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Abstract

Scenarios are indispensable ingredients for the numerical solution of stochastic pro-
grams. Earlier approaches to optimal scenario generation and reduction are based
on stability arguments involving distances of probability measures. In this paper we
review those ideas and suggest to make use of stability estimates based only on problem
specific data. For linear two-stage stochastic programs we show that the problem-based
approach to optimal scenario generation can be reformulated as best approximation
problem for the expected recourse function which in turn can be rewritten as a general-
ized semi-infinite program. We show that the latter is convex if either right-hand sides
or costs are random and can be transformed into a semi-infinite program in a number
of cases. We also consider problem-based optimal scenario reduction for two-stage
models and optimal scenario generation for chance constrained programs. Finally, we
discuss problem-based scenario generation for the classical newsvendor problem.

1 Introduction

Most numerical solution approaches in stochastic programming require the replace-
ment of the underlying multivariate probability distribution by a discrete probability
measure with a finite number of realizations or scenarios. The most used approach
so far is Monte Carlo sampling (see, for example, [47, Chapter 6]). Another more
classical approach for two-stage models uses discrete probability measures leading
to lower and upper bounds for the expected recourse function. They are obtained by
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means of moment problems (see [26, Section 4.7.2]). More recently optimal quanti-
zation techniques (see [16,35]) and (randomized) Quasi-Monte Carlo methods (see
[3,29,34]) are employed for solving two-stage stochastic programs. For a survey on
scenario generation in stochastic programming see [44].

Jitka Dupacova was one of the pioneers for scenario generation and reduction. We
recall her earlier paper [8] and the influential work [9,10].

Here, we study a problem-based approach to scenario generation and reduction for
stochastic programming models without information constraints. A general form of
such models is [26,47,49]

min{ [ peopaeixex, [ i erae <ol 1)

where X is a closed subset of R”, = a closed subset of R®, P is a Borel probability
measure on = abbreviated by P € P(&). The functions fy and fi from R” x & to the
extendedreals R = [—o00, oo] are normal integrands (in the sense of [42, Chapter 14]).
For example, typical integrands fj in linear two-stage stochastic programming models
are of the form [55], [47, Chapt. 2]

gx) + P(q ). h(x.§)). q(&) € D

o e and fi(x.£)=0, ()

Jo(x. &) ={

where X and = are convex polyhedral, g(-) is a linear function, @ denotes the infimal
function of the linear (second-stage) optimization problem

@(q,1) :=inf{{q,y) : Wy =t,y €Y} 3)

with a (r, m) matrix W, a convex polyhedral cone ¥ C R™ with Y* denoting its
polar cone, ¢g(-) is an affine function, A(-, &) is affine for fixed & and h(x,-) is
affine for fixed x, and D = {u € R™:fz € R':W'z —u € Y*} # () denotes
the convex polyhedral dual feasibility set. Other examples of practical interest are
infimal functions of linear-quadratic or second-order cone programming problems.
Typical integrands f; appearing in chance constrained programming are of the form
J1(x, &) = p—lp) (&), where llp(y) is the characteristic function of the polyhedron
Px) =1{& € E:h(x, &) <0} depending on x.

Letv(P) and S(P) denote the infimum and solution set of (1). The notation indicates
that their dependence on the underlying probability distribution is of particular inter-
est. For general continuous multivariate probability distributions P such stochastic
optimization models are not solvable in general. Even the computation of the involved
integrals requires multivariate numerical integration methods. Many approaches for
solving optimization models (1) numerically are based on discrete approximations of
the probability measure P, i.e., on finding a discrete probability measure P, in

n
Pu(E) =Y wibe £ € B, i=1,....n, (wi.....wy) €S,

i=1
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for some n € N, which approximates P in a suitable way. Here, S, denotes the
standard simplex S, = {w € R’} : Z?:l w; = 1}and &,i = 1, ..., n, the scenarios.
Of course, the notion ’suitable’ should at least mean that the distance between the
infima

[v(P) — v(Pn)l 4)

becomes reasonably small. This is a consequence of stability results for stochastic
programming problems which explore the behavior of infima and solution sets if the
probability distribution is perturbed. To state a version of such results we introduce
the following sets of functions and of probability distributions (both defined on =)

F={fi(x,):j=0,1x€e X},

%:{Qemm>w</ggnw@mﬁx

=

mmﬁﬁ@fww9<+wJ=Q4 )

xeX JE

and the following (semi-) distance on Pr

dr(P, Q) = ?ug /Hf(é)(P - Q)(d%')‘ (P, Q € Pr). (6)
reFlie

The distance d is based on minimal information of the underlying optimization
model (1). It is nonnegative, symmetric and satisfies the triangle inequality. At first
sight the set Pr seems to have a complicated structure. For typical applications,
however, like for linear two-stage and chance constrained models, the set Pr or
appropriate subsets allow a simple characterization. For example as subsets of P (&)
satisfying certain moment conditions.

To state the following result we need a specific property for set-valued mappings.
A set-valued map M:R = R™ with closed graph gph M = {(y, x):x € M(y)} has
the Aubin property at y € R for x € M (y) if there are neighborhoods V of y and W
of x, and a constant k € R such that

MOHYNW CM@y)+«kly—y|B forally,y eV,

where B is the unit ball in R (see [42, Definition 9.36]). The next quantitative stability
result for problem (1) is a consequence of [43, Theorems 5 and 9].

