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Abstract In this chapter we describe an approach for the statistical analysis of gas
demand data. The objective is to model temperature dependent univariate and
multivariate distributions allowing for later evaluation of network constellations
with respect to the probability of demand satisfaction. In the first part, method-
ologies of descriptive data analysis (statistical tests, visual tools) are presented
and dominating distribution types identified. Then, an automated procedure for
assigning a particular distribution to the measurement data of some exit point is
proposed. The univariate analysis subsequently serves as the basis for establishing
an approximate multivariate model characterizing the statistics of the network as
a whole. Special attention is paid to the statistical model in the low temperature
range.

The goal of our data analysis consists in evaluating historical data on gas demand at exits of
some gas transportation network. The results will be used to extract statistical information,
which may be exploited later for modeling the gas flow in the network under similar
temperature conditions. More precisely, the aim is to generate a number of scenarios of
possible exit loads, which will be complemented in several subsequent steps to complete a
nomination (see Chapter 14). Such scenarios are needed for validating the gas network
and for calculating and maximizing its technical capacities.

The analysis will be based on historical measurement data for gas consumption, which
is typically available during some time period, and on daily mean temperature data provided
by a local weather service. Due to a high temperature-dependent proportion of heating
gas, the gas demand is subject to seasonal fluctuations. During the warmer season the gas
consumption decreases: hot water supply for households and process gas consumption are
the only basic constituents.

The method for analyzing the data should be applicable to all exits, no matter what
their distribution characteristics are, and should allow for multivariate modeling to take
into account statistical dependencies of different exits of the network. Therefore, the use
of local temperatures as in day-ahead prediction of gas demands is less appropriate. Rather,
we introduce a reference temperature which is given as a weighted sum of several local
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278 Chapter 13. Empirical observations and statistical analysis of gas demand data

Table 13.1: Categorization of the data characteristics obtained for the data of the L-gas network. The values
are given in percentage w.r.t. relative frequency of occurrence. Stationarity indicates that data do not contain
significant trends over time.

Temperature Description Stationarity
dependency yes no

sigmoidal 41.21 0.70
sigmoidal and jumps to zero flow 12.52 0.28
piecewise-linear (summer zero flow) 17.30 0.42

dependent band- and cluster-like structures 6.05 0.56
non-regular cluster-like structures 1.55 0.56
discrete data distribution 3.52 0.00
other non-categorized relations 4.50 2.81
completely positive 4.50 0.70
jumps between zero and positive flow 0.14 0.00
band-like structures and jumps 0.98 0.84
uniform-like distribution 0.84 0.98

independent local varying distribution 0.00 0.42
discrete data distribution 0.70 0.14
other non-categorized relations 2.53 0.56
almost zero flow 3.66 0.00

temperatures and in this way is more representative for the entire network. Due to the
stationarity of the gas flow model considered throughout this book, we consider daily
averages of the gas demands at all exits, based on measurement data which is mostly given
for smaller (e.g., hourly) time intervals.

The statistical data analysis will consist of several steps, namely,

(i) visualization and categorization of the available data,
(ii) analysis of basic structural properties,

(iii) statistical tests,
(iv) definition of temperature classes,
(v) fitting univariate probability distributions for each exit and temperature class,

(vi) fitting multivariate distributions, and
(vii) forecasting gas demands for low temperatures.

Issues (i)–(iii) are discussed in Section 13.1, (iv) in Section 13.2, (v) in Section 13.3, (vi) in
Section 13.4 and (vii) in Section 13.5. All tables and figures illustrating the different steps
are based on historical data provided by the company Open Grid Europe GmbH (OGE)
for its H-gas and L-gas transportation network. Both networks contain almost 800 exit
points.

13.1 Descriptive data analysis and hypothesis testing

In this section, we discuss several methods to analyze gas demand data. These techniques
form the basis for the succeeding steps to construct distributions.
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(a) typical sigmoidal relation
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(b) sigmoidal and jumps to zero flow
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(c) linear and summer zero flow
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(d) data with band-like structure
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(e) discrete data distribution
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(f) uniform-like distribution
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(g) local varying distribution
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(h) almost zero flow

Figure 13.1: Overview of the variety of data containing typical characteristics
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(a) example of downside trend
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(b) almost stationary data with gap
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(c) non-stationary data with gap
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(d) almost stationary data

Figure 13.2: Illustration of varying data behavior w.r.t. gaps and trends over time

13.1.1 Visualization and categorization

The first step of data analysis typically consists in the visualization and categorization of
the available data for all exit points of a given network. Then basic structural properties
(trends, clusters, temperature dependence etc.) should be analyzed, before in a third step
different types of univariate (exit-based) statistical distributions (normal, uniform etc.) can
be classified.

For the L-gas network and the given data base, Figure 13.1 illustrates the distribution
of daily mean gas flows as a function of temperature, for selected exit points. Different
years in the data base are visualized by different colors. As mentioned above, gas demands
are mainly temperature dependent. The type of dependence varies between (piecewise)
linear, sigmoidal and – in rare cases – other functional relations. Often the exit flow data
are not positive, but contain zero flows for certain time periods without clear temporal
or temperature dependence. Furthermore, one may be faced with band- or cluster-like
structures.

