic network flow algorithm. The algorithm represents
a stochastic extension of a relaxation method, that algorithmically
solves the linear minimum cost flow problem. It is based on the
iterative improvement of dual costs. Numerical experienceof the
new algorithm is reported and its performance is compared with
that of standard LP software .

Index Terms—Stochastic programming, Lagrangian relaxation,
hydro-storage subproblems, network optimization, minimum cost
flow problem.

I. INTRODUCTION

In the last few years large scale multi-stage stochastic pro-
gramming models for the cost-optimal generation and trading
of electric power under uncertainty have been developed. Such
optimization problems combine several mathematical chal-
lenges, namely, mixed-integer decisions, stochastic dataand
huge dimensions. The uncertainty consists in electrical load
forecasts, generator failures, stream flows to hydro reservoirs,
and fuel and electricity prices.

One approach for solving such mixed-integer multi-stage
models is the stochastic Lagrangian relaxation of couplingcon-
straints ([11], [15], [18]). Its idea consists in assigningstochas-
tic multipliers to coupling constraints and in solving the La-
grangian dual by subgradient methods. This leads to a suc-
cessive decomposition into finitely many stochastic (contract,
thermal and hydraulic) subproblems, for which efficient solu-
tion techniques that take advantage of their special structure are
needed. In this paper, we discuss the hydro-storage subprob-
lems and their algorithmic solution. They are still multi-stage
stochastic programs but exhibit a specific network flow struc-
ture. Various optimization models and solution algorithmsfor
hydro-electric scheduling have been discussed in the literature
so far, e.g. [6], [7], [8], [10], [14], [16], [20].

Motivated by the structure of stochastic hydro subproblems,
we develop an extended version of a relaxation method for solv-
ing stochastic minimum cost flow problems based on the iter-
ative improvement of dual costs. We show how this method
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applies to hydro-storage subproblems and discuss its computa-
tional performance.

The paper is organized as follows. Section II reviews classi-
cal linear minimum cost flow problems and their algorithmic
solution. In Section III a detailed description of a stochas-
tic extension is given. In Section IV we discuss the stochas-
tic Lagrangian-based decomposition approach to portfolioop-
timization models for a power utility that owns a hydro-thermal
power generation system and the application of the new algo-
rithm to the hydro-storage subproblems. Finally, in Section V
numerical experience of the algorithm is provided. Its perfor-
mance is compared with that of CPLEX 8.0 on a set of test
examples.

II. M INIMUM COST FLOW PROBLEMS

Network flow problems are one of the most important and
most frequently encountered classes of optimization problems.
They naturally arise in the optimization of large systems, such
as communication networks and transportation networks. Many
important problems, such as shortest path, assignment, maxi-
mum flow, transportation, minimum cost flow, and travelling
salesmen, belong to the wide spectrum of network optimiza-
tion. The exhaustive mathematical treatment of network flow
problems started with Ford and Fulkerson in 1962 [9]. Since
then numerous papers and books on network optimization have
appeared. Recent textbooks on network flows are due to Rocka-
fellar [17] in 1984, Bazaraa, Jarvis and Sherali [2] in 1990,
Ahuja, Magnanti and Orlin [1] in 1993 and Bertsekas [3] in
1998. For a history of network flow problems we refer to the
recent paper by Schrijver [21].

Network optimization problems typically cannot be solved
analytically. Usually they have to be solved computationally
with one of the available algorithms. Clearly, general linear
or nonlinear programming algorithm could be used. However,
specialized network optimization algorithms that exploitthe
network structure turn out to be much more efficient. In prac-
tice, network problems can often be solved much faster than
general linear or convex programs of comparable dimension.
The main ideas that are fundamental for general mathematical
programs are maintained in network optimization.

