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Hydro-Storage Subproblems in Power Generation:
An Approach with a Relaxation Method for
Network Flow Problems

Holger Heitsch and Werner Romisch

Abstract— Mathematical models for the electricity portfolio applies to hydro-storage subproblems and discuss its ciampu
management of a utility that owns a hydro-thermal generatim sys-  tional performance.
tem and trades on the power market often lead to complex sto@s- o aner is organized as follows. Section Il reviews classi

tic optimization problems. We present a new approach to soing L - i bl d their algorithmi
stochastic hydro-storage subproblems that occur when stbastic €@l ln€ar minimum cost Tlow probiems and their aigorithmic

Lagrangian relaxation is applied to solving such models. Ta spe- Solution. In Section Ill a detailed description of a stochas
cial structure of such hydro-storage subproblems allows th design tic extension is given. In Section IV we discuss the stochas-

of a stochastic network flow algorithm. The algorithm repreents tic Lagrangian_based decomposition approach to portflm.o
a stochastic extension of a relaxation method, that algoditmically timization models for a power utility that owns a hydro-tie

solves the linear minimum cost flow problem. It is based on the i i d th licati fth |
iterative improvement of dual costs. Numerical experiencef the ~POWEr generation system an € application of the new aigo-

new algorithm is reported and its performance is compared wih ~ fithm to the hydro-storage subproblems. Finally, in Sectib
that of standard LP software . numerical experience of the algorithm is provided. Its perf

Index Terms—Stochastic programming, Lagrangian relaxation, mance is compared with that of CPLEX 8.0 on a set of test

hydro-storage subproblems, network optimization, minimun cost €xamples.
flow problem.

II. MINIMUM COSTFLOW PROBLEMS

I. INTRODUCTION Network flow problems are one of the most important and

In the last few years large scale multi-stage stochastie pf§0st frequently encountered classes of optimization erob|
gramming models for the cost-optimal generation and tedirl €y naturally arise in the optimization of large systenushs
of electric power under uncertainty have been developech SIS communication networks and transportation networksiyMa
optimization problems combine several mathematical chdoportant problems, such as shortest path, assignment; max
lenges, namely, mixed-integer decisions, stochastic data Mum flow, transportation, minimum cost flow, and travelling

huge dimensions. The uncertainty consists in electricad loSalesmen, belong to the wide spectrum of network optimiza-

and fuel and electricity prices. problems started with Ford and Fulkerson in 1962 [9]. Since

One approach for solving such mixed-integer multi-stadeen numerous papers and books on network optimization have
models is the stochastic Lagrangian relaxation of couglorg  @Ppeared. Recent textbooks on ne'_twork flows are due_ to Rocka-
straints ([11], [15], [18]). Its idea consists in assignstgchas- fellar [17] in 1984, Bazaraa, Jarvis and Sherali [2] in 1990,
tic multipliers to coupling constraints and in solving tha-L Ahuja, Magnanti and Orlin [1] in 1993 and Bertsekas [3] in
grangian dual by subgradient methods. This leads to a sd®98. For a history q_f network flow problems we refer to the
cessive decomposition into finitely many stochastic (castyr F€cent paper by Schrijver [21].
thermal and hydraulic) subproblems, for which efficienusol ~ Network optimization problems typically cannot be solved
tion techniques that take advantage of their special stra@re analytically. Usually they have to be solved computatipnal
needed. In this paper, we discuss the hydro-storage subprdh one of the available algorithms. Clearly, general dine
lems and their algorithmic solution. They are still muliage OF nonlinear programming algorithm could be used. However,
stochastic programs but exhibit a specific network flow struéPecialized network optimization algorithms that expkbie
ture. Various optimization models and solution algoritHiors network structure turn out to be much more efficient. In prac-
hydro-electric scheduling have been discussed in thetitez tice, network problems can often be solved much faster than
so far, e.g. [6], [7], [8], [10], [14], [16], [20]. general_lln_ear or convex programs of comparable dlmen3|9n.