Table 13.1 provides an overview of a general categorization in the L-gas network.
Figure 13.2 reveals that one may have to cope also with the presence of outliers and of
non-stationary characteristics – such as trends and breaks, which necessitate an appropriate
data preparation prior to the actual model calibration (Brockwell and Davis 2002).

For gas demand forecast one typically uses non-linear regression models in which the
functional relationship between the daily average gas flow and the daily mean temperature
or a weighted mean temperature is described using sigmoid functions, see Cerbe (2008)
and Leövey et al. (2011). For an interpretation of the model parameters in the context of
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gas flow modeling we refer, e.g., to Geiger and Hellwig (2002). Based on the visual analysis
of the data originating from the given networks, we suspect that classic assumptions such
as homogeneity of variance over the entire temperature range or approximate normality
of residuals (Seber and Wild 2003) are frequently not met.

13.1.2 Statistical tests

In order to corroborate the latter observation one may apply suitable statistical tests. As
far as homogeneity of variance for residuals of adjacent temperature intervals is concerned,
the methodology of analysis of variance (ANOVA) can be employed. Here, a variety
of statistical tests is at our disposal, e.g., Bartlett’s test for normally distributed data or
robust (distribution-free) alternatives such as the Siegel-Tukey test. For further details we
refer to the comprehensive description in Hartung (2005) and Fahrmeir et al. (2007). The
application of ANOVA to the available data showed that the assumption of homogeneous
variances over the entire temperature interval is violated for a majority of exit points in
the H-gas and L-gas network.

As far as the normality assumption is concerned, there exist numerous tests which can
differ in their design and properties, compare D’Agostino and Stephens (1986), Hartung
(2005), and Thode (2002). Probably the most prominent among these is the classical
Kolmogorov-Smirnov goodness-of-fit-test. It checks whether a random variable obeys
some fixed distribution.

To give a short description of the Kolmogorov-Smirnov test, let Fξ denote the distribu-
tion function of a real random variable ξ on some probability space (Ω,F ,P), i.e.,

Fξ (t ) :=P(ξ ≤ t ) for all t ∈R.

The Kolmogorov distance between the distributionsP◦ξ −1 andP◦η−1 of two real random
variables ξ and η is given as the uniform distance of the corresponding distribution
functions, i.e.,

DK (P ◦ ξ −1,P ◦η−1) := sup
t∈R

���Fξ (t )− Fη(t )
��� . (13.1)

The observed data {x1, . . . , xN } induce a new random variable ξ N , whose distribution
(called empirical distribution) is defined by the empirical distribution function

FN (t ) :=
1
N

#{xi | xi ≤ t}. (13.2)

Assuming that the measurement data are ordered (x1 ≤ . . .≤ xN ) the Kolmogorov-Smirnov
test statistic is given by the Kolmogorov distance between the distributions of ξ and ξ N ,
i.e.,

DN = sup
t∈R

���Fξ (t )− FN (t )
���= max

1≤i≤N

¦
Fξ (xi )− i−1

N , i
N − Fξ (xi )

©
,

under the null hypothesis that the measurement data {x1, . . . , xN }, are drawn from the
distribution of ξ . Significant advantages of the Kolmogorov-Smirnov test statistic are that
it can be exactly determined and that it does not depend on the underlying distribution if
the distribution function is continuous.

Moreover, the sequence
p

N DN converges in distribution to the random variable
supt∈R|B(t )|, where B is the so-called Brownian bridge. In particular, it holds

P(
p

N DN )> x)≤ 2exp(−2x2) (N ∈N)



282 Chapter 13. Empirical observations and statistical analysis of gas demand data

−2 −1 0 1 2

−2

−1

0

1

2

Figure 13.3: Statistical visualization of the data set: Q-Q plot for normal distribution

and

lim
N→∞
P(
p

N DN ≤ x) =H (x) = 1− 2
∞∑

k=1

(−1)k−1 exp(−2k2x2) (x ∈R),

where the estimate is the so-called Dvoretsky-Kiefer-Wolfowitz inequality with the specific
leading constant 2 due to Massart (1990) and the limit is due to Kolmogorov.

The goodness-of-fit test is based on the latter argument, namely, the null hypothesis is
rejected at level α if p

N DN >H−1(1−α).
The test is more sensitive in the middle of the distribution rather than at its tails.

Alternatively, the Shapiro-Wilk test has the highest power among the normal distribu-
tion tests. The test statistic used here is based on two different estimates for the variance:
an estimate from the quantile-quantile plot (see below) and of the sample variance. Both
estimates should be nearly identical, if the data are drawn from a normal distribution.

In the literature one may find a lot of other commonly used tests, see Hartung (2005)
and Thode (2002). Applying these to the data base of the given networks, we observed that
only in rare cases a unique result can be derived from the whole variety of the available
tests.

Many common tests output the so-called p-value of the data {x1, . . . , xN }. The p-value
pval(x1, . . . , xN ) is defined as the greatest lower bound on the set of all α such that the level
α test based on {x1, . . . , xN } rejects the null hypothesis (see, e.g., Section 3.3 in Lehmann
and Romano 2005). One tends to reject the null hypothesis if the p-value turns out to be
less than a certain significance level, often 0.05. The smaller the p-value, the more strongly
the test rejects the null hypothesis.