Often network flow problems are modelled in terms of graph-
related notions. In general, network flow problems consist of
supply and demand points together with several routes connect-
ing these points. The network is given by a directed graph,G = (V ; E), which consists of a setV of nodesand a setE of
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pairs of distinct nodes fromV calledarcs. The linear minimum
cost flow problem consists in finding a set of arc flows that min-
imizes a linear cost function subject to the constraints that they
produce a given divergence vector and that they lie within some
given bounds. Formally, it is given bymin X(i;j)2E aijxij s.t. (1)X(i;j)2E xij � X(j;i)2E xji = si; 8i 2 V ; (2)bij � xij � 
ij ; 8(i; j) 2 E : (3)

The cost coefficientsaij , the flow boundsbij and
ij for arcs(i; j) 2 E , and the values of supplysi for nodesi 2 V are
given scalars. The constraints (2) and (3) are called flow and
capacity constraints, respectively. Figure 1 shows a smallex-
ample network graph.

3

In Out
1

2

4

Fig. 1. Example network flow

The available netflow algorithms for solving minimum cost
flow problems can be grouped into two main categories:
(1) Primal cost improvement:These methods start with a fea-

sible flow vectorx and generate a sequence of other fea-
sible flow vectors, each having a smaller primal cost than
its predecessor. The main idea is to push the flow along a
simple cycle to obtain an improved flow vector as long as
the flow vector is not optimal.

(2) Dual cost improvement:Such methods solve a dual prob-
lem iteratively. A sequence of dual variables (price vec-
tors) is generated such that each new price vector has
strictly improved dual cost.

One of the most efficient primal cost improvement methods is
the network simplex method. There are several approaches to
finding cycles to improve the primal cost, but the most suc-
cessful ones in practice include specialized versions of the sim-
plex method. An important example for the second group of
dual cost improvement or dual ascent methods is the relaxation
method. Its main advantage, which distinguishes it from classi-
cal primal-dual methods, is that the choice of ascent directions
is very simple and, hence, that the computation of dual ascent
directions is very fast.

III. STOCHASTIC EXTENSION

Stochastic programming mostly deals with the optimization
of decision making under uncertainty over time. The decision
to be optimized must not anticipate future outcomes where only

probabilistic information on the uncertain data is available. Ba-
sic references for the theory, numerical analysis and application
of stochastic programming are the monographs [4], [19].

Motivated by the efficiency of current network flow algo-
rithms and, in particular, because of the network structureof
some subproblems occurring in power management applica-
tions, we have developed a stochastic extension of network op-
timization models and methods. It applies to stochastic pro-
gramming models whose underlying (deterministic) optimiza-
tion problem has network flow structure.

To formulate an extended or stochastic minimum cost flow
problem that corresponds to a networkV of nodes we introduce
the following terminology. Amulti-arc is an ordered pair of
nonempty disjoint sets whose elements belong toV , i.e., more
than one start or end node correspond to a multi-arc. Thus, we
refer to a classical arc, i.e., an ordered pair of distinct nodes, as
asingle-arc.
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Fig. 2. Example single-arc and multi-arc

Figure 2 shows an example of a single-arc, and an example of
a multi-arc that consists of one start node and two end nodes.

Let a pair(V ; E) be given, whereV is a set of nodes andE a
set of multi-arcs, i.e.,E � f(I; J) : I; J � V ; I; J 6= ; andI \ J = ;g: (4)

The following optimization problem will be calledextended
minimum cost flow problem with multi-arcs:min X(I;J)2E aIJxIJ s.t. (5)Xf(I;J)2E:i2IgxIJ � Xf(J;I)2E:i2IgxJI = si; 8i 2 V ; (6)bIJ � xIJ � 
IJ ; 8(I; J) 2 E : (7)

Here, aIJ denote the cost coefficients,bIJ and 
IJ the flow
bounds for(I; J) 2 E , andsi the supply of nodei 2 V . The
constraints (6) and (7) represent the flow and the capacity con-
straints, respectively.

