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Abstract We formalize the problem to verify the legal requirement that transport
situations arising from booked capacity rights shall be technically feasible. In
particular, we propose a stochastic version of the problem of verifying booked
capacities together with two heuristic solution methods. These methods have been
designed as decision-support tools for real-world usage by transmission system
operators (TSOs). Our approach is based on combining a stochastical model with
an adversarial model to an overall model for the transport situations requested
by the transport customers. The first method is based on sampling to capture the
stochastic information, whereas the second method uses multivariate quantiles
for that purpose. Both methods generate a set of nominations that are checked for
technical feasibility to arrive at an overall conclusion.

As described in Chapter 3, gas transmission system operators (TSOs) sell capacity rights to
transport customers. Booking, i.e., buying, capacity rights entitles a transport customer
to inject gas at entry points and/or withdraw gas at exit points of the gas network. In
particular, TSOs are obliged to offer as much capacity as possible as freely allocable capacity
(FAC), which enables transport customers to use entry and exit capacities independently
(see Section 3.2.2 for details). However, a TSO may only sell capacity rights for which it
can guarantee that each “likely and realistic” [GasNZV 2005, §9] load flow complying
with the capacity rights booked by all transport customers can technically be realized.
Thus a TSO needs a way to check this requirement.

This chapter presents methods that (heuristically) reduce this problem to checking
a (potentially large) set of possible load flows for technical feasibility. In particular, we
discuss how a suitable set of load flows may be obtained and how conclusions can be drawn
from the corresponding feasibility tests. Methods for performing these feasibility tests are
addressed in great detail in Chapters 6–10. The methods presented are, due to the high
complexity of the real-world problem, heuristical in several aspects which are discussed in
more detail in the final section of this chapter.
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14.1 Motivation and outline of the approach

In order to formalize the problem of verifying that the load flows corresponding to a set
of booked capacity contracts are technically feasible, we introduce some terminology (for
types of capacity contracts, see Sections 3.2 and 3.3.2). Recall from Section 3.2.1 that using
a gas transmission network is a two-step process: First, one has to book, i.e., buy, capacity
contracts from the TSO. The day before the actual transmission is going to take place, one
has to nominate the amount of gas that will be injected or withdrawn, according to the
limitations of the capacity contract.

We define a booking B to be the set of all capacity contracts booked with the network
operator at a certain point in time. We will see in Section 14.4 how such capacity contracts
can be modeled in detail; for now it is sufficient that they prescribe certain conditions on
load flows in the gas network. Let V+ and V− denote the set of entry and exit points of the
gas network, respectively, and denote by V± the union of these two sets. We represent load
flows in the gas network by load flow vectors. A load flow vector is a vector P = (Pu )u∈V±
that specifies, for each entry and exit, a load flow. Throughout this chapter, we will assume
that load flows are specified in terms of power. As explained in Section 5.3.3, the load
flows specified in power may be converted to ones specified as mass flows for checking
their technical feasibility. We call a load flow vector booking-compliant, if it satisfies all
conditions that are related to the capacity contracts in a booking B .

A nomination is a load flow vector P = (Pu )u∈V± that is balanced, i.e., satisfies the
condition ∑

u∈V+

Pu =
∑
u∈V−

Pu .

Finally, we call a nomination technically feasible, if the gas network can be controlled such
that the gas flow specified by the nomination is realized.

It is important to observe that this concept of nomination is an idealization of the
process of nominating in two ways (see Section 3.2.1): First, load flows in a real gas network
do not have to be balanced at any point in time, but only for longer balancing periods, for
instance 24 hours. Second, strictly speaking load flows are only nominated at a subset of
the points, e.g., at storages or the virtual trading point (VTP).

We introduce the following sets of load flow vectors:

B= = set of booking-compliant nominations,
T = set of technically feasible nominations.

Then, the task of the gas network operator can be formalized by asking whether the
inclusion

B= ⊆T (14.1)

holds, i.e., (14.1) means that any booking-compliant nomination should be technically
feasible. This is the deterministic version of the verification of booked capacities.