The automation described in Section 13.3 is exclusively based on the Kolmogorov-
Smirnov test.

13.1.3 Visual checks

In addition to statistical tests, there are many visual checks to verify the distribution
assumptions of individual data series. The most commonly used ones are histograms,
quantile-quantile plots and box plots, see Hartung (2005) and Fahrmeir et al. (2007). In
quantile-quantile plots (Q-Q plots) as shown in Figure 13.3, the quantiles (see Eq. (13.3)
below) of the data series are plotted against the quantiles of the expected underlying
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distribution. In case of assuming the correct distribution, the points lie approximately
on the bisector. With clear deviations from this reference line, the distribution has been
specified wrongly. Strong deviations of the last points only indicate outliers. In box-plots,
location and dispersion differences between two data series as well as outliers are made
visible. These graphical tools are available on a case-by-case basis, but are not useful for a
complete automation of the process. The visual checks served as a basis for selecting the
classes of probability distributions utilized in Section 13.3.

13.1.4 Outlier detection

Another component of data analysis is the detection of outliers and specifications on how
to deal with them. Outliers are individual values strongly deviating from the other data. If
there are no systematic errors in the data collection, one can check by suitable tests whether
a suspected outlier should be removed from or retained in the sample. A simple criterion
for the identification of outliers, in particular for symmetric single-peaked distributions is
provided by the so-called sigma-range. In case of a normal distribution data beyond the
2.5σ -range (covering realization of the random variable with a probability of 99%) are
declared to be outliers.

For arbitrary distributions, Chebyshev’s inequality yields conclusions about the por-
tion of the data outside of the `σ -range. More exactly, it holds for arbitrary random
variables with mean E[ξ ] =µ and finite variance Var(ξ ) = σ2 that

P(|ξ −µ|< `σ)≥ 1− 1
`2

for all ` > 0.

Robust limits for the detection of outliers for many distribution types, especially for
skewed distributions, can be derived on the basis of the quartiles and the interquartile
range. The latter is defined for a random variable ξ with distribution function Fξ (t ) as
IQR := x0.75− x0.25. Here xp denotes the p-quantile

xp := F −1
ξ
(p) = inf{t ∈R | Fξ (t )≥ p}. (13.3)

There exists a variety of outlier tests, e.g., the David-Hartley-Pearson test, the Grubbs’
test for normally distributed samples and average sample sizes, and the Dean-Dixon test for
very small sample sizes. For further details, we refer to the relevant literature, see Hartung
(2005). Removal of outliers has to be carried out very cautiously because especially for the
multivariate analysis the sample size should be kept as large as possible. The automation
in Section 13.3 and Section 13.4 refrains from outlier deletion.

13.2 Reference temperature and temperature intervals

As mentioned earlier, daily mean gas flows at some exit point depend on the local tem-
perature. However, a numerically tractable model for this functional dependence is not
available in general. An alternative approach consists in removing this dependence by
introducing (i) a reference temperature for the H-gas and L-gas network, respectively,
and (ii) a subdivision of the temperature range into sufficiently small and properly sized
intervals in order to arrive at statistically relevant univariate distributions at each exit
point. More precisely, we propose to proceed as follows:

1. Start with historical data for gas demands at the exits of the gas network on the one
hand and for temperatures at certain preselected measuring stations on the other hand.
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Calculate for each day d of the historical time period a reference temperature T ref(d )
by using a weighted average and the daily mean demand D(n, d ) for each exit point n.

2. The relevant temperature range (for the H-gas and L-gas network from −15 ◦C to
30 ◦C) is subdivided into intervals (T i ,T i+1], i = 1, . . . , I , which are

. small enough to neglect the temperature dependence of demands within the interval
and

. large enough to contain a sufficient amount of data required for statistical modeling.

(For the H-gas and L-gas network, intervals of two degrees Celsius were selected for the
interior of the temperature range and (−15 ◦C,−2 ◦C], (20 ◦C,30 ◦C] for its boundary
to have reasonable amount of data available.)

3. For each temperature interval and each exit point of the network the data of gas
demands for days with reference temperature belonging to the given interval are
filtered:

S(i , n) :=
¦

D(n, d )
���T ref(d ) ∈ (T i ,T i+1]

©
∀i ∀n.

In this way the temperature dependence of gas demand is modeled for the whole gas network
rather than for local parts of it. Instead of modeling this temperature dependence by an
explicit formula, a subdivision into small intervals is used which allows us to establish
univariate statistical models with homogeneous variance within each interval at each
exit. Moreover, whenever possible, correlations in gas demand between different exit
points can be taken into account for the multivariate statistical model of each temperature
interval (see Section 13.4). In order to avoid confusion with respect to reference or local
temperature, these intervals will be called temperature classes from now on. In addition to
these temperature classes, the filtering procedure described above is also carried out with
respect to day classes in order to model significantly different behavior of gas demand for
specific days, namely: working day, weekend and holiday.

13.3 Univariate distribution fitting

The next step consists in finding a univariate statistical model for the distribution of
gas demands in each class S(i , n). This is a two-step procedure where in the first step
an appropriate class of distributions (e.g., normal distribution) has to be found and in
the second step the associated parameters (e.g., mean value, standard deviation) for this
class have to be determined. For the H-gas and L-gas network, the following selection of
distributions turned out to be relevant as a result of our prior descriptive data analysis
(statistical tests, visual inspection): normal distribution, log-normal distribution, uniform
distribution, Dirac distribution.