Motivated by the structure of stochastic hydro subproblem&€ main ideas that are fundamental for general matherhatica
we develop an extended version of a relaxation method far soPrograms are maintained in network optimization.
ing stochastic minimum cost flow problems based on the iter- Often network flow problems are modelled in terms of graph-
ative improvement of dual costs. We show how this methd@lated notions. In general, network flow problems consfist o

supply and demand points together with several routes abnne

H. Heitsch and W. Romisch are with the Institute of MatheosatHumboldt— Ing these pomt;;. The _network IS given by a directed graph,
University Berlin, D-10099 Berlin, Germany. G = (V, &), which consists of a séf of nodesand a set of
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pairs of distinct nodes fror calledarcs The linear minimum probabilistic information on the uncertain data is avd#alBa-
cost flow problem consists in finding a set of arc flows that mirsic references for the theory, numerical analysis and egidin
imizes a linear cost function subject to the constraintsttiey  of stochastic programming are the monographs [4], [19].
produce a given divergence vector and that they lie withineso  Motivated by the efficiency of current network flow algo-

given bounds. Formally, it is given by rithms and, in particular, because of the network structdre
some subproblems occurring in power management applica-
min Z a;jri; St (1) tions, we have developed a stochastic extension of netwmrk o
(i,4)€E timization models and methods. It applies to stochastiec pro
gramming models whose underlying (deterministic) optamiz
Z Tij — Z zji=si, YieV, (2) tion problem has network flow structure.
(i,7)€E (.)€ To formulate an extended or stochastic minimum cost flow
problem that corresponds to a netwodtlof nodes we introduce
bij < wij < cij, V(i j) €E. (3)  the following terminology. Amulti-arc is an ordered pair of

nonempty disjoint sets whose elements belony tae., more
than one start or end node correspond to a multi-arc. Thus, we
Fgfer to a classical arc, i.e., an ordered pair of distincla® as

The cost coefficients;;, the flow bound$;; andc;; for arcs
(i,7) € &, and the values of supply; for nodesi € V are
given scalars. The constraints (2) and (3) are called flow a
capacity constraints, respectively. Figure 1 shows a sexall 2Single-arc
ample network graph.

A9

In C Out \\@
Fig. 2. Example single-arc and multi-arc

Figure 2 shows an example of a single-arc, and an example of
a multi-arc that consists of one start node and two end nodes.
Let a pair(V, £) be given, wheré&’ is a set of nodes antla

i ) . o set of multi-arcs, i.e.,
The available netflow algorithms for solving minimum cost

flow problems can be grouped into two main categories: Ec{,J):I,JcVy;I,J#0andINnJ =0}. (4)
(1) Primal cost improvemeniThese methods start with a fea-
sible flow vectorr and generate a sequence of other fedhe following optimization problem will be calledxtended
sible flow vectors, each having a smaller primal cost thaninimum cost flow problem with multi-arcs
its predecessor. The main idea is to push the flow along a

Fig. 1. Example network flow

simple cycle to_obtain an improved flow vector as long as min Z arjrry S.t. 5)
the flow vector is not optimal. (I,J)€€
(2) Dual cost improvementSuch methods solve a dual prob-
lem iteratively. A sequence of dual variables (price vec- Z - Z 2 =8, Vi€V (6)
— Y i

tors) is generated such that each new price vector has
strictly improved dual cost.
One of the most efficient primal cost improvement methods is bry <zry<er;, Y(U,J)eECE. 7
the network simplex method. There are several approaches to o
finding cycles to improve the primal cost, but the most suélere, ar; denote the cost coefficients;; ande;; the flow
cessful ones in practice include specialized versionsesiin- bounds for(Z,.7) € £, ands; the supply of nodé € V. The
plex method. An important example for the second group §Pnstraints (6) and (7) represent the flow and the capacity co
dual cost improvement or dual ascent methods is the retaxatptraints, respectively.
method. Its main advantage, which distinguishes it frorasita
cal primal-dual methods, is that the choice of ascent doest .
. ; . A. Duality
is very simple and, hence, that the computation of dual ascern
directions is very fast. There is a well developed duality theory for solving network
flow problems (e.qg., cf. [3]). The corresponding results lban
extended to cover network flow models with multi-arcs. In-par
ticular, we need such an extension for dualizing the flow con-
Stochastic programming mostly deals with the optimizatiostraints (6) of the extended minimum cost flow problem with
of decision making under uncertainty over time. The denisianulti-arcs. Letu denote the Lagrange multiplier (or price) with
to be optimized must not anticipate future outcomes wheke ortomponentg:; for ¢ € V. Then the Lagrangian function is of