Checking this inclusion in a mathematically exact sense seems to be hopeless in practice,
since even checking a single booking-compliant nomination for technical feasibility requires
solving a non-convex Mixed-Integer Nonlinear Program (MINLP), whose combinatorial
part is already NP-hard (Szabó 2012). Under some additional assumptions, it would be
sufficient to check the relation P ∈ T for a finite number of nominations P . For instance,
given a polyhedral structure of the setB= and assuming convexity of the set T (which
does not hold true in general), the verification of (14.1) can be done by checking P ∈ T for
the finitely many vertices of the polytopeB=: If P1 ∈ T and P2 ∈ T , so is the line [P1, P2]
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by convexity of T . Thus the fact that all vertices ofB= are in T implies thatB= ⊆T .
However, even for a moderate number of entry and exit points in the network, the number
of vertices becomes astronomical. For instance, the polytope arising by intersecting the
d -dimensional unit hypercube with one hyperplane given by the equation 1T x = k, k ∈Z,
has at least

�d
k

�
vertices if 2 ≤ k ≤ d − 1. In the simplest case,B= might be given by a

box [`, u]⊆Rd for `, u ∈Rd and a balancing equation 1T P = c with ‖`‖1 < c < ‖u‖1,
which is affinely equivalent to the polytope just mentioned. Thus one cannot benefit from
finiteness in a computationally relevant sense.

Given the impossibility of checking (14.1) exactly, the question arises of how to find
a finite subset of testing nominations {P 1, . . . , P N } ⊂B= such that the relations P i ∈ T ,
for i = 1, . . . ,N , provide a reliable substitute for the verification of (14.1). Of course,
sampling ofB= should take into account historical information about nomination be-
havior. Moreover, as explained in Section 3.3.1, this is also required by current regulation
rules. Depending on the considered gas network, the load flow at a subset of the points
may be modeled stochastically. For instance, this is the case for exits belonging to public
utilities where gas is usually used for heating and the load flow thus depends on the am-
bient temperature, which may be modeled stochastically as explained in Chapter 13. It
is therefore justified to use probability distributions for the load flow estimated on the
basis of historical data to predict future load flow patterns at these points with a certain
probability. We collect the points for which this is reasonable in the set Vstat and call
them statistical points. We assume in the following that a stochastical model for the load
flows of the statistical points is available. More precisely, we assume there is a random
vector ξ : Ω→RVstat defined on a suitable probability space (Ω,A ,P), e.g., derived by the
data analysis from Chapter 13. We will call the random vector ξ of the loads at the statisti-
cal points random load vector. An element of RVstat , and thus in particular a realization
of ξ , is called statistical load scenario.

However, there are also points for which a stochastic model is not appropriate. For
instance, the behavior of entries and storages is mainly market-driven, hence difficult to
model in a stochastic way. This lopsided constellation suggests to consider a substitute for
inclusion (14.1) which takes into account that a stochastic model for the statistical points
is used. To be more precise, let π denote the projection of a load flow vector P onto the
statistical points, i.e., π(P ) = (Pu )u∈Vstat

. Moreover, let Pstat ∈RVstat be any load flow vector
at the statistical points. Then, (14.1) is equivalent to the partitioned inclusion

π−1(Pstat)∩B= ⊆T for all Pstat ∈RVstat , (14.2)

stating that all booking-compliant nominations extending any Pstat are technically feasible.
This requirement, however, is much too restrictive and unrealistic, because the given
inclusion always bears the risk to be violated by some extreme but very unlikely load flow
vectors P . At this place, the exploitation of stochastic information makes sense. Taking
into account the stochastic character of the random load vector ξ , we relax the strict “for
all” relation (14.2) by a probabilistic condition of the form

β :=P(π−1(ξ )∩B= ⊆T )≥ α, (14.3)

requiring that (14.2) holds with a specified probability α ∈ (0,1) only. This is the stochastic
version of verification of booked capacities on which we will focus for the remainder of this
chapter. We call the probability β the validity probability of the booking B . With the
terminology introduced above, Inequality (14.3) expresses the condition that with at least
probability α, every booking-compliant nomination extending the random load vector ξ
will be technically feasible. Of course, the choice of which points to treat as statistical
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points and the particular choice of a concrete probability level α ∈ (0,1) (typically close to
one) has to be agreed upon, based on experience, governmental rules, or common sense.