The need to incorporate the Dirac distribution arises mainly from frequent obser-
vations of zero demands as mentioned above, but occasionally also of constant positive
demands. Visualization of the data suggested the presence of mixtures of these distribution
classes, e.g., Dirac and normal distribution. We then speak of shifted normal, uniform etc.
distributions. Therefore we extend our statistical model to positive combinations of the
distribution classes above, such that the determination of weights in this combination is
also part of the modeling process.

To provide an example, consider the case of the shifted normal distribution: Assume
that the relative frequency of zero loads in the data sets equals w ∈ [0,1], whereas the
remaining (positive) elements of the data set follow a normal distribution with mean µ
and standard deviation σ . Then, the overall distribution function F for the data set would
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(a) Shifted normal distribution
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(b) Shifted uniform distribution

Figure 13.4: Illustration of shifted distribution functions (see Eq. (13.4) in case of normal distribution), where
in this example the shift is given by w = 0.2.

be modeled as:
F = wFδ +(1−w)FN (µ,σ), (13.4)

where

Fδ (t ) =
§

0, if t < 0,
1, it t ≥ 0,

denotes the distribution function of the Dirac distribution at zero and

FN (µ,σ)(t ) =
1

σ
p

2π

∫ t

−∞
exp

�
−1

2

�
x −µ
σ

�2�
dx

denotes the distribution function of the normal distribution N (µ,σ). Figure 13.4 (a)
illustrates the distribution function of such shifted normal distribution, where the shift
with respect to a pure normal distribution function is reflected by the intercept on the
y-axis. Similar shifted forms are considered for the other distributions, e.g., shifted uniform
distribution on some interval see Figure 13.4 (b).

We aim at an automated procedure for statistical modeling. This means that both the
assignment of a specific distribution class (e.g., shifted normal) to a data set S(i , n) and the
parameter estimation for this class (e.g., w, µ, σ) have to be carried out by a numerical
procedure. As an assignment criterion one may use the Kolmogorov distance Eq. (13.1)
which is justified, for instance, by the Kolmogorov-Smirnov test discussed above, but also
by stability results in stochastic optimization (see Römisch 2003).

More precisely, we assign to a given data set S(i , n) that distribution from our portfolio
which realizes the smallest Kolmogorov distance to the empirical distribution function
in our data set. This idea is illustrated in Figure 13.5: The points {x1, . . . , xN } distributed
along the x-axis represent the measurement data S(i , n) for some exit point n and tem-
perature class i . These points induce an empirical distribution function as defined in
Eq. (13.2), see the staircase function in Figure 13.5. Assume that we have two candidate
distributions which we want to assign to the given data set, e.g., normal distribution or
uniform distribution. Then our choice will be made according to the candidate realizing a
smaller Kolmogorov distance to the empirical distribution function (see vertical bars in
Figure 13.5, indicating the positions at which the largest deviation of the corresponding
distribution functions occur).

The numerical computation of the Kolmogorov distance between a distribution with
distribution function F and the empirical distribution function SN associated with the
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Figure 13.5: Kolmogorov distance between the empirical distribution and the best fitting normal and uniform
distribution, respectively. The empirical distribution function (staircase function) is induced by 20 sample points.
Due to smaller Kolmogorov distance, in this example preference would be given to the normal distribution.

measurement data {x1, . . . , xN } can be carried out according to the simple expression

max
i=1,...,N

max
§����F (xi )−

1
N

#{x j | x j ≤ xi}
���� ,
����F (xi )−

1
N

#{x j | x j < xi}
����
ª

. (13.5)

For the computation, it has to be taken into account that the candidate distributions them-
selves depend on parameters (e.g., mean and standard deviation for the normal distribution
or interval limits for uniform distribution). One possibility to identify these parameters
would rely on estimating them from the given measurement data (e.g., arithmetic mean
and empirical standard deviation for the normal distribution and minimum and maximum
measurements for the interval limits of the uniform distribution). It appears, however,
more natural to subordinate the parameter identification to the same criterion of minimum
Kolmogorov distance as discussed above. More precisely, we are led to solve the following
optimization problem:

min
p

max
i=1,...,N

max
§����F (p, xi )−

1
N

#{x j | x j ≤ xi}
���� , (13.6)

����F (p, xi )−
1
N

#{x j | x j < xi}
����
ª

.