A. Duality

There is a well developed duality theory for solving network
flow problems (e.g., cf. [3]). The corresponding results canbe
extended to cover network flow models with multi-arcs. In par-
ticular, we need such an extension for dualizing the flow con-
straints (6) of the extended minimum cost flow problem with
multi-arcs. Let� denote the Lagrange multiplier (or price) with
components�i for i 2 V . Then the Lagrangian function is of
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the formL(x; �) = X(I;J)2E aIJxIJ+ Xi2V �i0�si � Xf(I;J)2E:i2IgxIJ + Xf(J;I)2E:i2IgxJI1A= X(I;J)2E0�aIJ +Xj2J �j �Xi2I �i1AxIJ +Xi2V si�i: (8)

The dual function is given byD(�) = minx fL(x; �) : bIJ � xIJ � 
IJ ; (I; J) 2 Eg; (9)

and the corresponding dual problem readsmaxfD(�) : � 2 IRV g; (10)

whereV is the number of elements inV . As the Lagrangian
function L(x; �) is separable in the arc flowsxIJ , its mini-
mization decomposes into a separate minimization for each arc(I; J) 2 E . D(�) can be written asD(�) = X(I;J)2EDIJ +Xi2V si�i; (11)

whereDIJ = minbIJ�xIJ�
IJ 0�aIJ +Xj2J �j �Xi2I �i1AxIJ : (12)

Solving the dual problem provides the correct values of the
prices�i, which allow to obtain the optimal flowx by mini-
mizing the Lagrangian function.

Now we develop the basic duality results for the extended
minimum cost flow problem with multi-arcs. With respect to
equation (12) we introduce some helpful terminology. For any
price vector� we say that an arc(I; J) is

inactive if
Xi2I �i < aIJ +Xj2J �j ;

balanced if
Xi2I �i = aIJ +Xj2J �j ;

active if
Xi2I �i > aIJ +Xj2J �j :

We say that a flow-price vector pair(x; �) satisfies thecom-
plementary slackness conditionif x satisfies the capacity con-
straints (7) and if it holds that:xIJ = bIJ for all inactive arcs(I; J) 2 E ;bIJ � xIJ � 
IJ for all balanced arcs(I; J) 2 E ;xIJ = 
IJ for all active arcs(I; J) 2 E :
The following proposition provides an important duality result,
which is analogous to the duality result of the classical mini-
mum cost flow problem (cf. [3, Proposition 4.1]).

Proposition 1: A feasible flow vectorx� and a price vector�� satisfy the complementary slackness condition if and only ifx� and�� are optimal primal and dual solutions, respectively,
and the optimal primal and dual values coincide.

Proof: We first show that for any feasible flow vectorx and
any price vector� the primal cost ofx is not less than the dual
cost of�. Clearly, for all pairs(x; �) with a feasible flowx it
holds that L(x; �) = X(I;J)2E aIJxIJ ;
and, thus, due to (9) we obtainD(�) � L(x; �) = X(I;J)2E aIJxIJ :
If x� is now feasible and satisfies, together with��, the com-
plementary slackness condition, the equations (9), (11) and (12)
implyD(��) = minx fL(x; ��) : bIJ � xIJ � 
IJ ; (I; J) 2 Eg= L(x�; ��) = X(I;J)2E aIJx�IJ :
Note that the latter equation is valid because of the feasibility
of x�. Hence, we have shown that for a pair(x�; ��) satisfying
the complementary slackness condition,x� and�� are optimal
primal and dual solutions, respectively, and the optimal primal
and dual values coincide. Conversely, now we show that, ifx�
and�� are optimal primal and dual solutions, respectively, and
if D(��) = X(I;J)2E aIJx�IJ ;
holds, the pair(x�; ��) satisfies the complementary slackness
condition. By (9) we haveD(��) = minx fL(x; ��) : bIJ � xIJ � 
IJ ; (I; J) 2 Eg:
Using the Lagrangian expression (8), and due to the feasibility
of x� we obtain X(I;J)2E aIJx�IJ = L(x�; ��):
and, hence,L(x�; ��) = minx fL(x; ��) : bIJ � xIJ � 
IJ ; (I; J) 2 Eg :
The latter equation and formula (8) for the Lagrangian imply,
in particular, thatx�IJ 2 arg minbIJ�xIJ�
IJ0�aIJ +Xj2J ��j �Xi2I ��i1AxIJ :
holds for all arcs(I; J). Clearly, the latter expression im-
plies that the pair(x�; ��) satisfies the complementary slack-
ness condition.2
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B. Dual Ascent Method