{(I,])e€:iel} {(J,1)e€:iel}

IIl. STOCHASTIC EXTENSION
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the form Proposition 1: A feasible flow vector:* and a price vector
w* satisfy the complementary slackness condition if and dnly i
L(z,p) = Z arjrry x* andp* are optimal primal and dual solutions, respectively,
(I,J)ee and the optimal primal and dual values coincide.
Proof: We first show that for any feasible flow vecterand
+ Y i si— Y, Y, @ any price vectoy the primal cost of: is not less than the dual
ieV {(I.D)e€el} {(J, )€€ e} cost ofu. Clearly, for all pairg(z, 1) with a feasible flowz it
holds that
= Z ary + Zuj - Z“i xrg + Zsl“l (8) L(w,p) = Z arjxrj,
(1,7)€é€ jeg iel i€V (I.))ee

The dual function is given by and, thus, due to (9) we obtain

D(p) = min{L(x,p) : bry <zry <ery, (I,J) €&}, (9) D(p) < L(z,p) = ( Z) arjrry -
T I,J)e&

and the corresponding dual problem reads If * is now feasible and satisfies, together with the com-

max{D(u) : u € R}, (10) plementary slackness condition, the equations (9), (1d Y &2)
imply
whereV is the number of elements M. As the Lagrangian ‘
function £(z, u) is separable in the arc flows;;, its mini- D) = min{Ll(z,pu") : bry <zry <ers, (I, J) € £}
mization decomposes into a separate minimization for eech a . u .
(I,J) € £. D(u) can be written as = L' p)= ) aziy
(I,J)e€&
D)= > Drs+D_siti (11)

Note that the latter equation is valid because of the felitgibi
of 2*. Hence, we have shown that for a pait*, 1*) satisfying
where the complementary slackness conditiotand.* are optimal
primal and dual solutions, respectively, and the optimahpt
and dual values coincide. Conversely, now we show that; if

(1,J)€E =

Dpy = ) <I£lin<c arj + Z Hj — Z pi | wrs- (12)  andu* are optimal primal and dual solutions, respectively, and
IJX>21J>C1rJ jGJ icl |f
k) *
Solving the dual problem provides the correct values of the D(p") = Z ITLT
pricesu;, which allow to obtain the optimal flow by mini- (1.J)es
mizing the Lagrangian function. holds, the paifz*, u*) satisfies the complementary slackness

Now we develop the basic duality results for the extende@ndition. By (9) we have
minimum cost flow problem with multi-arcs. With respect to
equation (12) we introduce some helpful terminology. For an D(u*) = min{L(x, u*) : bry < xry <crs, (I,J) € £}
price vectonu we say that an ar(Z, J) is ’
Using the Lagrangian expression (8), and due to the feagibil

inactive if > i <ap+ Y, of 2* we obtain
el JjE€J
balanced it Y i =ar + > uj, > apaiy =Lt pt).
icl jed (1.1
active if Z“i >ary+ Z,Uj- and, hence,
iel jed

L(z*,1*) = min{L(z, ™) : brs < <ecry, (I,J) €&}
We say that a flow-price vector paie, 1) satisfies thecom- @ 17) mwm{ (@17) + bry S wrr < erss (1) }

plementary slackness conditiifnz satisfies the capacity con-

straints (7) and if it holds that: The latter equation and formula (8) for the Lagrangian imply

in particular, that
xry =brs for all inactive arcg7,J) € £,

bry <awzry<crs for all balanced arcél, J) € £, 2%, €arg  min aU+Z/ﬁ_Z“f zry.
_ : L bry<ery<crs ‘ J ° ‘
Ty =cry for all active arcgI,J) € €. jeg il

The following proposition provides an important dualitguét, holds for all arcs(I,.J). Clearly, the latter expression im-

which is analogous to the duality result of the classicaliminpjies that the paifz*, 1*) satisfies the complementary slack-
mum cost flow problem (cf. [3, Proposition 4.1]). ness conditiond
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B. Dual Ascent Method is convenient to maintain a flow vectersatisfying the comple-
Dual ascent methods for the classical minimum cost floWentary slackness condition together with For a flow price
problems (see [3, Chapter 6]) can be extended to models W@’ (z, ) satisfying the complementary slackness condition
multi-arcs. Similar to the dual ascent method for the ctadsi the term of the directional derivative can be reduced. I8 thi
problem we are looking for a dual ascent direction in order ffSe We obtain for an elementary direction