Here, F (p, ·) refers to the distribution function of the specific class in the portfolio depend-
ing on the parameter vector p (e.g., p = (µ,σ) for the normal distribution). According to
Eq. (13.5), the minimization problem above identifies the parameter vector p in a way that
the best fit to the empirical distribution function is realized within the given class. Similar
optimization problems are solved for other distribution classes (uniform, log-normal,
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Table 13.2: Percentage of univariate distributions for the H-gas network for all temperature classes: normal
(ND), shifted normal (shND), lognormal (logND), shifted lognormal (shLogND), Dirac distributed (Dirac),
uniform (UD), and shifted uniform (shUD)

Temp. Class ND shND logND shLogND Dirac UD shUD

(−15 ◦C, −2 ◦C) 40.40 8.75 34.01 5.39 8.08 1.68 1.35
(−2 ◦C, 0 ◦C) 40.40 8.08 31.31 7.07 8.75 3.03 1.01
(0 ◦C, 2 ◦C) 41.41 7.74 30.30 9.76 7.41 0.67 2.69
(2 ◦C, 4 ◦C) 42.42 13.13 22.56 11.78 6.73 0.67 2.02
(4 ◦C, 6 ◦C) 41.75 12.12 21.89 14.14 7.07 0.34 2.69
(6 ◦C, 8 ◦C) 41.08 15.49 18.86 12.46 7.07 2.02 3.03
(8 ◦C, 10 ◦C) 38.72 23.57 15.15 10.10 7.07 1.35 3.70
(10 ◦C, 12 ◦C) 32.32 20.20 20.88 17.17 6.73 0.34 1.68
(12 ◦C, 14 ◦C) 26.60 17.51 24.58 19.53 7.41 0.00 4.04
(14 ◦C, 16 ◦C) 21.55 21.55 27.61 15.49 10.10 0.67 3.03
(16 ◦C, 18 ◦C) 23.23 20.20 26.26 17.85 9.09 0.00 3.37
(18 ◦C, 20 ◦C) 24.58 17.17 23.91 21.55 10.44 0.00 1.68
(20 ◦C, 30 ◦C) 24.92 17.17 25.25 15.82 14.48 1.01 1.01

shifted versions etc.). The choice of the final statistical model is then made according to
the class realizing the smallest of these optimal values along with the associated parame-
ter vector p. Evidently, Eq. (13.6) is equivalent to the following nonlinear optimization
problem:

min
t , p

t

F (p, xi )−
1
N

#{x j | x j ≤ xi} ≤ t for all i = 1, . . . ,N ,

1
N

#{x j | x j ≤ xi}− F (p, xi )≤ t for all i = 1, . . . ,N ,

F (p, xi )−
1
N

#{x j | x j < xi} ≤ t for all i = 1, . . . ,N ,

1
N

#{x j | x j < xi}− F (p, xi )≤ t for all i = 1, . . . ,N .

As starting values for the unknown parameter vector p in this problem one may use
the classic empirical estimates based on the measurement data. The solution of these
optimization problems for all exits of the H-gas and the L-gas network leads to the results
compiled in Table 13.2 and Table 13.3. In case the true distribution type is approximately
normal, the classical estimator (based on estimating mean and variance) and the optimized
estimators (based on solving Eq. (13.6)) are almost identical.

13.4 Multivariate distribution fitting

So far, our statistical models describe the statistical behavior of individual exit points of
the network. To capture the correlations and other relationships among the exits, the
underlying multivariate distributions need to be estimated.

Estimating a multivariate distribution is closely related to an analysis of correlations
between the single univariate distributions. In the context of gas networks, correlations
reflect tendencies of similar or opposite behavior in gas consumption between certain
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Table 13.3: Percentage of univariate distributions for the L-gas network for all temperature classes: normal
(ND), shifted normal (shND), lognormal (logND), shifted lognormal (shLogND), Dirac distributed (Dirac),
uniform (UD), and shifted uniform (shUD)

Temp. Class ND shND logND shLogND Dirac UD shUD

(−15 ◦C, −2 ◦C) 58.01 2.55 35.32 3.97 2.70 3.26 0.43
(−2 ◦C, 0 ◦C) 51.49 3.97 40.85 3.12 2.84 3.12 0.85
(0 ◦C, 2 ◦C) 48.09 4.96 40.85 6.24 2.98 2.41 0.71
(2 ◦C, 4 ◦C) 60.00 9.36 24.82 7.38 2.41 0.85 1.28
(4 ◦C, 6 ◦C) 57.16 11.49 25.39 7.80 2.55 1.42 0.43
(6 ◦C, 8 ◦C) 55.04 18.72 20.43 8.37 2.27 0.71 0.71
(8 ◦C, 10 ◦C) 49.79 18.72 20.71 10.21 2.84 2.27 1.56
(10 ◦C, 12 ◦C) 41.70 21.84 23.69 12.77 2.98 0.99 2.27
(12 ◦C, 14 ◦C) 27.66 20.57 32.77 19.86 2.55 0.28 2.55
(14 ◦C, 16 ◦C) 27.38 18.01 32.06 22.70 3.12 0.28 2.70
(16 ◦C, 18 ◦C) 29.65 17.73 29.50 20.43 5.25 0.57 2.70
(18 ◦C, 20 ◦C) 33.48 15.74 25.67 22.27 6.10 0.57 2.13
(20 ◦C, 30 ◦C) 32.48 14.61 26.52 17.87 10.78 1.42 2.41

groups of exit points. To give a simplified idea, for instance, households could exhibit a
common behavior in gas demands while this may be uncorrelated with the behavior of
industrial clients. Figure 13.6 plots the pairwise correlations between gas demands of exits
from a certain area of the L-gas network. In the respective plots, one recognizes certain
substructures, namely groups of exits being relatively strongly correlated within the group
but only weakly correlated with exits from different groups. It is also revealed that the
correlation pattern is a function of temperature. In the L-gas network, negatively correlated
exits occur more frequently than in the H-gas network (not plotted here). Presumably,
this is due to functional or contractual relationships reflected in the data.