Proposition 1 We consider the optimization model (1) with infimum v(P) and solution
set S(P) for P € Pr. Assume that X is compact and

(i) the function x — fE fo(x, &) P(d§) is Lipschitz continuous on X,
(i) the set-valued mapping y = {x eX: fE filx, &) P(dE) < y} has the Aubin
property at y = 0 for each x € S(P).
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186 R. Henrion, W. Romisch

Then there exist constants L > 0 and § > 0 such that the estimates

lv(P) —v(Q)| =< Ldr(P, Q) N
sup d(x, S(P)) < ¥p(Ldr(P, Q)) ®)
xeS(Q)

hold whenever Q € Pr and dr(P, Q) < 6. The real-valued function Yp is given
byWp(r)=r—+ 1//;1(2r)f0r all r € Ry, where Y p is the growth function near the
solution set S(P) and ¥ p(t) is defined for t > 0 as

Inf {/ﬁ fo(x,§)P(d§) —v(P) :d(x,S(P)) = 7, x € X, /H Ji(x, §)P(d§) < 0}.

Note that in case fi = 0 the estimates hold for L = 1 and any § > 0 and that p is
lower semicontinuous and increasing on Ry with Wp(0) = 0.

The estimates (7) and (8) in Proposition 1 suggest to choose discrete approximations
from P, (&) for solving (1) such that they solve the best approximation problem

i dr(P, P, 9
P,,g:}.’:?) F( ) 9

in order to bound (4) as tight as possible. Determining the scenarios of some solution to
(9) may be called optimal scenario generation. This choice of discrete approximations
was already suggested in [43, Section 4.2], but characterized there as a challenging
task which is not solvable in most cases in reasonable time.

It is recommended in [37,43] to eventually enlarge the function class F such that
dr becomes a metric distance and has further nice properties. Following this idea,
however, leads to coarse estimates of the original minimal information distance and,
hence, may lead to unfavorable convergence rates of the sequence

( min  dr(P, P,,)) (10)

P,lEPn(E) neN

and to nonconvex nondifferentiable minimization problems (9) for determining the
optimal scenarios.

In linear two-stage stochastic programming the class F contains piecewise linear-
quadratic functions defined on = if condition (A1) (see Sect. 2) is satisfied. If the linear
two-stage model has even random recourse, F may contain more general piecewise
polynomial functions (see [45]). Hence, a suitably enlarged class of functions may be
chosen as the set

~ ~ qr-1 ~ ~
Fr = {f L8R f© - & =max [LIgLIEN] 16— &) ve E e S}
an
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of all locally Lipschitzian functions on = with polynomially growing normalized local
Lipschitz constants. Here, || - || denotes any norm on R® and r > 1 characterizes the
growth of the Lipschitz moduli. The corresponding distance

& (P, Q) =dr, (P, Q) 12)

is defined on the set P, (&) of all probability measures on = having rth order central
moments and is called Fortet—-Mourier metric of order r (see [36, Section 5.1]). The
Fortet—Mourier metric has a dual representation as a transshipment problem (see [36,
Section 5.3]). If & is compact, ¢, admits even a dual representation as transportation
problem (see [38, Section 4.3]), namely, it holds

& (P, Q)=inf{/H Hcr@,é)n(ds,dé):non;l=P,non2—1=Q}, (13)

where 7 is a probability measure on = x =, | and m; are the projections from = x 5
to the first and second component, respectively, ¢, is a metric on R® and ¢, (&, &) is
defined as

n—1
inf {Zmax{l, &0 & 1Y~ 8 — &l sn €N & € 5,5 = &, 8 = %}

i=1

for all £, & € &. The representation (13) implies, in particular, that the best approxi-
mation problem (9) for 7 = F, is equivalent to

min min ¢, (€, &) P(d§), (14)

(¢',...emegEn Jgi=l...n
where Si, i = 1,...,n, are the scenarios of P, € P,(&). This follows similarly
as in [16, Lemma 4.2]. For r = 1 the probabilities w; of &' can be computed by
w; = P(A;),i = 1,...,n, where the collection {A; : i = 1,...,n}is a Voronoi

partition of &, i.e., A; is Borel measurable and a subset of

{seE:||s—s"||=j_n]1inn||s—sf||} (=1....m.

,,,,,

Note that the objective function in (14) is continuous and inf-compact on &". Hence,
the minimization problem (14) is solvable, but nonconvex for n > 2 even for r = 1.
Furthermore, due to a classical result (see [6, Proposition 2.1]), the estimate

1
cn”s S0 (P, Py) < 6(P, Py)
holds for each P, € P,(&), sufficiently large n and some constant ¢ > 0 if P has a
density on &. Hence, the convergence rate (10) for 7 = F, is worse than the Monte

1o, . . .
Carlo rate O (n™ 2) if the dimension s of Z is greater than two.
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188 R. Henrion, W. Romisch

The approach to optimal scenario reduction for linear two-stage stochastic pro-
grams developed in [10] is based on Monge-Kantorovich functionals and applies to
the Fortet—-Mourier metric ¢, [see (12)] due to the representation (13). Starting with
a discrete probability measure P based on a large number N of scenarios, it selects
a smaller number n of scenarios out of the original set of scenarios together with
new probabilities such that the new discrete probability measure represents the best
approximation to P with respect to ¢,. More precisely, let P have the scenarios &'
with probabilities p;, i = 1, ..., N. Using the dual representation (13) of ¢ the best
approximation problem

min (P, Q)
QePy(supp P)

can be rewritten as combinatorial program

N N
Yoxij=1,j=1...,N, Y yi <n,

N
min xijer (8, E) | =1 i=1
ZP: Y r& g)xijfyi,xije{O,l},i,j:l,...,N,

yiel{01},i=1,...,

, (15
ij=1

where the variable y; decides whether scenario &' remains and x; ; selects a scenario
&/ that minimizes the distance ¢, (-, £'). We note that (15) is known as n-median
problem (see [4]) which is NP-hard as shown in [27].