change the prices of a connected suldsetf nodes by a cer-

tain amount, to improve the dual cost of the dual functior) (11 D'(wds) = Z gi = Z (ir = bis)
However, determining a dual ascent direction is more difficu ies (i,J)€E:
To simplify matters we only admit multi-arcs originatingaate balanced
node, i.e, a multi-arc is of the forrfi, J), wherei € V and iS,JNS#D
J C V. Hence, the set of arcs is now restricted to _ Z (ciy — iy (17)
Ec{@G,J):ieV,JCV,J#Pandi ¢ J}. (13) (i,J)EE:
. . . balanced
Each iteration of a dual ascent method involves a changeeof th . _
. . . ieS,JNS=0
price vector along a direction of the fordy = (di,...,dv),
whereV is the number of nodes i, d;, i € V, is given by by the equations (15) and (16). It turns out that an elemgntar
L ifies nod_e setS t_hat has positive total surplus is a cgndidate fo_r_gen—
d; = { 0 ifig S: (14) erating a directiods of dual ascent. The following proposition

generalizes an analogous result for the classical minimash c

andS is a connected subset of nodes. Such directibnand flow problem (cf. [3, Lemma 6.1]).
the corresponding set$ are calledelementaryif S has the ~ Proposition 2: Letx andy satisfy the complementary slack-
property that, for all arc$i, J) € &, the setJ N S contains NeSS condition, and I&f be an elementary subset of nodes. If
at most one element.

For the decision whether an elementary direction is a direc- Z 9:>0
tion of dual ascent we have to calculate the directionahderi
tive of the dual cost alonds and check whether it is positive. holds, then eitheds is a dual ascent direction, i.e,
It follows from the dual cost expressions (11) and (12) that t

ieS

directional derivative into an elementary direction is D'(pu;ds) > 0,
, . D(u+ ads) — D(u) or there exists a balanced diic.J) € £ with either
D'(u;ds) = lim .
al0 o (a)zeS,JﬂSZVJandxiJ<cUor
b) i¢ S, JNS #0andz;; > b;y.
— bl i ( 1 2. . (2
Z st Z cis Proof: Follows from equation (17)3
(i,J)€E: (i,J)€E:
inactive/balanced active C. Extended Relaxation Method
i¢S, JINS#D igS, JINS#D . .
The extended relaxation method solves the dual problem it-
- Z big — Z ciy (15) eratively. The method starts with a flow-price vector gair)
(i,J)€e: (i, J)EE: satisfying the complementary slackness condition andnmai
inactive active/balanced taining this condition at all iterations, finally terminateith a
€S, JNS=0 €S, JNS=0 pair (z, 1), wherez is feasible and, due to Propositioniland

iv are primal and dual optimal, respectively.
For a flow vectorr let us define thsurplusg; of nodei as the At the beginning of each iteration an elementary initial$et
difference between the total sum of all inflows intminus the of nodes consisting of one node with positive surplus is ehos

total sum of all outflows froni, i.e., In general, due to Proposition 2 we have the following padksib
ities for an elementary with positive total surplus:
9i = Z Tir = Z TiJ 1 Si- (a) Dual ascent is possible, i.éls defines a dual ascent di-
{G.nee:iel} (&.1)es rection. Then a price change is performed to improve the

Note that for a feasible flow vectarthe surplus of each node is dual cost.

zero. However, for an elementary direction and correspandi (P) Due to Proposition 2 an enlargementis possible such
subset of nodeS ¢ V we obtain thatS can be enlarged by adding a node with non-negative

surplus and an elementary direction can be associated with
>ogi=> si+ > wmy— Y, iy (16) the enlarged set, too.
i€s i€s (i, ])EE: (i, T)EE: (c) If dual ascent or an enlargement®fs not possible, then
anunblockedath originating at some node 8fwith pos-
itive surplus can be constructed. Unblocked means that all
To organize the search for an ascent direction and to obtain a arcs of the path allow a flow increase in the direction of
suitable setS with positive directional derivativ®' (u; ds), it the path. We refer to such a path assagmentation path