Dual ascent methods for the classical minimum cost flow
problems (see [3, Chapter 6]) can be extended to models with
multi-arcs. Similar to the dual ascent method for the classical
problem we are looking for a dual ascent direction in order to
change the prices of a connected subsetS of nodes by a cer-
tain amount, to improve the dual cost of the dual function (11).
However, determining a dual ascent direction is more difficult.
To simplify matters we only admit multi-arcs originating atone
node, i.e, a multi-arc is of the form(i; J), wherei 2 V andJ � V . Hence, the set of arcs is now restricted toE � f(i; J) : i 2 V ; J � V ; J 6= ; andi =2 Jg: (13)

Each iteration of a dual ascent method involves a change of the
price vector along a direction of the formdS = (d1; : : : ; dV ),
whereV is the number of nodes inV , di, i 2 V , is given bydi = � 1 if i 2 S;0 if i =2 S; (14)

andS is a connected subset of nodes. Such directionsdS and
the corresponding setsS are calledelementaryif S has the
property that, for all arcs(i; J) 2 E , the setJ \ S contains
at most one element.

For the decision whether an elementary direction is a direc-
tion of dual ascent we have to calculate the directional deriva-
tive of the dual cost alongdS and check whether it is positive.
It follows from the dual cost expressions (11) and (12) that the
directional derivative into an elementary direction isD0(�; dS) = lim�#0 D(�+ �dS)�D(�)�= X(i;J)2E:

inactive/balancedi=2S; J\S6=; biJ + X(i;J)2E:
activei=2S; J\S6=;
iJ� X(i;J)2E:

inactivei2S; J\S=;biJ � X(i;J)2E:
active/balancedi2S; J\S=;
iJ (15)

For a flow vectorx let us define thesurplusgi of nodei as the
difference between the total sum of all inflows intoi minus the
total sum of all outflows fromi, i.e.,gi = Xf(j;I)2E : i2IgxjI � X(i;J)2E xiJ + si :
Note that for a feasible flow vectorx the surplus of each node is
zero. However, for an elementary direction and corresponding
subset of nodesS � V we obtainXi2S gi =Xi2S si + X(i;J)2E:i=2S;J\S6=; xiJ � X(i;J)2E:i2S;J\S=; xiJ (16)

To organize the search for an ascent direction and to obtain a
suitable setS with positive directional derivativeD0(�; dS), it

is convenient to maintain a flow vectorx satisfying the comple-
mentary slackness condition together with�. For a flow price
pair (x; �) satisfying the complementary slackness condition
the term of the directional derivative can be reduced. In this
case we obtain for an elementary directionD0(�; dS) = Xi2S gi � X(i;J)2E:

balancedi=2S;J\S6=; (xiJ � biJ )� X(i;J)2E:
balancedi2S;J\S=; (
iJ � xiJ ) (17)

by the equations (15) and (16). It turns out that an elementary
node setS that has positive total surplus is a candidate for gen-
erating a directiondS of dual ascent. The following proposition
generalizes an analogous result for the classical minimum cost
flow problem (cf. [3, Lemma 6.1]).

Proposition 2: Letx and� satisfy the complementary slack-
ness condition, and letS be an elementary subset of nodes. IfXi2S gi > 0
holds, then eitherdS is a dual ascent direction, i.e,D0(�; dS) > 0;
or there exists a balanced arc(i; J) 2 E with either
(a) i 2 S, J \ S = ; andxiJ < 
iJ or
(b) i =2 S, J \ S 6= ; andxiJ > biJ .

Proof: Follows from equation (17).2
C. Extended Relaxation Method

The extended relaxation method solves the dual problem it-
eratively. The method starts with a flow-price vector pair(x; �)
satisfying the complementary slackness condition and, main-
taining this condition at all iterations, finally terminates with a
pair (x̂; �̂), wherex̂ is feasible and, due to Proposition 1,x̂ and�̂ are primal and dual optimal, respectively.