If J denotes a subset of {1, ..., N} with cardinality | /| = n, the best approximation
problem can be decomposed into finding the optimal index set J of remaining scenar-
ios and into determining the optimal discrete probability measure given J. With P,
denoting any probability measure with support consisting of the scenarios £/, j € J,
the best approximation problem has a solution Pj such that

¢ (P, Pj) =ming, (P, Py) =Y piminc, (&, &) (16)
Pj " ./EJ
i¢J
with P} givenby P} =) "7l where 7 =p;+> p (Yjel) (7
jeJ i€l

and the index sets I, j € J, are defined by I; := {i € {1,...,N}\J : j = j()}
with j(i) € argminjey ¢, (§',§7), Vi ¢ J. The formula (17) for the optimal weights
is called redistribution rule in [10,19] where the results (16) and (17) are proved, too.
For a survey of theory and algorithms for n-median problems we refer the inter-
ested reader to [4]. Presently local search heuristics [1] and a novel approximation
algorithm [30] seem to be the most favorable algorithms with best approximation
guarantees. Simple alternatives without approximation guarantees are forward and
backward greedy heuristics developed and tested in [18, Algorithms 2.2 and 2.4], [19].
The scenario reduction approach described above has been extended to discrepancy
distances in [20,21]. The latter distances are of the form
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Problem-based scenario generation and reduction in stochastic programming 189

a(P, Q)= su%IP(B) —Q0(B)| (P,QeP(&)), (18)
Be

where B is a suitable class of Borel subsets of Z. Such distances are relevant for
chance constrained stochastic programs if B contains the relevant sets (for example, the
polyhedra P(x)). We recall, however, that employing probability metrics like (12) and
(18) means that decisions on reducing scenarios are based on coarse estimates of the
minimal information distances (6) and, thus, do essentially not depend on the specific
stochastic program. Possibly due to this observation several authors developed specific
heuristic approaches to scenario generation and reduction for specific applications (see,
for example, [13,32]). These developments served in turn as a motivation for the work
reported in the present paper.

We will show in this paper that the optimal scenario generation problem (9) may
have favorable solution properties if the set F remains as small as possible, i.e., as cho-
senin (5). In Sect. 2 we demonstrate this for linear two-stage stochastic programs. First
we show that (9) can be formulated as generalized semi-infinite program (Theorem 1)
which is convex in some cases (Theorem 2), enjoys stability (Theorem 3) and allows
a transformation into a standard semi-infinite program in a number of cases. In Sect. 3
we revisit the problem of optimal scenario reduction for two-stage models and provide
a new formulation based on the minimal information distance (6) as mixed-integer
linear semi-infinite program. The latter decomposes into solving binary and linear
semi-infinite programs recursively. Section 4 presents a mixed-integer linear semi-
infinite program for optimal scenario generation in chance constrained programming.
Finally we illustrate the approach to scenario generation for the classical newsvendor
problem and finish with conclusions.

2 Optimal scenario generation for two-stage models by generalized
semi-infinite programming

We consider a linear two-stage stochastic program (1) with the integrand (2), a proba-
bility distribution P on R and with @ denoting the infimal value (3) of the second-stage
program. Furthermore, we impose the following conditions in addition to the general
assumptions made in Sect. 1:

(A0) X is a bounded polyhedron and &' is convex polyhedral.

AD) h(x, &) e W¥)={Wy:yeY}andg(§) € Dholdforall (x,§) € X x &,
(A2) P has a second order absolute moment.

Condition (A1) combines the usual conditions relatively complete recourse and dual
feasibility and (A2) implies that all integrals are finite. Both conditions are standard
for two-stage stochastic programs. In particular, (A0)—(A2) imply that the infima v(P)
and v(P,) are attained and the estimate

[v(P) — v(Pp)| = sup
xeX

[ s erpas - [ fo<x,s>Pn(ds>’

= sup
xeX

ﬁq)(q(é),h(x,é))P(dS)—/Hq)(q(é),h(x,é))Pn(dé)‘
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190 R. Henrion, W. Romisch

holds due to Proposition 1 for every P, € P,(&). Hence, the formulation of the
optimal scenario generation problem for (1), (2) based on the minimal information
distance (6) consists in solving the best uniform approximation problem

min sup
(¢'..EMeE" xeX
(wi,..., wp) €S,

fﬁ D(q(E), h(x, ) PAE) — Y wid(q(€), h(x,E)|. (19)

i=1

It means that the convex expected recourse function Fp : X — R

Fp(x) := /Héb(q(é),h(x,é))P(dé) (20)

has to be approximated uniformly on X by the best convex combination of n convex
polyhedral functions appearing as integrand in Fp.

Note that the minimal class F = {@(q(-), h(x,-)) : x € X} of functions from
Z to R enjoys specific properties. All functions are finite, continuous and piecewise
linear-quadratic on ='. They are linear-quadratic on each convex polyhedral set

Ejx) ={§ € &:(q@),h(x.5) e} (j=1,....0),

where the convex polyhedral cones K;, j = 1,..., ¢, represent a decomposition
of the domain of &, which is itself a convex polyhedral cone in R”*+". The lat-
ter decomposition depends only on the matrix W [54]. In particular, the functions
@ (q(-), h(x,-)) are locally Lipschitz continuous where the Lipschitz constants on the
balls {¢ € & : ||&|| < p} grow linearly with p and can be chosen uniform with respect
to x € X (see [43, Proposition 22]).