¢S, JNS#0 1€S,JNS=0
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A flow increasing along an augmentation path can be useddan be determined in such a way that a increasing flow along
change the surplus of the start node and end node, respgctivthis multi-path reduces the total relative surplus of thisvoek.
Such a flow does not influence the complementary slacknes$ience, within each iteration of the extended relaxation
condition of the flow-price vector pair. In particular, atz@én method for solving the extended minimum cost flow problem
amount of flow can reduce the totbsolutesurplus of the net- either a price change with strict improvement of the duat cos
work. or a flow adjustment that reduces the total relative surpdus c
Unfortunately, an augmentation path which in general ilbe performed. Thus, we cannot have an infinite number of
volves multi-arcs is more complicated for extended netwogkice changes and it is impossible to have an infinite number
problems than in the classical case. For example, a flow alowigflow augmentations between two successive price changes.
a path originating at a node with positive surplus and endifignie method terminates if no nodean be found witty; > 0.
at a node with negative surplus usually does not reduce the lto this case the current paiz, p) is optimal if it holdsg; = 0
tal surplus of the network.  The Figures 3-6 illustrate typifor all nodesi, implying x to be a feasible flow vector, other-
wise the problem is infeasible. Thus, if the problem is felesi
posive negatve the iteration will terminate with an optimal pair of flow, and

surplus surplus
D— sve —O0—0— 00 —O price (&, p). o _ _

To search for an ascent direction comprises a recursive and
path wise scanning of nodes. So the extended relaxatia iter
tion contains several subroutines that are used recuysivet
Fig. 3. Augmentation (A): Simple path an efficientimplementation special features should be.usSed

example, the value of dual ascent can be efficiently updated u
ing a labeling scheme. Moreover, special data structutes-in

Direction of flow change

negative

surplus duced for the classical relaxation iteration (cf. [3, Clea])
posinve 1% R can be adapted to the extended method, too.
®7 oo —Q
\*\o IV. APPLICATION TOPOWER MANAGEMENT
In this section we discuss the stochastic Lagrangian relax-
Direction of flow change ation approach to power management in a hydro-thermal sys-
Fig. 4. Augmentation (B): Forward splitting tem under uncertainty (cf. [5], [11], [15]).
A. Stochastic Model
positive
surplus We consider a power utility that owns a generation system
O —Q e comprising thermal units and hydro storage plants and dhescr
\\f:C% . e O a model for the optimal generation and trading of electrizgio
O"/ under uncertainty on the electrical load, market pricesuef f

and electricity and stream flows to hydro reservoirs. Cattra
Direction of flow change for delivery and purchase are modeled as special thermts. uni
Let T denote the number of time intervals obtained from a dis-
cretization of the operation horizon. LEand.J be the number
of thermal and hydro storage units in the system, respéygtive
The decision variables for the thermal units are the binaritv
ablesu! for on/off decisions and the bounded variabésfor
the production levels of the thermal uaduring the time period
t. The variableszj. andw§- denote the generation and pumping
levels, respectively, of the (pumped) hydro storage pjathir-
ing the periodt. Further, byl. ands} we denote the storage
level in the upper reservoir and the stream flow (or supply) to
the upper reservoir of plaritat the end of period, respectively.
By ¢ = {¢" = (d, c!,s")} L, we denote the stochastic data
Fig. 6. Augmentation (D): Cycle path process whose components are the electrical thaa vector
c of relevant prices and the vectsrof supplies. We assume
cal augmentation paths that may occur in an extended netwdHat ¢* is deterministic and that nonanticipative. The latter
However, all of these augmentation paths possess a commuerns thag’ does not depend on future realizationg @it any
property. A certain amount of flow along such a path reduceg.an case of a process having finitely many scenarios, these re
relative total surplus of the network. The relative total surpluguirements lead to a tree structure of the processcenario
represents a weighted sum of all surpluses (see [12] foilg)eta tree may be represented be a finite number of nodes. It starts
It can be shown that if dual ascent or an elementary enlardem the root node at periotl = 1 and eventually branches
ment ofS is not possible, a so-calledulti-augmentation path into several nodes at the next period. The branching coeginu

Fig. 5. Augmentation (C): Backward splitting

Direction of
flow change

positive negative
surplus surplus
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I