In order to explain the proposed methods to numerically check condition (14.3), we
introduce two functions Γ : RV

stat →P (RV±) and νT : P (RV±)→ {0,1}, where P (RV±)
denotes the power set ofRV± . The function Γ maps a statistical load scenario s to its set of
booking-compliant extending nominations, i.e., we have s 7→ π−1(s)∩B=, whereas νT
indicates whether all nominations of a set of nominations are technically feasible. Moreover,
we define ΥB := νT ◦ Γ . With this notation, we can rewrite condition (14.3) as

β=P(ΥB (ξ ) = 1)≥ α. (14.4)

Assume for the moment that we could evaluate ΥB (s) for a given statistical load sce-
nario s . One natural way to check condition (14.4) is to compute the probability on the
left hand side. We can rewrite this probability as

P(ΥB (ξ ) = 1) = 1 ·P(ΥB (ξ ) = 1)+ 0 ·P(ΥB (ξ ) = 0) =EP[ΥB] =
∫
Ω

ΥB dP.

Thus the computation of the probability can be seen as the numerical estimation of high-
dimensional integrals. In Section 14.2 we use techniques like Quasi-Monte Carlo methods
and scenario reduction to construct a discrete set of statistical load scenarios {s1, . . . , sN }
with associated probabilities p1, . . . , pN . This set is the basis of an estimator for the above
integral which evaluates ΥB once for each s i , 1≤ i ≤N .

A conceptually different approach described in Section 14.3 relies on so-called multi-
variate quantiles to check condition (14.4) directly. The basic idea is to construct a special
statistical load scenario ŝ that satisfies

P(ξ ≤ ŝ)≥ α,

i.e., that dominates ξ with high probability. Assuming a certain monotonicity condition,
ΥB ( ŝ) = 1 then implies P(ΥB (ξ ) = 1)≥ α.

It remains to discuss how to evaluateΥB (s ) for a given statistical load scenario s . Observe
that this task can in principle be achieved by a procedure that either generates a booking-
compliant nomination extending s that is not technically feasible (certifying ΥB (s ) = 0) or
establishes that no such nomination exists (certifying ΥB (s ) = 1). Given the complexity of
checking technical feasibility, it is unlikely to develop a practically efficient method for
this purpose. Therefore, we propose an adversarial heuristic that tries to construct a small
set of extending nominations that are challenging for the gas network, i.e., which are likely
to be technically infeasible if the validity probability β of the booking is too low. This
adversarial heuristic is based on a model for the setB= of booking-compliant nominations,
presented in Section 14.4. The heuristic itself is based on sampling again and takes into
account expert knowledge from network planners. It is explained in Section 14.5.

Section 14.6 puts all the pieces together and describes the two resulting overall methods,
one based on sampling, the other using multivariate quantiles to capture the stochasticity
of the load flows at the statistical points. From a high-level viewpoint, both methods work
as follows:

1. Generate a set of statistical load scenarios that carry the stochastic information and
provide load flows at the statistical points.

2. Use the adversarial heuristic to compute a set of booking-compliant nominations
extending each statistical load scenario.

3. Check these nominations for technical feasibility and draw an overall conclusion from
these outcomes.
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Apart from the adversarial heuristic, there are more heuristic aspects involved in these
methods. These are discussed in Section 14.8, which also concludes the chapter.

14.2 Sampling statistical load scenarios for verifying booked capacities

As described in the previous section, the load flow of a substantial part of the points of
the considered gas network can be modeled stochastically. For these statistical points,
historical data is available and a carefully selected probability distribution model P for
load flow can be calibrated. We will refer to the dimension d as the number of considered
statistical points. As mentioned before, the considered set of statistical points is large, with
values of dimension d that can range into several hundreds.

For a fixed booking B , one would like to know the validity probability β under the
load flow distribution P. The completion and validation (in the sense of checking the
technical feasibility) of a statistical load scenario s i is a process that can be interpreted as a
(measurable) function ΥB : RVstat →R. In the simplest case, ΥB assigns to every generated
statistical load scenario s i , 1≤ i ≤N , the value of “1” in case of technical validity under
the given booking B , or “0” otherwise. In a more general case, we can consider a validity
function Υ ∗B : RVstat → [0,1], where now the validation process can return values between 0
and 1. In this generalized setting, the task is defined to be the estimation of EP

�
Υ ∗B
�

in
order to take a decision of accepting or rejecting a booking, which is a high-dimensional
integration problem. In our case, and as it is usual in many practical high-dimensional
problems in simulation, the statistical points have been modeled with distributions over
Ω=Rd that allow us to consider a bijective transformation Φ : Rd → (0,1)d changing the
original problem into an integration problem over the unit cube. The integration problem
takes now the form

EP[Υ
∗
B ] =

∫
Rd

Υ ∗B dP=
∫
[0,1]d

Υ ∗B (Φ
−1(x))dx. (14.5)

The latter equality is valid since an arbitrary extension of Φ−1 to the boundary of [0,1]d
can be carried out, because the zero-measure boundary set does not influence the value of
the resulting integral.