As in the univariate case, a multivariate distribution is uniquely characterized by its
density (if it exists) or, more generally, by its distribution function. Determining such
joint (network-related) distribution on the basis of the individual (exit-wise) distributions
may be very hard or even impossible in a situation where the latter are of very different
character: recall from the distribution types discussed in the previous section that we are
faced not only with continuous but also with discrete or shifted distributions for which
it is not evident how they would fit to a joint multivariate distribution. On the other
hand, for exits obeying a univariate normal distribution, it appears natural to group them
in order to establish a joint multivariate distribution. The latter is characterized by the
density

f (x) = (2π)−k/2 (detΣ)−1/2 exp
�
−1

2
(x −µ)T Σ−1 (x −µ)

�
, (13.7)

where k refers to the dimension (number of exit points), µ is the mean vector, and Σ the
covariance matrix. The parameters µ and Σ can be estimated from the exit-wise mean
values and variances as well as from the correlations between exits. The same procedure
can be applied to exits with a lognormal distribution by simple transformations.

Summarizing, regarding gas demand data one is faced with the situation that a subset of
exit points is appropriate for establishing a partial multivariate model, whereas other exits
(exhibiting Dirac, uniform, or shifted distributions) are difficult to join with the previous
ones to set up a total multivariate model. Therefore, a simplified approach providing
such total multivariate model would consist in assuming these remaining exit points to
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Figure 13.6: Correlation plots for different temperature classes in an area of the L-gas network

have independent distributions with all other exits. This allows to calculate the joint
distribution of the total model as the product of the multivariate normal distribution
with density Eq. (13.7) obtained from exit points with univariate normal or lognormal
distributions on the one hand and all the univariate distributions from the remaining exits
on the other hand.

A reliable estimation of the multivariate normal distribution with density Eq. (13.7)
requires a sufficient amount of data. Given k exit points and a sample size N , it is known
that N ≥ k should hold, since in case of N < k the sample covariance matrix may be
singular and a regularized estimator is needed. It is also known that N =O(k) samples
suffice (see Vershynin 2012). As a rule of thumb, the number of samples in each exit
point should exceed 3k to provide a stable estimate of the covariance matrix Σ. This
requirement turned out not to be satisfied for the subgroup of normal or lognormal exits
in the network due to the limited amount of data. As a remedy, the correlation structure
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as it became visible in Figure 13.6 can be exploited in order to find subgroups of these
exits such that the data requirement is fulfilled for these smaller subgroups and such that
the distribution between different subgroups is almost independent (indicated by small
correlation between exit points of different subgroups). In this way, similar to the total
model discussed before, the partial multivariate normal model is obtained as a product of
smaller multivariate normal distributions each of which is estimated in a sufficiently stable
manner. The analysis of block structures in the correlation matrix can be automated by
means of p-median greedy heuristics based on the distance 1−ρ2

i , j between exit points
i and j , where ρi , j refers to the correlation coefficient between these exits. The greedy
heuristics are also used for scenario reduction in Section 14.2.2. Evidently, the larger the
correlation (positive or negative), the smaller the distance between these exits making it
more likely that they are gathered in a common group.

13.5 Forecasting gas flow demand for low temperatures

In the following we study historical data of exit loads of the considered gas networks,
in order to make a reliable and realistic prediction of the future exit loads for low tem-
peratures. In this particular case, the prediction of gas consumption at the exit points is
extremely important, since it is usually very high in cold seasons. We utilize parametric
as well as semi-parametric non-linear logistic regression models to estimate the gas flow
in dependence of the temperature. The relationship between load flow and temperature
is closely related to empirical models for growth data, which are frequently employed
in natural and environmental sciences, and sometimes in social sciences and economics.
Some examples of such models and their applications can be found in Jones, Leung, and
Robertson (2009), Vitezica et al. (2010), and Jarrow, Ruppert, and Yu (2004).

The articles (Hellwig 2003; Geiger and Hellwig 2002; Wagner and Geiger 2005) suggest
the use of sigmoidal growth models for the description of typical gas load profiles in the
energy sector. An overview of methods useful for understanding the complexity of gas
transportation relying on the mentioned parametric models can be found in Cerbe (2008).

Theoretically, an empirical growth curve is a scatter plot of some measure of the size of
an object against a time variable x. The general assumption is, apart from the underlying
random fluctuation that the underlying growth follows a smooth curve. This theoretical
growth curve is usually assumed to belong to a known parametric family of curves f (x|θ)
and the aim is to estimate the parameters θ using the data at hand. The same type of models
occurs when the explanatory variable x is not the time, but the increasing intensity of
some other factor. We observe a change (in general a reduction) of gas consumption with
increased temperatures, and seek a model with a physical basis and physically interpretable
and meaningful parameters. Detailed description of growth models can be found in Seber
and Wild (2003). As a more flexible alternative, semi-parametric models can be utilized
to tackle the problem. We choose penalized splines (P-splines), which combine two ideas
from curve fitting: a regression based on a basis of B-splines and a penalty on the regression
coefficients (see Wegman and Wright 1983; Eilers and Marx 2010; Eilers and Marx 1996).
This approach emphasizes a modeling based on smooth regression, where the penalty
controls the amount of smoothing. We follow in particular a similar approach as proposed
in (Bollaerts, Eilers, and Mechen 2006), where the authors incorporate shape constraints
into the P-splines model.