S+ @ —wh)>d", neN, (22)
i=1 j=1

I

YU —pf) >0, neN, (23)

whereC?} is the piecewise linear convex cost function for oper-
ating unit or contract at noden andS;* represents the piece-
wise constant start-up costs for getting uhibnline at node
n. The constraints (19) are operational constraints reptigge
‘ ! ! ! ! ! ‘ unit output limits and reservoir capacities, the ineqyatibn-
Monday — Tuesday — Wednesday Thursday — Friday — SaturdaySunday straints (20) represent minimum up- and down-times for-ther
mal units, (21) are dynamic constraints of storage leveth®f
hydro units, wherey; € (0, 1) denotes the pumping efficiency
of unit j, (22) and (23) are load and (spinning) reserve con-

o _ . straints at all nodes in V.
eventually up to nodes at the final time period. Figure 7 pro-

vides an example of a scenario tree on a weekly time horizgn

with nodes at each day asdscenarios. LetV' = {1,..., N} ] ) o o
denote the finite set of nodes of the tree. The root node 1 The approach by Lagrangian relaxation consists in dugizin

stands for the periodl = 1. Every other node: has a unique the coupling constraints, i.e, the load and reserve caniira
predecessor node_ and a transition probability,, ;,, _, which by stochastic multipliera; and\, and in solving the stochas-
describes the probability of being a successor of_. The tic dual by some subgradient-type method. The dual optlmu_m
probability r,, of each node: is given recursively byr, = 1, SE€rves as a Iower bound for. the optimal gost and as a stgrtmg
andr,, = 7,/,_m, forn > 1. By Ny (n) we denote the set point for Lagra_nglan heuristics to determine a nearly optim
of successors to nodeand bypath(n) the set{1,...,n_,n} scheduling decisiofii, p, v, w). The dual problem has the form
of nodes from the root to node Let¢(n) denote the number
of its elements andV; the set of all nodes with t(n) = ¢.
All nodes belonging toVr are the leaves of the tree. A SCeyyhere the dual functiom is of the form
nario corresponds to a path from the root to some leaf, oe., t
path(n) for somen € Nr. ! I

Clearly, the decision proces§u?,p?,vt,w')}]_, corre- D) =3 Di(N) + D Di(h) + Y mn(Ad” + 23"
sponding to the data processin scenario tree form has the =1 =1 neN
same tree structure. By and(u", p™,v"™, w™) we denote the
data and the decision, respectively, at nad&hen the scenario
tree formulation of the stochastic power management made
of the form

Fig. 7. Example of a scenario tree

Stochastic Lagrangian Relaxation

max {D(A) : A = (A, \o) € R2VY,

and D;(\) and D;(\;) represent the optimal values of the
IIochastic thermal and hydro-storage subproblems, rigplgc

I(Ssee e.g. [11], [15] for details). Hence, this proceduresem

a successive decomposition into stochastic single (theanth

hydro) unit subproblems.

T
min Z T Z[Cf(p?,U?) + S (u4)], (18)

neN  i=l1 C. Hydro-Storage Subproblems
, Let ustake a closer look at the Lagrangian hydro-storage sub
subject to problem for unitj in scenario tree form. It is of the form
’U/?‘.E {0,1}, i:l,...,I,nEN, D](Al): min {ZﬁnA?(wy—U?)IOS’U?SU;ﬂaX,
P <l <pPl, =1, L neN, (05 ik
0<of <of™, j=1,...,J,neN (19)

- =" o ’ 0<w? <wP 0<I? <M =" —% 0w+ s"
0<w! <wi™, j=1,....J,neN, - = - = T g e
OSI?SU;H&X7 j:].,---,J,TZGN, fornEJ\/, l?:lijf"l?:l?”dforneNT}. (24)

w, T — T < 1—wl, r=1,...,1;,n €N, 20 The stochastic hydro-storage problem (24) can be formailate
Wl T <l =1, T neN, (20) terms of an extended network flow optimization problem, ite.

corresponds to an extended linear minimum cost flow problem.
17 = l?, — v+l + s, ne N, To obtain a netV\_/ork formulation with grapfV, &), we
O —gin i1 7 choost_ey such that it contains all nodes of find a ngmper
iThoJ v (1) of artificial nodes, which represent the (possibly alsdfiaidil)
;= l;”d, j=1,....,J,n € Nr; lower reservoir. If the tree would consist of only one scemar
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V contains the nodes of” and one artificial node. In general,ing network of the example for one hydro-storage planic-
we consider parts of scenarios that consist of nodes whereawoding to the branching structure of the scenario treesthes
branching occurs. For each such part of a scenario we include multi-arcs involving each two end nodes (dashed lines).
one artificial node intd/. The setf contains the multi-arcs
(n, Nt (n)) for eachn € N\ Nr and additional arcs to con-