At the beginning of each iteration an elementary initial setS
of nodes consisting of one node with positive surplus is chosen.
In general, due to Proposition 2 we have the following possibil-
ities for an elementaryS with positive total surplus:
(a) Dual ascent is possible, i.e.,dS defines a dual ascent di-

rection. Then a price change is performed to improve the
dual cost.

(b) Due to Proposition 2 an enlargement ofS is possible such
thatS can be enlarged by adding a node with non-negative
surplus and an elementary direction can be associated with
the enlarged set, too.

(c) If dual ascent or an enlargement ofS is not possible, then
anunblockedpath originating at some node ofS with pos-
itive surplus can be constructed. Unblocked means that all
arcs of the path allow a flow increase in the direction of
the path. We refer to such a path as anaugmentation path.
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A flow increasing along an augmentation path can be used to
change the surplus of the start node and end node, respectively.
Such a flow does not influence the complementary slackness
condition of the flow-price vector pair. In particular, a certain
amount of flow can reduce the totalabsolutesurplus of the net-
work.

Unfortunately, an augmentation path which in general in-
volves multi-arcs is more complicated for extended network
problems than in the classical case. For example, a flow along
a path originating at a node with positive surplus and ending
at a node with negative surplus usually does not reduce the to-
tal surplus of the network. The Figures 3-6 illustrate typi-

Direction of flow change

positive
surplus

negative
surplus

Fig. 3. Augmentation (A): Simple path

Direction of flow change

positive
surplus

negative
surplus

Fig. 4. Augmentation (B): Forward splitting

surplus

Direction of flow change

positive
surplus

negative

Fig. 5. Augmentation (C): Backward splitting

flow change

negative
surplussurplus

positive

Direction of

Fig. 6. Augmentation (D): Cycle path

cal augmentation paths that may occur in an extended network.
However, all of these augmentation paths possess a common
property. A certain amount of flow along such a path reduces a
relative total surplus of the network. The relative total surplus
represents a weighted sum of all surpluses (see [12] for details).
It can be shown that if dual ascent or an elementary enlarge-
ment ofS is not possible, a so-calledmulti-augmentation path

can be determined in such a way that a increasing flow along
this multi-path reduces the total relative surplus of the network.

Hence, within each iteration of the extended relaxation
method for solving the extended minimum cost flow problem
either a price change with strict improvement of the dual cost
or a flow adjustment that reduces the total relative surplus can
be performed. Thus, we cannot have an infinite number of
price changes and it is impossible to have an infinite number
of flow augmentations between two successive price changes.
The method terminates if no nodei can be found withgi > 0.
In this case the current pair(x; p) is optimal if it holdsgi = 0
for all nodesi, implying x to be a feasible flow vector, other-
wise the problem is infeasible. Thus, if the problem is feasible,
the iteration will terminate with an optimal pair of flow, and
price(x̂; p̂).

To search for an ascent direction comprises a recursive and
path wise scanning of nodes. So the extended relaxation itera-
tion contains several subroutines that are used recursively. For
an efficient implementation special features should be used. For
example, the value of dual ascent can be efficiently updated us-
ing a labeling scheme. Moreover, special data structures intro-
duced for the classical relaxation iteration (cf. [3, Chapter 6])
can be adapted to the extended method, too.

IV. A PPLICATION TO POWER MANAGEMENT

In this section we discuss the stochastic Lagrangian relax-
ation approach to power management in a hydro-thermal sys-
tem under uncertainty (cf. [5], [11], [15]).