It is well-known that best uniform approximation problems may be reformulated
as semi-infinite programs (SIP), i.e., as optimization problems with finitely many
variables, but infinitely many constraints. We show next that (19) leads to a generalized
semi-infinite program (GSIP), that is, to a SIP in which the index set of the constraints
is infinite and depends on the decision. Theory and numerical methods for such models
are studied in a number of publications. We mention here the monograph [50] and the
tutorial [17].

Theorem 1 Assume (AO)—(A2). Then (19) is equivalent to the GSIP

i wi(h(x, £, z;) <t + Fp(x)

i=1

i t 1 ; , 21
b Fp@) <1+ wilg(&). i) @D
(€',...£MeE" i=1
(W1, wn) €S, Y(x,y,z) € ME, ... &)
where the set-valued mapping M from E" to R"T"+1" is defined by
ME) = {(x,y,2) € X x Y" x R™ : Wy; = h(x, ),
Wizi—qE)ey  i=1,...,n) (22)
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Problem-based scenario generation and reduction in stochastic programming 191

foralle = (€', ... &) € E" and Fp : X — R is given by (20). If the function h is
affine, the feasible set of (21) is closed.

Proof By the standard way of rewriting best uniform approximation problems one
obtains first by introducing the auxiliary variable ¢ that the semi-infinite program

Z?w¢@@%h@£5)§t+Fﬂﬂ

i t n : : 23
mip Fp(o) <i+ Y wid(qE), hx, §)) 23)
(&',....gMeE" i=1
(wlan-!wn)esn V.X c X

is equivalent to (19). Next we exploit the duality relation
®(q,1) =inf{(q,y): Wy =1,y € Y} =sup{(r,2) : W'z —q € ¥¥)

of the second-stage program for all pairs (¢,t) € D x W(Y). Then the primal and
dual program are both solvable. Due to (A1) the semi-infinite program (23) may be
reformulated as

3wy sup{{h(x, £, 2) - Wz — g(&)) € ¥*) <1 + Fp(x)
i=1

s n
B e s Dwnint (g @00 Wy = i £, v € Y)
((5)1 .......... i)n))ee:‘s‘n l Vxe X

(24)
Next we introduce 2n new variables y; € Y with Wy, = h(x, £') and z; € R” with
W'hz — q& i) € Y*, i = 1,...,n, and consider the generalized linear semi-infinite
program (21). Then any ¢ > 0 and (£!, ..., ") € E" solving problem (24) satisfies
the constraints of (21).On the other hand, if r > 0 and (&', ..., &") € E" attain the

minimum in (21), the two inequalities

n n
D wilh(x,£),z) <t 4 Fp(x) and Fp(x) <t 4 ) wilgE), y)
i=1 i=1
are satisfied for all (x, y, z) € M(& o &™). Hence, the inequalities
n . .
> wisup{(h(x,&),2) : Wz —q(E) € Y*} <1+ Fp(x)
i=1

Fp(x) <t 4 Y w;inf{(q(),y): Wy =h(x,§), y e Y}

i=1
are satisfied for all x € X. Hence, programs (24) and (21) are equivalent.
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192 R. Henrion, W. Romisch

To show that the feasible set of (21) is closed, we know from [50, Corollary 3.1.21]
(see also [17, Proposition 3.4]) that the lower semicontinuity of M on &" is a sufficient
condition. Since the graph gph M of M is of the form

gph M =", 8" x, 3, € E" x X x Y" xR : Wy; = h(x, &),
Wiz —q@EH) ey i=1,...,n}

and h is affine, gph M is convex polyhedral. Such set-valued mappings are even
Hausdorff Lipschitz continuous on its domain (see, for example, [42, Example 9.35])
and, hence, on Z" due to (A1). This completes the proof. O

In general the optimization model (21) is not convex even when the the weights w;,
i =1,...,n,arefixed. However, we prove now that the model is convex if the function
h is affine and either only right-hand sides or only costs are random.

Theorem 2 Assume (A0)—(A2), let the function h be affine, the weights w;, i =
1,...,n, be fixed and let either h or q be random. Then the feasible set of the GSIP
(21) is closed and convex.

Proof Let g be nonrandom. Then the feasible set M of (21) is of the form

i w; (h(x, &), z;) —t < Fp(x)
i=1

Fo(o) <143 wilg, w)
i=1
Y(x.y.2) € ME, ... 6"

M={@¢&", . . E)eRyxE" (25)

Leta € [0,1] and §; = (S},...,é’?) € 8", t; € Ry, be such that (¢;,§;) € M,
Jj = 1,2. We have to show that « (1, &1) + (1 — @) (2, &2) belongs to M, too.

Letx € Xandz; € {z e R": Wiz —qg € Y*}fori = 1,...,n be chosen
arbitrarily. Then we have

Z w; (h(x, aéf + (- oz)éé), ziy—at; — (1 —a)n

i=1

—a (Z wi (h(x, &), 21) — n) +(1-a) (Z wi (h(x, &), 2i) — n)

i=1 i=1
<aFp(x)+ (1 —a)Fp(x) = Fp(x).

Now, let y;; € {y € Y : Wy = h(x,&';'.)} for j = 1,2,i = 1,...,n, be chosen
arbitrarily in addition. We obtain ay;; + (1 —a)yi2 € {y € Y : Wy = h(x, otéf +
(1 —a)Eé)} and, hence,
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Problem-based scenario generation and reduction in stochastic programming 193

n
ati + (1 — )i+ Y wilg, ayin + (1 — a)yia)
i=1

= Ot<tl + ) wilg. yil)) + (1 - Ol)<t2 +Y wilg, yt2>>
i=1 i=1
>aFp(x)+ (1 —a)Fp(x) = Fp(x).