Typical exit points in the considered gas networks are public utilities, industrial con-
sumers, and storages, as well as exit points on national borders and market crossings. An
important aspect to consider in the forecast is the so-called design temperature. The design



13.5. Forecasting gas flow demand for low temperatures 291

temperature is defined as the lowest temperature at which the network operator is still
obliged to supply gas without failure, and differs within Germany depending on the climate
conditions in different regions. It usually lies between −12◦ and −16◦ Celsius. Such low
mean daily temperatures are very uncommon in Germany, and we rarely encounter load
flow data available at the design temperature. For this reason, prediction is usually the
only way to estimate gas loads at the design temperature of the network, and we investigate
several possible models suitable for the forecast.

For the aim of forecasting, we search for a fitting curve that can be interpreted as a
curve of expected values in dependence of temperature. The expected values estimated in
this way can be used in Chapter 14 as input parameters necessary for sampling gas load
under particular distribution for low temperature intervals where non-sufficient data are
available. The type of distribution assigned to these low temperature intervals containing
almost no data is usually taken to coincide with the one of the neighboring temperature
intervals. The neighboring interval is chosen in such a way that its estimated distribution
is sufficiently reliable and stable. Thus, these temperature intervals corresponding to the
exceptionally low temperatures share the same distributional properties, i.e., deviation and
multivariate information as variance and correlation w.r.t. the mentioned nearest warmer
temperature interval, but differ in their expected value resulting from the fitted curve. We
refer to Chapter 14 for further discussion on this issue.

The data sets considered for fitting a curve of expected values in gas networks are usually
large, including in some cases many periods (years) of data. Therefore for the aim of fitting
a curve it is sometimes recommendable to cluster the data in convenient subintervals of
temperatures and replace the data within a subinterval through its empirical average. This
is done in order to reduce the size of the data set and therefore the dimensionality of
the underlying optimization problems, in order to avoid very ill conditioned numerical
problems. This strategy also allows the elimination of undesired outliers, by considering
only subintervals where the sample size is big enough to be significant. To this end, we
follow a criteria based on the Central Limit Theorem and define a sample size N on a
subinterval to be significant if N ≥ 16σ̂2/(U µ̂)2, N ≥ 2, where µ̂ and σ̂ are the estimated
mean and standard deviation from the i.i.d. sample, and U is the number of deviation
units measured in terms of |µ̂|. The latter condition means that we ask for the sample
size N to be big enough such that the width of a 95 % confidence interval for the standard
error of µ̂ can be covered by fixed U units of |µ̂|.

13.5.1 Parametric models

In the case of parametric models, the basic assumption is that the growth curve belongs to
a well known parametric family of curves. The physical interpretability of parameters in
the model usually motivates the choice of the growth curve. Based on agreements between
the network operators (see [KoV]), we take the following sigmoidal growth model to
describe the dependence of gas consumption on temperature:

yi = S(ti |θ)+ εi .

Here yi denotes the standardized daily mean gas flow, and the corresponding expected
value (or mean) curve parameterized in θ= (θ1,θ2,θ3,θ4) is given by

S(ti |θ) = θ4+
θ1−θ4

1+
�

θ2

ti − 40

�θ3
. (13.8)
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The curve depends on the predictor ti , which stands for the weighted four-day mean
temperature with weights given in the following form

ti =
3∑

j=0

w j ti j , w0 =
8
15

, w1 =
4
15

, w2 =
2
15

, w3 =
1
15

, (13.9)

where ti0, ti1, ti2, and ti3 are the temperatures corresponding to the days i , i−1, i−2, i−3.
Finally, εi is an error term reflecting zero mean and constant variance.

The articles (Geiger and Hellwig 2002; Cerbe 2008) introduce this kind of models for
description of typical gas loads in dependence of temperature. According to the description
of the log-logistic model provided by Ritz and Streibig (2008), the parameters θ1 and θ4 in
Eq. (13.8) represent upper and lower horizontal asymptotes on the curve, and the other
two parameters describe the shape of the decrease of the (logistic like) curve. From the
point of view of the energy industry, Geiger and Hellwig (2002) discuss the meaning of
parameters in the following way: θ4 describes the constant share of energy for warm
water supply and process energy, while the difference θ1−θ4 explains extreme daily gas
consumption on cold days. Parameter θ2 indicates the beginning of the heating period, i.e.,
the change point from the constant gas loads in summer to the increasing consumption in
the heating period, and θ3 measures flexibly the dependence in the heating period.

The authors in (Geiger and Hellwig 2002) note that apart from the choice of the
appropriate mean function S(ti |θ), the adequate aggregation of mean daily temperatures
to be included in the explanatory variable ti is essential. Physical properties of buildings
play an important role here. The four-day mean temperature is motivated by the fact
that typical buildings in Germany accumulate the heat up to 85 hours, and the use of
weights as in Eq. (13.9) is suggested. The weights given by Eq. (13.9) are obtained from
the standardized geometric series with basis 2 applied to the temperature of the last four
days, i.e.,

ti =
ti0+

ti1
2 +

ti2
4 +

ti3
8

1+ 1
2 +

1
4 +

1
8

=
3∑

j=0

w j ti j .