A. Stochastic Model

We consider a power utility that owns a generation system
comprising thermal units and hydro storage plants and describe
a model for the optimal generation and trading of electric power
under uncertainty on the electrical load, market prices of fuel
and electricity and stream flows to hydro reservoirs. Contracts
for delivery and purchase are modeled as special thermal units.
Let T denote the number of time intervals obtained from a dis-
cretization of the operation horizon. LetI andJ be the number
of thermal and hydro storage units in the system, respectively.
The decision variables for the thermal units are the binary vari-
ablesuti for on/off decisions and the bounded variablespti for
the production levels of the thermal uniti during the time periodt. The variablesvtj andwtj denote the generation and pumping
levels, respectively, of the (pumped) hydro storage plantj dur-
ing the periodt. Further, byltj andstj we denote the storage
level in the upper reservoir and the stream flow (or supply) to
the upper reservoir of plantj at the end of periodt, respectively.

By � = f�t = (dt; 
t; st)gTt=1 we denote the stochastic data
process whose components are the electrical loadd, a vector
 of relevant prices and the vectors of supplies. We assume
that �1 is deterministic and that� nonanticipative. The latter
means that�t does not depend on future realizations of� at anyt. In case of a process having finitely many scenarios, these re-
quirements lead to a tree structure of the process. Ascenario
tree may be represented be a finite number of nodes. It starts
from the root node at periodt = 1 and eventually branches
into several nodes at the next period. The branching continues
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SundayMonday Tuesday Wednesday Thursday Friday Saturday

Fig. 7. Example of a scenario tree

eventually up to nodes at the final time period. Figure 7 pro-
vides an example of a scenario tree on a weekly time horizon
with nodes at each day and5 scenarios. LetN = f1; : : : ; Ng
denote the finite set of nodes of the tree. The root noden = 1
stands for the periodt = 1. Every other noden has a unique
predecessor noden� and a transition probability�n=n� , which
describes the probability ofn being a successor ofn�. The
probability�n of each noden is given recursively by�1 = 1,
and�n = �n=n��n� for n > 1. By N+(n) we denote the set
of successors to noden and bypath(n) the setf1; : : : ; n�; ng
of nodes from the root to noden. Let t(n) denote the number
of its elements andNt the set of all nodesn with t(n) = t.
All nodes belonging toNT are the leaves of the tree. A sce-
nario corresponds to a path from the root to some leaf, i.e., topath(n) for somen 2 NT .

Clearly, the decision processf(ut;pt;vt;wt)gTt=1 corre-
sponding to the data process� in scenario tree form has the
same tree structure. By�n and(un; pn; vn; wn) we denote the
data and the decision, respectively, at noden. Then the scenario
tree formulation of the stochastic power management model is
of the formmin Xn2N �n IXi=1 [Cni (pni ; uni ) + Sni (ui)℄; (18)

subject touni 2 f0; 1g; i = 1; : : : ; I; n 2 N ;pmini uni � pni � pmaxi uni ; i = 1; : : : ; I; n 2 N ;0 � vnj � vmaxj ; j = 1; : : : ; J; n 2 N ;0 � wnj � wmaxj ; j = 1; : : : ; J; n 2 N ;0 � lnj � vmaxj ; j = 1; : : : ; J; n 2 N ; (19)un�(��1)i � un��i � 1� uni ; � = 1; : : : ; � i; n 2 N ;un�(��1)i � un��i � uni ; � = 1; : : : ; � i; n 2 N ; (20)lnj = ln�j � vnj + �jwnj + snj ; n 2 N ;l0j = linj ; j = 1; : : : ; J;lnj = lendj ; j = 1; : : : ; J; n 2 NT ; (21)

IXi=1 pni + JXj=1(vnj � wnj ) � dn; n 2 N ; (22)IXi=1(pmaxi uni � pni ) � rn; n 2 N ; (23)

whereCni is the piecewise linear convex cost function for oper-
ating unit or contracti at noden andSni represents the piece-
wise constant start-up costs for getting uniti online at noden. The constraints (19) are operational constraints representing
unit output limits and reservoir capacities, the inequality con-
straints (20) represent minimum up- and down-times for ther-
mal units, (21) are dynamic constraints of storage levels ofthe
hydro units, where�j 2 (0; 1) denotes the pumping efficiency
of unit j, (22) and (23) are load and (spinning) reserve con-
straints at all nodesn in N .