This means «(z1, 1) + (1 — a)(t2, &) € M and M is convex. If ¢ is random, but i
nonrandom, the proof is similar. The closedness of M follows from Theorem 1. O

For fixed weights and given n € N the GSIP (21) for determining the optimal scenarios
g,i =1,...,n,isof dimensionn s+ 1 and, thus, large scale in many cases. A difficulty
of (21) is that the set M(&', ..., ") is unbounded even in general.

We note that Fp(x) can only be calculated approximately even if the probability
measure P is completely known. Hence, it becomes important that the optimization
model (21) behaves stable when the function Fp is perturbed. The following result
shows that even Lipschitz stability of the optimal values can be expected if the condi-
tions of Theorem 2 are imposed.

Theorem 3 Assume (AO) —(A2) and that the infimum v(Fp) of (21) is positive. Let the
function h be affine, let either h or q be random and the weights w;, i = 1,...,n, be
fixed. Then there exist k > 0 and § > 0 such that

[v(Fp) — v(F)| <« sup [Fp(x) = F(x)], (26)

xeX

for each continuous function F on X such that sup, .y |Fp(x) — F(x)| < §. Here,
v(F) denotes the optimal value of (21) with Fp replaced by F.

Proof As in the proof of Theorem 2 we assume without loss of generality that ¢ is
nonrandom. We consider the set-valued mapping (¢, él, L EM e A, El, L EM
from Ry x E" to the Banach space C(X) of real-valued continuous functions on X
with the standard norm || - ||oo, Where

n

Y wilh(x, ), zi) —t — Fp(x) < f(x)

i=1
At g = C(x n
.5 )=/ f) <t+ ) wilg, yi) — Fp(x)
i=1
V(x.y.2) € ME' ... 8
First, we show that the graph of the set-valued mapping A denoted by gph A is convex.

Leta € [0,1] and f; € C(X), & = (é},...,éj'f) € 5", tj € Ry, be such that
(tj,&j, fj) € gph A, j = 1, 2. Then we obtain as in the proof of Theorem 2
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194 R. Henrion, W. Romisch

D wilh(x, af] + (1 — @)&), zi) —aty — (1 — )ty — Fp(x)
i=1

= a(Zw,- (h(x,&D),zi) —t1 — FP(X))

i=1

+(1—a)( Y with(r. 6.2 — 12 = Fp(v))

i=1

=afix) + (1 —a)falx) and

at) + (1 —a)ir + Zwiw’a)’il + (1 —a)yix) — Fp(x)
i=1

= afi(x) + (1 —a)falx),

wherex € X,zi e {zeR :Wiz—q e Y'}andy;; e{yeY: : Wy = h(x,é})}for
j=1,2,i =1,...,n,arechosen arbitrary. This proves that gph A is convex. Itis also
closed as subset of R+ x C(X). Furthermore, we know that the null function 0 €
C(X) belongs to the range of A and that ATL(0) is just the feasible set of (21). Thus,
there exists (7, !, ..., ") e Ry x &" suchthat0 € A(7, €', ..., €"). We know that
f > v(Fp) > 0byassumption. Next we choose § suchthat0 < § < 7 and conclude that
the closed ball B(0, §) in C(X) is contained in the range of A. The Robinson-Ursescu
theorem (see [41, Theorem 2]) on continuity properties of set-valued mappings having
closed convex graphs then implies that the inverse multifunction A~! has the Aubin
property at f = 0 for any point (7, ', ..., ") € A~'(0) with 7 > 0. This means that
there exist neighborhoods U of 0 and W of (7, 5 L é ™), and a constant x € R
such that ~ ~

AT HNW S AT D +xlf = FlleoB (27)

holds for all f, f € U, where B is the unit ball in R+,

Next we choose f = F — Fp with F € C(X) and f =0.

Lete > Oand (7,&',..., ") € A~1(f) N W such that v(f) < 7 < v(f) + &.
Then there exists an element (7, &', ..., ") € A~'(0) such that

I, EY B — @ EN LED <kl flle

holds forall f € U due to the Aubin property (27) of A~! at 0. We note that A~ (F —
Fp) is the constraint set of (21) with Fp replaced by F, respectively, and obtain that
the estimates

v(Fp) —v(F) =t —v(F) |t —fl —e < k|F — Fplloo — €.

hold for all F € C(X) with F — Fp € U. Since the latter estimate is valid for any
e > 0, we obtain v(Fp) —v(F) < k||F — Fp|x if F — Fp € U. In the same way we
can derive the estimate v(F) — v(Fp) < L||F — Fplloo if F — Fp € U. It remains to
select § > 0 such that the open ball around 0 with radius § in C(X) is contained in V
and torequire || — Fp|lco < §. Finally, we note that starting with the Aubin property
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of A=l at 0 € C(X) the proof followed classical arguments of quantitative stability
in optimization (see [28, Theorem 1]). O

Notice that the infimum v(Fp) of (21) is always nonnegative and v(Fp) =
means that P has at most n scenarios. Hence, the assumption v(Fp) > 0 is natural
and satisfied, for example, for any » if P is a continuous probability distribution.
Theorem 3 applies, for example, if Fp is approximated by Monte Carlo or Quasi-
Monte Carlo methods with a large sample size N > n. Let

1 N
5 2 P@ED, hx, &)

=1

Fp(x) ~

be such an approximate representation of Fp(x) based on a sample é J,j=1,...,N.
Inserting this approximation into (21) and exploiting again the duality relation then
leads to the following approximate version of (21)

N
wih(x.€)).21) <1+ z (g (&, 3))

M:

min t
120, .gMeE"

(wl,...,w,l)eSn

L
N

where the sample é Ij=1,

1

M=

~.
I

(h(x,&7),2;) <t+ S wilg &), i)

i=1

Y(x, 9,%) € M(E!,

L EN)
V(x,y,z) e MEL ...,

£")

) (28)

, N is given. The latter problem may also be charac-

terized as a scenario clustermg problem Given a large scenario set £/, j=1,...,N,
we are looking for a smaller scenario set £/, i = 1, ..., n, where each scenario £/
corresponds to a cluster éi ,i € I}, of the original scenarios.

