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Abstract

We extend earlier work on scenario reduction by relying directly on Fortet–Mourier metrics instead of using upper bounds
given in terms of mass transportation problems. The importance of Fortet–Mourier metrics for quantitative stability of two-
stage models is reviewed and some numerical results are also provided.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the papers [2,5] a stability-based methodology
is developed for reducing the set of scenarios in con-
vex stochastic programming models. Such a reduction
may be desirable in some situations when the under-
lying optimization models already happen to be large
scale and the incorporation of a large number of sce-
narios might lead to huge programs and, hence, to
high computation times. The idea of the scenario re-
duction framework in [2,5] is to compute the (nearly)
best approximation of the underlying discrete proba-
bility distribution by a measure with smaller support in
terms of a probability metric which is associated to the
stochastic program in a natural way. Such “natural” (or
canonical) metrics for probability measures are known
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for (linear) two-stage stochastic programs: the rth or-
der Fortet–Mourier metrics, where the choice of r �1
depends on the specific structure of the programs (see
Section 3 and [10,11]).

However, the strategies for scenario reduction de-
veloped in [2,5] are not based on Fortet–Mourier met-
rics, but on their upper bounds in form of certain mass
transportation problems which enjoy specific proper-
ties and representations. In the present note we re-
move this drawback and develop scenario reduction al-
gorithms that are rigorously based on Fortet–Mourier
metrics. The key step in this direction is that we do no
longer use the (generalized) distances c for scenarios
as in [2,5], but so-called reduced distances (or costs) ĉ

which, indeed, are distances in the finite-dimensional
scenario space and represent infima of certain opti-
mization problems.

Our paper is organized as follows. In Section 2
we discuss distances of (multivariate) probability mea-
sures that are based on mass transportation problems.
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We review some of their topological properties, dual-
ity results and representations that are needed in the
sequel. Section 3 reviews stability properties of mul-
tiperiod two-stage stochastic programs with respect to
the distances introduced in the previous section. In
Section 4 we extend our earlier theory and heuristic
algorithms for optimal scenario reduction to the rele-
vant metrics. Finally, we present some numerical ex-
perience for the new forward algorithm of scenario
reduction. It is tested on realistic data from electricity
portfolio management.

2. Distances of probability distributions

A variety of distances of multivariate probability
distributions are related to mass transportation prob-
lems. If P and Q belong to the set P(�) of all (Borel)
probability measures on a closed subset � of Rs and
c : � × � → R is a nonnegative, symmetric and con-
tinuous cost function for transporting P to Q, the min-
imal transportation cost is given by

�̂c(P, Q)

:= inf

{∫
�×�

c(�, �̃)�(d�, d�̃) :

� ∈ P(� × �), �1� = P, �2� = Q

}
, (1)

where �1 and �2 denote the projections onto the first
and second components, respectively. A minimizer
�∗ ∈ P(� × �) of (1) is called optimal transportation
plan and �̂c defined on P(�) × P(�) is a so-called
Monge–Kantorovich functional.

A variant of (1) is the mass transshipment problem
given by

◦
�c(P, Q)

:= inf

{∫
�×�

c(�, �̃)�(d�, d�̃) :

� ∈ M(� × �), �1� − �2� = P − Q

}
, (2)

where M(�×�) denotes the set of all finite measures
on � × � and

◦
�c defined on P(�) × P(�) is called

Kantorovich–Rubinstein functional. We refer to [7,9]
for a comprehensive presentation of theory and appli-
cations of mass transportation problems.

If P and Q are discrete probability measures having
finitely many scenarios �i (with probabilities pi), i =
1, . . . , N , and �̃j =: �N+j (with probabilities qj ),
j = 1, . . . , M , respectively, we obtain

�̂c(P, Q) = inf

⎧⎨
⎩

N∑
i=1

M∑
j=1

�ij c(�i , �̃j ) : �ij �0,

M∑
j=1

�ij = pi,

N∑
i=1

�ij = qj

⎫⎬
⎭ ,

i.e. �̂c(P, Q) is the optimal value of a linear trans-
portation problem, and

◦
�c(P, Q) = inf

⎧⎨
⎩

N+M∑
i,j=1

c(�i , �j )�ij : �ij �0,

N+M∑
j=1

�ij −
N+M∑
j=1

�ji = P({�i}) − Q({�i})
⎫⎬
⎭ ,

i.e.
◦
�c(P, Q) is the optimal value of a minimum cost

flow problem. Hence, for discrete probability measures
with finite support both functionals are computation-
ally accessible.