In the following we describe high-dimensional integration methods for approximating
the desired expectation in (14.5) starting with Monte Carlo methods, moving to Quasi-
Monte Carlo and finally to a hybrid method, namely, randomized Quasi-Monte Carlo.
The choice of the transformation Φ is of essential importance for the problem of sampling
in high-dimensions. It usually has a strong influence in what is called the effective dimension
of the problem. We will discuss this issue in Section 14.2.1, where we also argue why the
class of randomized Quasi-Monte Carlo methods is preferable for our application.

In the classical Monte-Carlo (MC) approach (see Niederreiter 1992) one tries to estimate
(14.5) by generating statistical load scenarios pseudo-randomly. Starting with a finite
sequence of independent identically distributed (i.i.d.) samples SN = {s1, s2, . . . , sN }, where
the points s i , 1≤ i ≤N , are uniformly distributed in [0,1]d , the average of a given target
function f

QN ( f ) :=
1
N

N∑
i=1

f (s i ),

is taken as an approximation of a desired integral Id ( f ) =
∫
[0,1]d f (x)dx. The resulting

estimator QN ( f ) is unbiased, and the error can be approximated via the central limit
theorem, assuming that f is square-integrable. The variance of the estimator QN ( f ) is
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given by

Var[QN ( f )] =
σ2( f )

N
=

1
N

 ∫
[0,1]d

f 2(x)dx −
�∫
[0,1]d

f (x)dx

�2!
.

The resulting integration error associated to the MC approach is then of order O(N−
1
2 ).

The quality of the MC samples relies on the selected pseudo-random number generators
of uniform samples in [0,1]d . Good accessible generators to this end are for example the
Mersenne Twister from Matsumoto and Nishimura (1998) and MRG32k3a from L’Ecuyer
(1999). MC is in general a very reliable tool in high-dimensional integration, but the order
of convergence is in fact poor. Since validation of nominations in real-world gas network
can be a very time consuming procedure, the search for good tools improving the accuracy
of estimation, or reducing the amount of samples needed to reach a desired accuracy, is
essential.

In contrast to MC methods, Quasi-Monte Carlo (QMC) methods are deterministic
methods based on sequences of points that are more regularly distributed than the pseudo-
random points from MC (see L’Ecuyer and Lemieux 2005; Novak and Woźniakowski
2010; Dick and Pillichshammer 2010; Kuo, Schwab, and Sloan 2011). Using QMC, one can
expect in many practical situations with high dimensional integrands an error convergence
of order O(N−1), if the integrands are sufficiently smooth. Typical examples of QMC
are modern shifted lattice rules and low-discrepancy sequences. To define what we mean
by “regularly distributed”, we now introduce the classical notion of discrepancy (see
Niederreiter 1992) of a finite sequence of points SN in [0,1)d .

Definition 14.1. Let S = {s1, . . . , sN } be an arbitrary set of points in [0,1)d . The discrepancy
of S w.r.t. to an interval [0,a)⊆ [0,1)d is measured by the function

disc(S,a) =
N∑

j=1

χ[0,a)(s
j )−

d∏
i=1

ai ,

where χ[0,a)(·) is the characteristic function of [0,a). Let D = {1, . . . , d} and define x̂I for any
x ∈ [0,1]d and I ⊆D by

x̂I =
¨

xi i ∈ I ,
1 otherwise.

Then

Dr (S) =
� ∑
;6=I⊆D

∫
[0,1]|I |

|disc(S, x̂I )| r dxI

� 1
r

is called Lr -discrepancy of the point set S, r ∈ [1,∞], with the obvious modification for
r =∞. The L∞-discrepancy is also called star discrepancy and denoted by D?(S).