The specific structure of (21) and (28) as generalized semi-infinite programs is
promising and allows for specific solution algorithms (see [17,50-52]).

In a number of cases it is even possible to reduce the GSIP (21) to a semi-infinite
program by a transformation inspired by the recent paper [48]. To describe the idea,
we consider the situation that only costs are random, the polyhedral cone Y is given
by Y = R’f and the transformation is defined by

ExU—>R, tEuw)=ut+WH (qe) - (29)
where i = {u e R" : WTu < g}, ¢ € R™ and the (172, r) matrix W+ denotes the

Moore-Penrose inverse of W.
Proposition 2 Assume (A0) and (A2), h(x) € W(R"? ™) for all x € X and that § and
q(£) belong to the range of W' for all &€ € 5. Then the generalized semi-infinite

program (21) is equivalent to the semi-infinite program
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lwi<h(X), ui +WHTGE) =) <1+ Fp(x)

n
i=

min t n ; , 30
iy Fpa) <1+ wilgE). yi) G0
(E',...Emea" i=1
(W1,....w,) €S, VX, Y1y ov oy Vs ULy ooy Up) € X X V(X)) x U

where Y(x) = {y € Rf,’_f : Wy = h(x)} for each x € X. If the weights w;, i =
1, ..., n, are fixed, (30) is a linear semi-infinite program.

Proof The mapping ¢ given by (29) has the property
Wi =Wwu+ Wi WHT@E -9 <q+ @& -9 =q6

for each pair (§,u) € & xU as q(§) —g € WI(R") and WT (W)™ is just the
orthogonal projection onto W ' (R"). Hence, it holds

1EU ={zeR W'z <q)).

The desired' equivalence between (21) and (30) follows by setting z; = u; +
WHT(qE)—§).i=1,....n inQ20). O

A similar result can be derived if only right-hand sides are random and the primal
polyhedral constraint set of the linear second-stage problem is given in the form
{y e R™ : Wy < h(x, £)}. Proposition 2 opens the possibility of using classical solu-
tion algorithms for semi-infinite programs, in particular, discretization and exchange
methods (see the monographs [15,23] and the surveys [22,40]). In the “Appendix” we
provide a short description of the discretization method due to [39].

Finally, we discuss the possible use of lower and upper bounds of Fp (x) for scenario
generation. There is a well-developed theory for deriving lower und upper bounds of
expectation functionals of convex-concave integrands. While lower bounds are due
to Jensen’s classical result (e.g., see [7, Theorem 10.2.6]), upper bounds are known
as Edmundson-Madansky bounds. They were further developed in the context of
stochastic programming, for example, in [2,5,11,12,14,25]. Many upper bounds are
derived via generalized moment problems appearing as duals of semi-infinite programs
[12,25] (see also [26, Section 3.2.1]).

Let Ip(x) and u p(x) denote lower and upper bounds of Fp(x), respectively. Then
the following optimization problem (derived from (21)) computes upper bounds of
the infima to (19) or (21), respectively:

i wi(h(x, &), 2i) <t +1p(x),
i=1

t L i 31
tZO»(flIvI}-%n)EE” up(x) <t+ Z wi{gE"), i), G

i=1
Y(x,y,z) e MEL ... EM)
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If Ip(x) and up(x) are exchanged, the optimization problem (31) provides lower
bounds of the infima to (21). These observations may be of interest for the numerical
solution of (21) if it is nonconvex.

3 Optimal scenario reduction for two-stage models

Next we discuss the scenario reduction approach for two-stage models based on the
minimal information distance (5) and the best approximation problem (9).

As in Sect. 1 let Ei, i=1,..., N,be alarge set of scenarios with probabilities p;,
i = 1,..., N, that define a discrete probability measure P. For prescribed n € N,
n < N, we intend to determine an index set J C {1, ..., N} of cardinality |J| = n
and new weights 77;, j € J, such that the probability measure

Pj =) 78

jeJ
solves the optimal scenario reduction problem

N
min { sup erj(pj(x) — Zpi<pl-(x) Jc{l,...,NL,|J|=n,m eSS, ¢,
xeX \icy i=1
(32)
where the functions ¢; (x) = ® (g ('), h(x,£")),i = 1,..., N, are convex polyhedral
on X. Problem (32) represents a mixed-integer semi-infinite program. Compared with
(15), (32) is based on Proposition 1 and, hence, on a (much) smaller upper bound for
the difference of the optimal values. In addition, the solution of problem (32) depends
on the data of the two-stage stochastic program.
Problem (32) decomposes into finding the optimal index set J of remaining sce-
narios and into determining the optimal weights 7;, j € J, given J. The outer
combinatorial optimization problem

min {D(J, P):J C{l,..., N}, |J| =n}, (33)

determines the index set J and can be reformulated as binary optimization problem
similar to (15). Here, the objective function D(J, P) denotes the infimum of the inner
program

N
min sup angol,'(X) - ZPNP:’(X) . (34)

S
TEonxeX |icy i=1

Any evaluation of the objective in (33) requires the solution of the best approximation
problem (34). Hence, compared to the problem (16) in the introduction, the infimum
of problem (34) cannot be computed explicitly.