Based on these facts, German gas transportation companies agreed to use the sigmoidal
function S(ti |θ) defined in Eq. (13.8) with the explanatory variable ti given by Eq. (13.9) to
describe the dependence of gas loads on temperature and to forecast the gas consumption
at the design temperature.

Several generalizations of the basic sigmoid model have been considered in order to
improve the forecasting of gas loads (see Friedl, Mirkov, and Steinkamp 2012; Leövey et al.
2011). The sigmoid model and its generalizations so far represent a rough characterization
of the mean gas load. The resulting forecast usually underestimates the mean responses
for low temperatures. An alternative approach based on semi-parametric models has been
also considered in order to achieve a more accurate forecast for low temperatures, and will
be described in the following section.

13.5.2 Semi-parametric models

The nuances missed by the sigmoidal models, as well as the numerical difficulties that
arise in the resulting non-convex nonlinear optimization problems, motivates the search
for alternative and, in some sense, simpler models that overcome these difficulties. One
possibility is to use semi-parametric models, such as locally weighted regression (Cleveland
1979) or spline models. Unfortunately, locally weighted regression models are not suitable
for prediction. Many authors propose some variant of spline regression for this kind of
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problems, see, e.g., Jones, Leung, and Robertson (2009), Vitezica et al. (2010), Jarrow,
Ruppert, and Yu (2004), Mackenzie, Donovan, and McArdle (2005), Cadorso-Suárez et al.
(2010), and Riedel and Imre (1993).

In our case, we choose the penalized splines (P-splines) approach, based on Wegman and
Wright (1983), Eilers and Marx (1996), Eilers and Marx (2010), and Bollaerts, Eilers, and
Mechen (2006). This choice is motivated by its simplicity and flexibility. The optimization
problems resulting from the fitting problem are convex and solutions can be obtained
through solving a system of linear equations. The advantage of P-splines over B-splines is
the easy control of smoothness as well as the simple way to handle spline knots, i.e., their
number and their positions. As emphasized by Jarrow, Ruppert, and Yu (2004), another
advantage of the P-splines method is that knots can be chosen automatically. The number
of knots should be sufficiently large to accommodate the non-linearity of the underlying
data. Additional shape constraints lend even more flexibility to the model, since the shape
of the curve on boundaries can be adjusted if necessary.

We use the following model to describe the dependence of the gas loads yi on tempera-
ture ti :

yi = S∆(ti )+ εi ,

where yi is usually taken to be a daily mean gas flow at a particular exit point of the
network, and ti stands for the weighted four-day mean temperature, with the weights w
described in Eq. (13.9). The function S∆(t ) is given by the linear combination of basis
spline functions B j , j = 1, . . . , m, on the mesh∆, given by

S∆(ti ) =
m∑

j=1

a j B j (ti ),

and εi , i = 1, . . . , n, are random noise terms reflecting zero mean and constant variance.
The functions B j are basis functions of the B-spline of degree q . The mesh ∆ results by
taking first an equidistant grid with m − q segments extended over the set of data that
includes only subintervals with significant sample size, and then we modify the grid by
replacing the least and maximal knots with knots at the design temperature tmi n and at
the maximal temperature tmax correspondingly. The resulting mesh∆ contains m− q − 1
inner knots.

If we introduce a smoothing penalty parameter λ, then instead of minimizing a least
squares criterion like

n∑
i=1

(yi − S∆(ti ))
2 ,

the objective function to be minimized is the penalized residual sum of squares

n∑
i=1

(yi − S∆(ti ))
2+λ

m∑
j=k+1

(δk (a j ))
2,

where δk (a j ) denotes the k-th order finite differences of the coefficients a j of the corre-
sponding B-splines. For the work described here, we use in particular the second order
finite difference δ2(a j ) := a j − 2a j−1+ a j−2, j = 3, . . . , m.

The first order shape constraints can be added to the P-splines approach, following
Bollaerts, Eilers, and Mechen (2006) or by imposing linear constraints on the spline
coefficients a j and solving the resulting constrained least-squares optimization problem.
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Figure 13.7: Shown are the P-splines, B-splines (λ = 0) and sigmoid fitting mean curves with 9 cubic splines
based on significant mean values on 1 ◦C width subintervals, with U = 0.4, tmi n =−16, tmax = 30.

Several available commercial optimization solvers can be used for this purpose. In our
approach, we include first-order boundary derivative constraints

∂ S∆
∂ t
(tmi n) =

∂ S∆
∂ t
(tmax ) = 0,

aiming to simulate a constant consumption beyond the design temperature tmi n and the
considered maximal temperature tmax . Positivity constraints where also added to ensure
that the fitted mean curve remains positive. Different criteria for a robust choice of the
smoothing parameter λ can be founded in Lee and Cox (2010). We adopted the strategy
called absolute cross validation (ACV) by Lee and Cox (2010, Section 3.2), which yields
very good results for the forecasting of the mean curve in the considered gas networks.

Based on data from a typical statistical exit point of the gas network, Figure 13.7
compares P-splines, B-splines (λ= 0), and sigmoid fitting mean curves.