B. Stochastic Lagrangian Relaxation

The approach by Lagrangian relaxation consists in dualizing
the coupling constraints, i.e, the load and reserve constraints,
by stochastic multipliers�1 and�2, and in solving the stochas-
tic dual by some subgradient-type method. The dual optimum
serves as a lower bound for the optimal cost and as a starting
point for Lagrangian heuristics to determine a nearly optimal
scheduling decision(�u; �p; �v; �w). The dual problem has the formmax�D(�) : � = (�1; �2) 2 IR2N+ 	;
where the dual functionD is of the formD(�) = IXi=1 Di(�) + JXj=1 D̂j(�1) + Xn2N �n(�n1 dn + �n2 rn)
and Di(�) and D̂j(�1) represent the optimal values of the
stochastic thermal and hydro-storage subproblems, respectively
(see e.g. [11], [15] for details). Hence, this procedure leads to
a successive decomposition into stochastic single (thermal and
hydro) unit subproblems.

C. Hydro-Storage Subproblems

Let us take a closer look at the Lagrangian hydro-storage sub-
problem for unitj in scenario tree form. It is of the formD̂j(�1) = min(vj ;wj)� Xn2N �n�n1 (wnj � vnj ) : 0 � vnj � vmaxj ;0 � wnj � wmaxj ; 0 � lnj � lmaxj ; lnj = ln�j � vnj + �jwnj + snj

for n 2 N ; l0j = linj ; lnj = lendj for n 2 NT�: (24)

The stochastic hydro-storage problem (24) can be formulated in
terms of an extended network flow optimization problem, i.e., it
corresponds to an extended linear minimum cost flow problem.

To obtain a network formulation with graph(V ; E), we
chooseV such that it contains all nodes ofN and a number
of artificial nodes, which represent the (possibly also artificial)
lower reservoir. If the tree would consist of only one scenario,
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we consider parts of scenarios that consist of nodes where no
branching occurs. For each such part of a scenario we include
one artificial node intoV . The setE contains the multi-arcs(n;N+(n)) for eachn 2 N n NT and additional arcs to con-
nect each node inN with the corresponding artificial node in
both directions. In addition, we add toE all multi-arcs, which
connect artificial nodes and have the same successor structure
as the corresponding nodes inN .

We associate to each element ofE a component of the flow
vectorx. More precisely, we associate the storage levellnj to
the arc(n;N+(n)) for n 2 N n NT and the variablesvnj and�jwnj to the arcs connecting nodes inN with the corresponding
artificial nodes. Furthermore, we introduce auxiliary compo-
nents of the flow vector that correspond to arcs connecting arti-
ficial nodes. The capacities of all components coincide withthe
bounds in the operational constraints (19) and correspond to the
reservoir capacities in case of the auxiliary components, respec-
tively. For each nodei in V we assign its supplysi as follows.
For the root noden = 1 we sets1 := s1j + linj , sn := snj � lendj
for n 2 NT , andsn := snj for the remaining nodes inN . For
an artificial nodei that corresponds to the nodesn1; : : : ; nk inN , we setsi :=Pk�=1(ln��sn� ), whereln is set toln := lmaxj
for the root noden = 1, ln := �lmaxj for all leavesn 2 NT
andln := 0 for all other nodes inN . The cost coefficients for
all components of the flow vector vanish except for those corre-
sponding to the componentsvnj and�jwnj for n 2 N . The cost

coefficients ofvnj and�jwnj are��n�n1 and�n�n1�j , respectively.
To explain this we want to consider an example. Let a small

scenario tree consisting of four time periods, two stages and two
scenarios be given (see Figure 8). Since there are two stages

3

1 2

4 6

5

Fig. 8. Tree structure of the example

and one branching point of degree two, there are three different
parts of the given scenarios where no branching occurs. Hence,
altogether we have to add three additional nodes to the given
node setN = f1; : : : ; 6g. Figure 9 illustrates the correspond-
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Fig. 9. Example network for hydro-storage plantj

ing network of the example for one hydro-storage plantj. Ac-
cording to the branching structure of the scenario tree there are
two multi-arcs involving each two end nodes (dashed lines).