For linear two-stage stochastic programs satisfying (A0)—(A2) the optimization
model (34) contains finite functions and is equivalent to the reduced linear semi-
infinite program
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N
> migj(x) <t + Y pigi(x)

jel i=1
min t| N (35)
10,7€S, Yopivix) <t+ Y mipj(x)
i=1 jelJ
Vx e X
or to
. N .
Y omwilh(x, &), z;) <t + ) pilgED, i)
jel i=1
min t| N . ; ; (36)
120,7€S, Yopith(x, €D, z) <t + Y mwilqE)), y))
i=1

jelJ

Y(x,y,z) e MEL L EN)

where the set M(£', ..., V) is defined as in (22) with n replaced by N. Hence, the
linear semi-infinite program (36) has a comparably low number n + 1 of variables,
but a (very) high-dimensional index set.

Problems (35) and (36) mean: For a given convex combination of many convex
polyhedral functions ¢; (-) on X one is looking for the best convex combination of a
given subset of convex polyhedral functions that approximates the former uniformly.

4 Scenario generation for chance constrained programs
We consider a chance constrained program
min{g(x) : x € X, P(P(x)) = p},

where P(x) = {§ € & : h(x,&) < 0} is a polyhedron depending on x, g is a linear
objective g, X and & are polyhedral, / a function as described in Sect. 1 and p € (0, 1)
a given probability level. Then we have fy(x, §) = g(x) and f1(x, &) = p—1p (&),
and the best approximation problem (9) is of the form

P(P(x)) =t + Py(P(x))

min t| Ph(P(x)) <t+ P(P(x)) (37)
>0, P,ePy(E) Vx € X

and, thus,

Py(P(x)) = Y willp(E) =Y willpr (h(x.£D)) (x € X).

i=1 i=1

It is well-known that chance constrained optimization models with discrete probability
distributions are nonconvex in general (see, for example, [26, Section 2.2.2]), but can
be reformulated as mixed-integer programs. We follow here the presentation in [26,
Section 2.2.2] and choose a constant M > 0 such that
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h(x,E)—Me <0 VxeX, (38)

holds foreachi = 1,...,n, wheree = (1,...,1)T € R". Such constant M always
exists as X is compact. This allows to introduce binary variables z; € {0, 1} such that
z; = 01if h(x, &'i) <Oforall x € X and z; = 1 otherwise, i =1, ..., n.

Then it is possible to reformulate (37) as mixed-integer semi-infinite program

PP <+ 3 wil —2)
i=1

n
min r] Y wi(l—z) <t+ P(Pkx)) . (39
>0, (&1,..., S");E” i=1
(w1,.... wn) €S hx,&") —ziMe <0, i=1,...,n
(15e-,20)€{0, 1} Vi € X
If the weights w;, i = 1,...,n, are fixed, problem (39) is a mixed-integer linear

semi-infinite optimization model.

Since mixed-integer linear programs containing "big-M’ type constraints are often
difficult to solve, one is interested in strengthening the formulation of (39) by incorpo-
rating valid inequalities. A possible way consists in introducing precedence constraints
based on partial orders < on the index set {1, ..., n}. Such a partial order < is called
strongly consistent for (39) in [46] if forall x € X

i< jAh(xE)<0=hx,£)<0.
It follows as in [46] that the constraints
zi <zj foralli,je{l,...,n}suchthati < j

are valid inequalities if < is a strongly consistent order for (39).

If the function £ is of the special form i (x, £) = & — T (£)x with a linear (s, m)-
matrix function 7'(-), a strongly consistent order is i < j < & — T(£)x < &/ —
T (& J )x, for all x € X, where < is the component-wise inequality between elements
of R®. For the special function h(x, ) = £ — T'x and fixed weights w;, i =1, ..., n,
problem (39) is a mixed-integer linear semi-infinite program of the form

PP <+ 3 wil —2)

i=1

S wi(l = 2) <1 + P(P(x))

lmin iz . (40)
oy | |E - Tx—uMe<0,i=1,...n
7zi <zjif§ <&/ ,i,j=1,...,n
Vxe X

The papers [31,53,56] are sources for deriving further valid inequalities.
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5 Newsvendor with random demand: an illustration

We consider the classical newsvendor problem to illustrate the approach to scenario
generation developed in Sect. 2. We recall that a newsvendor must place a daily order
for a number of copies x of a newspaper. He has to pay ¢ monetary units for each
copy and sells a copy at r units, where 0 < ¢ < r. The daily demand £ is a real
random variable with (discrete) probability distribution P € P(N), & = R, and the
remaining copies y(§) = max{0, x — &} have to be removed. The newsvendor wishes
that the order x maximizes his expected profit or, equivalently, minimizes his expected
costs, 1.e.,

E[fo(x,é)]=/Rfo(x,§)dP(E)=(C—r)err/RmaX{O,x—E}P(dS) (x e R).

The model may be reformulated as a linear two-stage stochastic program with the
optimal value function @ (r) = max{0, —¢}. Starting from

(1) =inf{(qg,y) : Wy =1, y >0} =sup{(t,z) : W'z < q)

with W = (-1, 1), g9 = (0, NY = R4 and h(x,&) =& — x, weobtain D = {z €
R:W'lz< q}=10,r]and forx € X = R4

E[fo(x,s>]=(c—r)x+rfo (x—é‘)de(é)=(c—r)x+r/O Gp(&)dt . (41)

The latter is obtained using integration by parts, where G p denotes the distribution
function Gp(x) = P({§ e R: & <x}) = >, ., pk of P and py is the probability of
demand k € N. The unique solution is the ~—*-quantile of P.