nect each node iV with the corresponding artificial node in Th ded rel . hod develoned in Section Il h
both directions. In addition, we add &all multi-arcs, which e extended relaxation method developed in Section as

connect artificial nodes and have the same successor $Hucﬁfen completely implemented in C. For testing the implemen-
as the corresponding nodesif tation we have randomly generated a bunch of hydro-storage
We associate to each elementéoa component of the flow test_pr_oblems of the form (_24)‘ All test problems are based on
vectorz. More precisely, we associate the storage 1éyeb rgal|st|c data. .The StOChaSt'c.data. process has bgen red gl
the arc(n, Ay (n)) for n € A"\ Ny and the variables™ and binary scenario tregs of varying dimensions ranging up tcemo
njwj to the arcs connecting nodesfhwith the corresponding ggnplsot(_)oo S|(|:|eni;]lo7$6 (;I' rﬂthe?t runs have bdele;8p,§e/lr;ortmed ona
artificial nodes. Furthermore, we introduce auxiliary camp en |un:j év' SE L 8zorequency an yte main
nents of the flow vector that correspond to arcs connectitirg afmemory undersu INuXx-6.0.
ficial nodes. The capacities of all components coincide thi¢h
bounds in the operational constraints (19) and correspmotibt
reservoir capacities in case of the auxiliary componeatpec-
tively. For each nodéin V we assign its supply; as follows.

V. NUMERICAL RESULTS

TABLE |
NUMERICAL RESULTS FOR HYDRO SUBPROBLEMS

For the root node = 1 we sets, := s! + l'” S 1= 87— lend Scen Nodes Arcs Time Ascent Augment
forn € N7, ands,, := % for the remamlng nodes V. For 2048 8190 12284 0.49 3213 9002
an artificial node that corresponds to the nodes, . . ., ny in 2048 8190 12284  0.52 3199 9331
N, wesets; == SF_ (I,,, —sn,), Wherel,, is set toln = [ 2048 8190 12284 055 3178 9722
for the root node: = 1, [,, := —l}“ax for all leavesn € Nr 4096 16382 24572 117 6275 15777
andl,, := 0 for all other nodes in\". The cost coefficients for 4096 16382 24572 1.22 6160 15930
all components of the flow vector vanish except for thoseszorr 4096 16382 24572  1.28 6085 16847
sponding to the component$ andn;w? for r;ne N. The cost 8192 32766 49148 338 16005 32062
coefficients ob andn;wj are—m, AT and“j” L, respectively. 8192 32766 49148 1.80 12801 33290

To explain this we want to consider an example. Leta small 8192 32766 49148 1.90 13019 34135

scenario tree consisting of four time periods, two stageswo

i0s be ai Fi 8) Si th i ¢ 4 65534 98300 4.63 26509 71195
scenarios be given (see Figure 8). Since there are two Stage€Sa0,  oreaa 08300 420 26074 20852
3 5 16384 65534 98300 511 27245 72398

32768 131070 196604 12.32 58817 141076
32768 131070 196604 11.61 58207 142150
32768 131070 196604 19.60 71205 155335

65536 262142 393212 33.30 130478 267622
65536 262142 393212 34.01 129028 270890
65536 262142 393212 46.35 133098 274844

and one branching point of degree two, there are three differ 131072 524286 786428 87.77 279919 521973
parts of the given scenarios where no branching occurs.é¢jencl31072 524286 786428 99.07 274566 534538
altogether we have to add three additional nodes to the giveh31072 524286 786428 86.66 276725 537894
node set\ = {1,...,6}. Figure 9 illustrates the correspond-

Table | shows numerical results of the code DualAscent for a
couple of test problems containi2@48 up to 131 072 scenar-
ios. The first three columns describe the problem size,hee, t
number of scenarios, the number of nodes, and the total num-
ber of arcs in the extended network. The last three columns
report the computing time (in seconds), and the number of per
formed ascent and augmentation steps, respectively. Bhe ta
shows that also very large network models containing maue th
500 000 nodes can be solved in less the seconds.
Furthermore, Figure 10 shows that the computing time for

solving the test problems grows approximately linearlyhwé-

s spect to the number of scenarios.

o The performance of DualAscent has been compared with the
Fig. 9. Example network for hydro-storage plgnt standard linear programming solver CPLEX 8.0. The results

Fig. 8. Tree structure of the example
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VI. CONCLUSIONS
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