V. NUMERICAL RESULTS

The extended relaxation method developed in Section III has
been completely implemented in C. For testing the implemen-
tation we have randomly generated a bunch of hydro-storage
test problems of the form (24). All test problems are based on
realistic data. The stochastic data process has been modelled by
binary scenario trees of varying dimensions ranging up to more
than130 000 scenarios. The test runs have been performed on a
PC Pentium III with 700 MHz frequency and128 MByte main
memory under SuSE Linux 8.0.

TABLE I
NUMERICAL RESULTS FOR HYDRO SUBPROBLEMS

Scen Nodes Arcs Time Ascent Augment

2048 8190 12284 0.49 3213 9002
2048 8190 12284 0.52 3199 9331
2048 8190 12284 0.55 3178 9722

4096 16382 24572 1.17 6275 15777
4096 16382 24572 1.22 6160 15930
4096 16382 24572 1.28 6085 16847

8192 32766 49148 3.38 16005 34062
8192 32766 49148 1.80 12801 33290
8192 32766 49148 1.90 13019 34135

16384 65534 98300 4.63 26509 71195
16384 65534 98300 4.20 26074 70852
16384 65534 98300 5.11 27245 72398

32768 131070 196604 12.32 58817 141076
32768 131070 196604 11.61 58207 142150
32768 131070 196604 19.60 71205 155335

65536 262142 393212 33.30 130478 267622
65536 262142 393212 34.01 129028 270890
65536 262142 393212 46.35 133098 274844

131072 524286 786428 87.77 279919 521973
131072 524286 786428 99.07 274566 534538
131072 524286 786428 86.66 276725 537894

Table I shows numerical results of the code DualAscent for a
couple of test problems containing2 048 up to131 072 scenar-
ios. The first three columns describe the problem size, i.e, the
number of scenarios, the number of nodes, and the total num-
ber of arcs in the extended network. The last three columns
report the computing time (in seconds), and the number of per-
formed ascent and augmentation steps, respectively. The table
shows that also very large network models containing more than500 000 nodes can be solved in less than100 seconds.

Furthermore, Figure 10 shows that the computing time for
solving the test problems grows approximately linearly with re-
spect to the number of scenarios.

The performance of DualAscent has been compared with the
standard linear programming solver CPLEX 8.0. The results
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Fig. 10. Computing time of DualAscent

TABLE II
COMPUTING TIME OF DUAL ASCENT(DA) COMPARED WITH CPLEX

CPLEX 8.0
Scen

primal dual baropt netopt
DA

8192 18.07 s 11.42 s 18.49 s 10.37 s 1.64 s
8192 19.03 s 11.81 s 17.49 s 10.47 s 1.92 s
8192 19.59 s 11.38 s 18.53 s 9.54 s 1.56 s

32768 129.78 s 111.03 s 120.02 s 96.82 s 12.64 s
32768 114.84 s 118.21 s 92.83 s 103.21 s 14.40 s
32768 147.53 s 112.28 s 104.60 s 95.32 s 9.46 s

131072 881.0 s 1131.2 s 674.0 s 1088.4 s 89.6 s
131072 961.3 s 1160.7 s 820.0 s 1100.8 s 81.6 s
131072 902.2 s 1079.9 s 644.3 s 1013.1 s 63.2 s

displayed in Table II show that the extended relaxation method
is the fastest algorithm for all test problems. It outperforms all
of the tested CPLEX methods, i.e., the primal simplex method,
the dual simplex method, the barrier method and the network
optimization method.

VI. CONCLUSIONS

It has been shown that a stochastic extension of the relax-
ation method for solving the linear minimum cost flow problem
can be applied to solve stochastic hydro-storage subproblems
in power management. Because of the special structure of these
problems network flow algorithms represent an efficient alter-
native to standard linear programming software. Our test runs
show the promising performance of the new approach.
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