The corresponding optimal scenario generation problem is of the form

n .
Yo wi(E' —x)z <t + Fp(x)
i=1
n
min t Fp(x) <t4r) wyi , 42)
1>0,(E!,....£M)eR” i=1
(w,..., wy) €S, V(X, y,.Z) S RJ’_ X Ri x R" :
vi+x>=E,0<zi<r,i=1,...,n

where Fp is the convex expected recourse function

Fp(x)=r Y pi max{0, x —k}. (43)
k=1

We note that Theorems 2 and 3 apply to (42) if the weights w; are fixed.
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By incorporating Fp from (43), (42) is equivalent with the best approximation
problem

oo n
min  sup Z pr max{0, x — k} — Z w; max{0, x — &'}/ . (44)
... EMER" xeRy |27 P
(wr,..., w")eSn

We assume that the support of P is bounded, i.e., that the series representation in (43)
is not infinite. Let N € N be such that p;y = 0 for all k > N. Then Fp is piecewise
linear convex on R with possible kinks at any k € N, k < N. The slope of Fp at k
isr Zle pi and it holds Fp(x) = r(x — E[&]) for x > N where E[£] is the mean
value of £, i.e., E[£] = YN, pik.

Using the transformation idea from Proposition 2 (see [48]) we are able to transfer
the generalized semi-infinite program (42) into a semi-infinite one. To this end we
define the mapping

t:ExU—>R, tE u)=u+E,

where ! = Ry = {u € Ry : x +u > 0} for each x € R4.. Then the transformation
y=tE u)leadstot(§,U) = {y e Ry : x +y > &} forall (x,&) € Ri and the
optimization model (42) is of the form

n .
Yo wi(E' —x)z <t + Fp(x)
i=1
min t n ; , 45
1>0,(€",....eM)eR" Fp(x) <t+r Z w; (yi + &Y “5)

(Wi,..es wy) €S, i=1

V(x,y,z) e Ry xR x D"

where u is replaced again by y. If the support of P is contained in [0, M] for some
M € N, we can also replace both R in (45) by [0, M] and arrive at a compact index
set of the semi-infinite program. Hence, a solution of (45) by a discretization method
(see “Appendix”) is possible.

6 Conclusions

The generation of scenarios is an important issue for solving applied stochastic
programming models. Presently Monte Carlo sampling methods are the preferred
approach (see [24]), but besides Quasi-Monte Carlo and sparse grid methods also best
approximation methods are in use. The latter utilize metric distances of probability
measures and suggest to determine discrete measures as best approximations to the
underlying probability distribution (see [33,35]).

Existing scenario reduction methods [10,18] are based on the same theoretical
background. However, we pointed out in Sect. 1 that stability results indicate that such
probability metrics only lead to coarse estimates of distances of optimal values and
solutions. Decisions on scenario generation and reduction based on such estimates
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appear somewhat questionable and should at least be further examined. This is sup-
ported by slow convergence rates in terms of such probability metrics. But a stability
result like Proposition 1 also suggests to make use of the minimal information distance
dr [see (6), (5)] as a basis for best approximation methods. This observation served
as the guideline for the present paper. It turned out that at least for linear two-stage
models the best approximation problem for scenario generation has favorable prop-
erties. It represents a best uniform approximation problem for the expected recourse
function by a convex combination of polyhedral functions generated by scenarios. The
latter can be rewritten as generalized semi-infinite optimization model and in many
cases transformed into a standard semi-infinite program. If either only right-hand sides
or only costs are random the optimization model is convex. In any case there exists
a well-developed theory and a number of solution algorithms for such models (see
[17,22,40,50-52]). Scenario reduction problems for linear two-stage models can be
decomposed into solving a combinatorial optimization problem and a linear semi-
infinite program, where the first determines the remaining scenarios and the second
their new probabilities.

The characterization of scenario generation with respect to the distance dr as
best approximation problem for the expected recourse function provides a link to
bounding schemes for the expected recourse (see [26, Section 3.2.1]). It reveals the
close relationship of scenario generation, scenario reduction and bounding.

The aim of the present paper consisted in showing that employing minimal informa-
tion distances for scenario generation and reduction leads to interesting optimization
models. Their solution should result in improved decisions for scenario generation
and reduction at least for two-stage models. In a next step we are planning to confirm
this by numerical experiments.

Acknowledgements The first author gratefully acknowledges support by the FMJH Program Gaspard
Monge in optimization and operations research including support to this program by EDF. Both authors
wish to thank the referees and the Guest Editor for their valuable comments.

Appendix
We consider semi-infinite programs of the form
P[V] min{go(u) :u € U, gju,v) <0, j=1,...,p, Vv e V},

where U C R™ is closed, V C RF is compact and the functions go : U — R,
gi:UxV =R, j=1,...,p,are continuous. Let V;, i € Ny, be an increasing
sequence of finite subsets of V such that lim;_, o SUp, ¢y miny,ecy; lv — v;|| = 0.

Discretization algorithm:

Step 0: Seti =0, Dy = Vj.

Step 1: Find a solution u; of P[D;].

Step 2: Find a solution v; of maxycy,,, max;—1, .., g;(u;, v).
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Step 3: If y; = max;—1,.. pg;(u;, v;) > 0, then select a set D; 1 such that
D; U{v;} € Dit1 € Viq1.

Step 4: If y; < 0 then stop.
Step 5: Seti =i + 1 and go to Step 1.

If the feasible set F[V] of P[V] is nonempty and the level set {# € F[Vy] : go(u) <
go(up)} is bounded for some ug € F[V], the infima of P[D;] converge to the infimum
of P[V] and the sequence (u;) has an accumulation point which solves P[V]. For
a proof of this result we refer to [39, Theorem 2.1] and for further information and
discussion to [40].
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