The star discrepancy gives a measure of the worst difference, for a given finite point set
S = {s1, . . . , sN }, between the uniform distribution and the sampled distribution in [0,1)d
attributed to the set S. In the context of QMC, a sequence of points in [0,1)d is called a
low-discrepancy sequence if D?(S) =O(N−1(log(N ))d ) for all truncations of the sequence
to its first N terms.

The usual way to analyze QMC as a deterministic method is to choose a linear normed
space F of functions on [0,1)d with norm ‖·‖ and an associated discrepancy D(SN ) for the
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point sequence SN . Then, the deterministic integration error can be estimated by

|QN ( f )− Id ( f )| ≤D(SN )‖ f ‖
for all functions f ∈ F . Such estimates are called Koksma-Hlawka type inequalities due to
the classical Koksma-Hlawka inequality (see Niederreiter 1992), where D(SN ) is taken to
be the star discrepancy of the point sequence SN and ‖ f ‖ is the variation in the sense of
Hardy and Krause of f .

In modern QMC error analysis, one often considers weighted reproducing kernel
Hilbert spaces (RKHS) as function spaces (see Kuo, Schwab, and Sloan 2011). In this context
one obtains an error bound in the above form, where D(SN ) represents a weighted L2-
discrepancy. If the considered weights satisfy some particular decay conditions, describing
a decay of importance of the variables or group of variables, then the discrepancyD(SN ) can
be reduced at a rate O(N−1+δ ), δ ∈ (0, 1

2 ], with a constantδ independent of the dimension
d , in a tractable way with specially constructed shifted lattice rules and low-discrepancy
sequences (see Kuo, Schwab, and Sloan 2011).

In practice, randomly shifted lattice rules and low-discrepancy sequences are both
competitive techniques of QMC. Our choice for generation of statistical load scenarios
using digital sequences, namely, Sobol’ sequences, is a special case of low-discrepancy
sequences that are included in the category of (t , m, d )-nets and (t , d )-sequences (Dick
and Pillichshammer 2010). In some sense, shifted lattice rules are adaptive in the way that
they allow using information of the target integrand to fix the generating vector of the
lattice, if the given integrand is smooth enough (Griewank et al. 2013). On the other hand,
digital sequences focus more on other features as the discrepancy, thus they are constructed
independently of the integrand at hand. In our case for the validation of statistical load
scenarios, we do not know explicitly how the integrand looks like. We do know that
in practice the validity function can be taken of the form ΥB : RV± → {0,1}, presenting
discontinuity jumps.

There are some practical advantages in retaining the probabilistic scheme of the sam-
pling, while using these nice deterministic constructions called digital sequences. Therefore
we have focused on hybrid methods permitting us to combine the best features of MC and
QMC together. Randomization is an important tool in high-dimensional integration if
we want to estimate the error of our approximation QN ( f ) to the desired integral. One
goal is to randomize the deterministic point set SN generated by QMC in a way that the
randomized points in the set S̃N have the uniform distribution over [0,1)d . Thus the
resulting estimator QN ( f ) preserves unbiasedness. The second goal is to preserve the
better equidistribution properties of the deterministic construction. The simplest form of
randomization applied to digital sequences seems to be the technique called digital b -ary
shifting, see (L’Ecuyer and Lemieux 2005, Section 5.2) and the references therein.

We choose b = 2, i.e., we use random digital binary shifting to obtain our randomized
QMC method that works as follows. To obtain a final point ũ ∈ [0,1]d , we generate a
point u ∈ [0,1]d from the underlying Sobol’ sequence and a pseudo-random vector∆ uni-
formly distributed in [0,1)d . We then consider the binary expansions of each component
of both u and∆ that are given by

∆ j =
∞∑
l=1

δ j l 2
−l and u j =

∞∑
l=1

u j l 2
−l for all j = 1, . . . , d .

The random digital binary shifted Sobol point ũ is then computed by

ũ j =
∞∑
l=1

(u j l +δ j l )2
−l for all j = 1, . . . , d ,
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(a) N = 256 Monte Carlo Mersenne-Twister
samples for d = 500, projection (8,9)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

(b) N = 256 RQMC random digital binary
shifted Sobol’ points for d = 500, projection
(8,9)

Figure 14.1: Comparison of Monte Carlo Mersenne-Twister and RQMC samples

where the addition is modulo 2. A comparison of MC samples generated by the Mersenne-
Twister pseudo-random generator and random digital binary shifted Sobol’ points is shown
in Figure 14.1.