The most important cost functions in the context of
the present paper are

cr(�, �̃) := max{1, ‖� − �0‖r−1, ‖�̃ − �0‖r−1}
· ‖� − �̃‖ (�, �̃ ∈ �), (3)

for some r �1 and �0 ∈ �. In this case, both func-

tionals �̂c(P, Q) and
◦
�c(P, Q) are finite if P and Q

belong to the set Pr (�) of all probability measures
having absolute moments of order r. We will use the

notation �̂r and
◦
�r for �̂cr

and
◦
�cr

, respectively. The

Kantorovich–Rubinstein functional
◦
�r is a metric on

Pr (�), called the Fortet–Mourier metric of order r
[3]. It satisfies the estimate∣∣∣∣
∫
�

‖�‖rP (d�) −
∫
�

‖�‖rQ(d�)

∣∣∣∣ �r
◦
�r (P , Q) (4)

for all P, Q ∈ Pr (�) [7, Theorem 6.2.5]. Moreover,
convergence of a sequence (Pn) of probability mea-

sures in the metric space (Pr (�),
◦
�r ) to some limit P
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is equivalent to (�̂r (Pn, P )) tending to 0 as n → ∞
and to the weak convergence of (Pn) to P and the
convergence of rth order absolute moments of Pn to
those of P [7, Theorems 6.3.1].

The following dual representation and characteri-
zation are of special interest here. The correspond-
ing results are derived in [7, Theorem 5.3.2] and
[9, Section 4.3].

Proposition 2.1. For all probability measures P, Q ∈
Pr (�) the Kantorovich–Rubinstein functional

◦
�r ad-

mits the dual representation

◦
�r (P , Q) = sup

f ∈Fr

∣∣∣∣
∫
�

f (�)P (d�) −
∫
�

f (�)Q(d�)

∣∣∣∣ ,

(5)

where Fr is the class of functions f : � → R satis-
fying f (�) − f (�̃)�cr(�, �̃), ∀�, �̃ ∈ �.

Proposition 2.2. Let � be compact and r �1. Then
the Kantorovich–Rubinstein functional with cost func-
tion cr coincides with a Monge–Kantorovich func-
tional with reduced cost ĉr . More precisely, it holds

◦
�r (P , Q) = ◦

�ĉr
(P , Q) = �̂ĉr

(P , Q)� �̂r (P , Q), (6)

where the real-valued function ĉr on �×� is given by

ĉr (�, �̃) := inf

{
n−1∑
i=1

cr(�i , �i+1) : n ∈ N,

�i ∈ �, �1 = �, �n = �̃

}
. (7)

The function ĉr is a metric on � with ĉr �cr and
coincides with cr if r = 1.

The compactness assumption in Proposition 2.2 is
not restrictive here since it will be used for proba-
bility measures with finite support. The importance
of Proposition 2.2 in the present context is due to
the fact that Kantorovich–Rubinstein functionals are
appropriate for stability issues (see Section 3), but
Monge–Kantorovich functionals, i.e., mass transporta-
tion problems, allow for special representations (see
Section 4).

3. A review of stability for two-stage models

If the second stage of a linear stochastic program
with recourse models a (stochastic) dynamical deci-
sion process, as is the case in a variety of applications,
the two-stage problem takes on the form

min

{∫
�

f0(�, x)P (d�) : x ∈ X

}
, (8)

where X is a polyhedral subset of Rm, � a closed
subset of Rs, P is a Borel probability measure on �
and the integrand f0 is of the form

f0(�, x) = 〈c, x〉 + inf

⎧⎨
⎩

�∑
j=1

〈qj (�), yj 〉 :