14.2.1 Justification of using randomized QMC methods

A partial explanation to the success of QMC against MC can be given by considering
the ANOVA (Analysis of Variance) decomposition of the functions at hand. If the inte-
grands (maybe after a proper transformation) have the property that few ANOVA terms
corresponding to the interaction of few variables accumulate most of the variance of the
integrand, and if these important ANOVA terms exhibit enough smoothness, then we can
expect that QMC will perform better than MC for integration.

Using ANOVA we decompose a function into a sum of simpler functions (see Sobol’
2001). Let D = {1, . . . , d}. For any subset I ⊆ D, let |I | denote its cardinality and D \ I
be its complementary set in D . Let xI = (x j ) j∈I be the |I |-dimensional vector containing
the coordinates of x with indices in I . Now assume that f is a square integrable function.
Then we can write f as the sum of 2d ANOVA terms:

f (x) =
∑
I⊆D

f I (x),

where the ANOVA terms f I (x) are defined recursively by

f I (x) =
∫
[0,1]d−|I |

f (xI , xD\I )dxD\I −
∑
I ′(I

f I ′(x),

and f ; = Id ( f ). The sum of the right-hand side is over strict subsets I ′ 6= I , and we
use the convention

∫
[0,1]0 f (x)dx; = f (x). Note that the ANOVA decomposition is

L2-orthogonal.
In many practical applications, one encounters functions for which the total variance

is concentrated in a small portion of its ANOVA terms. The notion of effective dimension
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of a function was first introduced by Caflisch, Morokoff, and Owen (1997) to describe the
contribution of a group of variables to the total variance.

Definition 14.2. A function f is said to have effective dimension dt in the truncation sense
with proportion p, for 0< p < 1, if dt is the smallest integer that satisfies∑

I⊆{1,...,dt }
σ2

I ( f )≥ pσ2( f ),

where σ2
I ( f ) denotes the variance of the ANOVA term f I (x).

It is known that the lower order ANOVA terms of an integrand can exhibit substantially
more smoothness than the integrand itself, even if the integrand presents discontinuity
jumps (Griebel, Kuo, and Sloan 2010; Griebel, Kuo, and Sloan 2013; Heitsch, Leövey,
and Römisch 2012). Therefore effective dimension reduction techniques based on suitable
transformations of the integrand are essential. In Gaussian integration, the particular
choice of matrix factorization usually has a strong influence in the effective dimension
of the problem and in the performance of QMC. Principal components analysis (PCA)
decomposition (Wang and Fang 2003) is usually recommended to be applied if feasible, and
this is the method of choice for generating multivariate Gaussian samples for statistical load
scenarios. It is well known that PCA can reduce the effective dimension and improve the
performance of QMC for many integrands considered in mathematical finance (Glasserman
2004; Wang and Sloan 2005), and the same has been shown recently in two-stage linear
stochastic optimization problems (Heitsch, Leövey, and Römisch 2012).

In most examples encountered in practical applications requiring moderate or small
sample sizes N , one expects that randomized QMC will work at least as good as MC. Thus,
there is usually no loss in replacing MC by particular good randomized versions of QMC.
We can expect in many cases even a benefit using QMC if the given integrands can be
well approximated by low dimensional smooth functions (Kuo, Schwab, and Sloan 2011),
exhibiting in many cases order of convergence close to O(N−1).

14.2.2 Scenario reduction

Scenario reduction may be desirable in many situations when the underlying scenario
models already happen to be large scale and the incorporation of a large number of
scenarios leads to high computation times. The basic idea of scenario reduction consists
in determining a (nearly) best approximation in terms of a suitable probability metric of
the underlying discrete probability distribution by a probability measure with smaller
support. The metric should be associated to the mathematical model in a canonical way
such that the model behaves stable with respect to changes of the probability distribution.
Several canonical metrics are discussed by Römisch (2003).

Since the relevant optimization and feasibility problems of this book are mixed-integer
nonlinear with stochastic inputs, the so-called discrepancies (see, for example, Römisch
2003) and, in particular, the Kolmogorov distance appear to be suitable probability metrics.
We refer to the monograph by Rachev (1991) for a survey of probability metrics and their
properties.