Wjyj = hj (�) − Tj (�)yj−1,

yj ∈ Yj , j = 1, . . . , �

⎫⎬
⎭ , (9)

with c ∈ Rm, polyhedral subsets Yj of Rmj , recourse
costs qj (�) ∈ Rmj , right-hand sides hj (�) ∈ Rrj ,
technology matrices Tj (�) ∈ Rrj ×mj−1 and recourse
matrices Wj ∈ Rrj ×mj for j = 1, . . . , � and some
� ∈ N; the vectors qj (·), hj (·) and the matrices Tj (·)
are (potentially) stochastic and affine functions of �.
Then the second stage program has separable block
structure and the recourse variable y has the form
y = (y1, . . . , y�). When rewriting the model as a
two-stage stochastic programming model with re-
course decision y = (y1, . . . , y�), the recourse matrix
has separable block structure with W1, . . . , W� and
the matrices T1(�), . . . , T�(�) appearing as its main
and lower diagonal blocks.

The following stability result for optimal values
v(P ) and �-approximate first-stage solution sets S�(P )

of (8), (9) is derived in the recent paper [11].

Proposition 3.1. Let P ∈ P�+1(�) and the solution
set S(P ) of (8), (9) be nonempty and bounded. Assume
that hj (�) − Tj (�)x ∈ Wj(Yj ) holds for each j =
1, . . . , � and all pairs (�, x) ∈ �×X (relatively com-
plete recourse). Moreover, assume ker (Wj )∩Y∞

j ={0}
for j = 1, . . . , � − 1, where Y∞

j denotes the (polyhe-
dral) horizon cone to Yj .
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Then there exist constants L > 0 and �̂ > 0 such that
for any � ∈ (0, �̂) the estimates

|v(P ) − v(Q)|�L
◦
��+1(P, Q),

d∞(S�(P ), S�(Q))� L

�
◦
��+1(P, Q),

hold whenever Q ∈ P�+1(�) and
◦
��+1(P, Q) < �.

Here, d∞ denotes the Pompeiu–Hausdorff distance on
compact subsets of Rm.

We note that the horizon cone Y∞
j contains all ele-

ments xj ∈ Rmj such that x +�xj ∈ Yj for all x ∈ Yj

and � ∈ R+. The condition ker (Wj ) ∩ Y∞
j = {0} im-

plies the boundedness of the constraint set {yj ∈ Yj :
Wjyj =uj } for all right-hand sides uj . The case �=1
corresponds to the situation of linear two-stage mod-
els with fixed recourse (see [10, Theorem 24]). Hence,
together with the results in [8,10], the number r should
be selected as r=1 if either costs or right-hand sides in
(8), (9) are random, r = 2 if only costs and right-hand
sides are random in (8), (9) and r = � + 1 if, in ad-
dition, all technology matrices are random in (8) and
(9). Since the (approximate) optimal second stage de-
cisions are compact with respect to the weak topology
in some space Lr ′(	,F, P; Rm) with m = ∑�

j=1mj ,
some probability space (	,F, P) and some r ′ related
to r [6], a choice of r larger than suggested may lead
to stronger properties of the second stage decisions.

4. Optimal scenario reduction

Let P be a discrete probability distribution with sce-
narios �i and probabilities pi , i=1, . . . , n. If the num-
ber n of scenarios is large, one might wish to delete
scenarios of P in a best possible way, i.e., such that
the original problem or, more precisely, its optimal
value admits minimal changes. To make this require-
ment precise, we denote by QJ a discrete distribu-
tion whose support consists of a subset of scenarios
�j , j ∈ {1, . . . , n}\J , of P having probabilities qj ,
j /∈ J . Hence, it is of interest to determine a subset
J of {1, . . . , n} and probabilities qj , j /∈ J , such that
the distance |v(P )−v(QJ )| of optimal values is min-
imal with respect to all subsets of given cardinality.
But, in general, this distance is difficult to handle. Ac-
cording to Proposition 3.1 we know, however, that, for

two-stage models, |v(P ) − v(QJ )| can be estimated
by a multiple of some metric or functional � of P and
QJ . Hence, one might consider �(P, QJ ) instead and
arrives at the principle of optimal scenario reduction:
Fix k ∈ N, k < n, and determine a solution of the
minimization problem

min

⎧⎨
⎩�(P, QJ ) : J ⊂ {1, . . . , n},

#J = n − k, qj �0,
∑
j /∈J

qj = 1

⎫⎬
⎭ . (10)

In a first step, it is of interest to fix J and to determine
the optimal weights qj , j /∈ J , such that QJ is a prob-
ability measure, i.e., to solve the best approximation
problem.

min

⎧⎨
⎩�(P, QJ ) : qj �0,

∑
j /∈J

qj = 1

⎫⎬
⎭ . (11)

The next result asserts that the latter problem (11) is
solvable and provides an explicit representation of the

infimum in case � = ◦
�r .

Theorem 4.1. For given nonempty subset J of
{1, . . . , n} problem (11) has a solution Q∗

J =∑
j /∈J q∗

j 
�j
and it holds

DJ := ◦
�r (P , Q∗

J )

= min

⎧⎨
⎩◦

�r (P , QJ ) : qj �0,
∑
j /∈J

qj = 1

⎫⎬
⎭

=
∑
i∈J

pi min
j /∈J

ĉr (�i , �j )

=
∑
i∈J

pi min

{
m−1∑
�=1

cr(�l� , �l�+1) : m ∈ N,

l� ∈ {1, . . . , n}, l1 = i, lm = j /∈ J

}
, (12)

where q∗
j = pj + ∑

i∈Jj
pi, ∀j /∈ J , with Jj :=

{i ∈ J |j = j (i)} and the index j (i) belonging to
arg minj /∈J ĉr (�i , �j ), ∀i ∈ J , i.e., the optimal re-
distribution consists in adding each deleted scenario
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Fig. 1. Load scenarios for one week and mean shifted initial load scenario tree.

weight to that of some of those scenarios being closest
w.r.t. ĉ.

Proof. Due to Proposition 2.2 we have the identity
◦
�r (P , QJ )=�̂ĉr

(P , QJ ), where the reduced cost func-
tion ĉr is a metric on the support � of P. Since [2,
Theorem 2] is established for the Monge–Kantorovich
functional, it implies the desired representation

min

⎧⎨
⎩�̂ĉr

(P , QJ ) : qj �0,
∑
j /∈J

qj = 1

⎫⎬
⎭

=
∑
i∈J

pi min
j /∈J

ĉr (�i , �j ),

together with the asserted redistribution rule. �

The preceding result coincides with [2, Theorem 2]
if cr is a metric, i.e., r = 1. Using the explicit formula
(12), the problem (10) of optimal scenario reduction
is of the form

min

{
DJ =

∑
i∈J

pi min
j /∈J

ĉr (�i , �j ) :

J ⊂ {1, . . . , n}, #J = n − k

}
, (13)

i.e., it represents a metric k-median problem in the
metric space (�, ĉr ). The problem is known to be
NP-hard, hence, (polynomial-time) approximation
algorithms and heuristics become important. The

approximation algorithms for the metric k-median
problem in [1] and [12, Chapter 25] achieve guaran-
tees of 6 2

3 and 6 times the optimal.
Simple heuristics may be derived by extending the

two extremal cases k = n − 1 and k = 1 of problem
(13). These problems correspond to solving

min
l∈{1,...,n} pl min

j �=l
ĉr (�l , �j ) (k = n − 1)

and

min
u∈{1,...,n}

n∑
i=1
i �=u

pi ĉr (�u, �i ) (k = 1).

Their solutions are the index sets J = {l1} and
{1, . . . , n}\{u1}, respectively. The two sets arise from
different algorithmic ideas: backward reduction and
forward selection. Both ideas can be extended and
lead to backward and forward heuristics for finding
approximate solutions of (13). For example, the for-
ward selection procedure determines an index set J [k]
of deleted scenarios having cardinality n − k.

Algorithm 4.2 (Forward selection).

Step[0] : J [0] := {1, . . . , n}.
Step[i] : ui ∈ arg min

u∈J [i−1]
∑

k∈J [i−1]\{u}
pk

min
j /∈J [i−1]\{u}

ĉr (�k, �j ),

J [i] := J [i−1]\{ui}.
Step[k + 1] : Optimal redistribution.
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This algorithm was first studied in [5] for the case
ĉr = cr . There it is shown that the algorithm requires
O(k n2) operations. Although the algorithm does not
lead to optimality in general, the performance evalua-
tion of its implementation in [5] is very encouraging.

5. Numerical experience

We consider the scenario tree in [2,5] represent-
ing the increasing uncertainty of electrical load in
a stochastic electrical power production model for a

Table 1
Numerical results for optimal scenario reduction based on

◦
�r

Number of scenarios Relative
◦
�r -distances

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 0.522 0.646 0.684 0.696 0.687 0.682 0.668
10 0.419 0.536 0.589 0.577 0.582 0.556 0.535
20 0.323 0.420 0.469 0.472 0.466 0.431 0.395

50 0.230 0.305 0.335 0.337 0.301 0.256 0.210
100 0.169 0.220 0.242 0.222 0.180 0.133 0.094
150 0.137 0.178 0.185 0.156 0.114 0.077 0.049
200 0.117 0.148 0.143 0.112 0.076 0.045 0.025

300 0.094 0.102 0.085 0.057 0.032 0.016 0.008
400 0.072 0.067 0.049 0.028 0.013 0.006 0.002
500 0.050 0.039 0.024 0.012 0.005 0.002 0.001
600 0.028 0.018 0.009 0.004 0.001 0.000 0.000

Table 2
Numerical results for optimal scenario reduction based on �̂r

Number of scenarios Relative �̂r -distances

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7

1 1.000 1.609 2.354 3.146 3.910 4.627 5.302
5 0.522 0.738 0.940 1.079 1.209 1.217 1.257
10 0.419 0.574 0.713 0.787 0.820 0.803 0.794
20 0.323 0.448 0.538 0.600 0.617 0.601 0.565

50 0.230 0.308 0.359 0.378 0.369 0.331 0.286
100 0.169 0.221 0.253 0.248 0.211 0.168 0.130
150 0.137 0.179 0.192 0.171 0.134 0.097 0.066
200 0.117 0.149 0.147 0.121 0.088 0.058 0.035

300 0.094 0.102 0.088 0.062 0.037 0.021 0.011
400 0.072 0.067 0.050 0.030 0.015 0.007 0.003
500 0.050 0.039 0.025 0.012 0.005 0.002 0.001
600 0.028 0.018 0.009 0.004 0.001 0.000 0.000

weekly time horizon (see [4] for further information).
The scenario tree is obtained by calibrating a time
series model for the electrical load, by simulating a
large number of load realizations, and by constructing
an initial ternary load scenario tree based on sam-
ple means and standard deviations of the simulated
realizations. The initial load scenario tree represents
a discrete probability distribution P that consists of
36 = 729 uniformly distributed scenarios and enters
a 7-period two-stage stochastic programming model
(Fig. 1). Table 1 presents our computational results
for optimal scenario reduction of the initial load
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Fig. 2. Reduced trees containing k = 20 scenarios obtained by using
◦
�r (left column) and �̂r (right column) for r = 1, 2, 4, 7.
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scenario tree by using Algorithm 4.2. A comparison

with Table 2 shows the improvement of using
◦
�r in-

stead of �̂r . Both tables display the relative distances
between the original load tree and some of the re-
duced ones, and the effects of varying the order r

of the Fortet–Mourier metrics
◦
�r and the functionals

�̂r , respectively. The relative distances are computed
by dividing all distances by the Fortet–Mourier dis-
tance between the initial load distribution P and the
Dirac measure at the scenario obtained in the first for-
ward selection step, i.e., by

◦
�r (P , 
�u1

). To compute
a reduced tree for r = 1, the running time on a PC
equipped with a 3 GHz processor is less than 10 s in-
cluding about 4 s to compute the scenario distances
cr(·, ·). For r > 1about 9 s are needed in addition to
compute the reduced cost ĉr (·, ·). Fig. 2 illustrate the
structure of the reduced scenario trees consisting of
20 scenarios for varying order r. As approximations

of probability distributions with respect to
◦
�r approx-

imately recover rth order absolute moments (see (4)),
different scenarios for different r are selected with a
tendency to outer scenarios for growing r.
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