Let P denote a discrete probability distribution onRd with statistical load scenarios s i

and probabilities pi , i = 1, . . . ,N , and PJ a discrete probability distribution with scenarios
s j and probabilities p ′j , j 6∈ J . Hence, the support ofPJ is a subset of the support ofP, and
J denotes the index set of deleted scenarios from those of P. The Kolmogorov distance be-
tween two probability distributions is defined as the uniform distance of their (cumulative)
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distribution functions. In our special case, we have

DK (P,PJ ) = sup
x∈Rd

��� 1
N

N∑
i=1,s i≤x

pi −
∑

j 6∈J ,s j≤x

p ′j
���.

However, the numerical results by Henrion, Küchler, and Römisch (2009) show that
the problem of optimal scenario reduction with respect to the Kolmogorov distance can
presently not be solved in reasonable time for higher dimensions d .

Therefore, we employ alternatively the L1-Wasserstein or Kantorovich distance of P
and PJ given by

W1(P,PJ ) =min

(
N∑

i=1

∑
j 6∈J

ηi j

s i − s j


1

������ηi j ≥ 0,
N∑

i=1

ηi j = p ′j ,
∑
j 6∈J

ηi j = pi

)
.

Clearly, computing W1(P,PJ ) means solving a linear program of dimension nN . The
problem of optimal scenario reduction then consists in determining the best approximation
of P by a distribution PJ with J ⊂ {1, . . . ,N} and |J |=N − n for given n <N , i.e., it may
be written as

min
n

W1(P,PJ )
��� J ⊂ {1, . . . ,N}, |J |=N − n, p ′j ≥ 0 for j 6∈ J ,

∑
j 6∈J

p ′j = 1
o

or
min

�
DJ

�� J ⊂ {1, . . . ,N}, |J |=N − n
	
, (14.6)

where DJ denotes the minimum of W1(P,PJ ) with respect to p ′j ≥ 0, j 6∈ J , and
∑

j 6∈J p ′j =
1. The minimum may be computed as (see Dupačová, Gröwe-Kuska, and Römisch 2003):

DJ =
∑
j∈J

p j min
i 6∈J

s i − s j
 ,

and the corresponding optimal weights p ′j , j 6∈ J , are given by the (optimal) redistribution
rule

p ′j = p j +
∑

i∈I ( j )

pi for all j 6∈ J ,

where

I ( j ) = argmin
i∈J

s i − s j
 .

The combinatorial optimization problem (14.6) is called n-median problem in the literature
and is known to be NP-hard (Kariv and Hakimi 1979).

There are several approaches for the computational solution of n-median problems.
First, we mention the reformulation of (14.6) as mixed-integer linear program and the
possibility of applying standard software (e.g., Cplex). For example, if yi ∈ {0,1}, i =
1, . . . ,N , denotes the decision variable whether s i is deleted (yi = 0) or not (yi = 1),
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Problem (14.6) allows the reformulation

min
N∑

i , j=1

p j xi j

s i − s j


1

s.t.
N∑

i=1

yi = n,

∑
1≤ j≤N , j 6=i

xi j + yi = 1 for all 1≤ i ≤N ,

xi j ≤ yi for all 1≤ i , j ≤N ,

xi j ∈ [0,1] for all 1≤ i , j ≤N ,

yi ∈ {0,1} for all 1≤ i ≤N ,

as mixed-integer linear program with N 2 continuous and N binary variables. Indeed, since
yi = 1 for i /∈ J , and, hence, xi j = 0 for all i ∈ J and j /∈ J , one obtains

1
n

N∑
i , j=1

p j xi j

s i − s j


1
=

1
n

∑
i /∈J

∑
j∈J

p j

s i − s j


1
≥∑

j∈J

p j min
i /∈J

s i − s j


1
=DJ ,

and the lower bound is attained for

xi j =
mini 6∈J

s i − s j


1

n ‖s i − s j‖1
for all i 6∈ J , j ∈ J .

Alternatively, we mention the method based on column generation and on branch-cut-
and-price algorithm in (Avella, Sassano, and Vasil’ev 2007), which is suitable for large-scale
models, approximation methods based on semidefinite programming (Peng and Wei 2007),
and a hybrid heuristic (Resende and Werneck 2004) including randomized greedy heuristics.

A forward greedy heuristic was first studied by Cornuéjols, Fisher, and Nemhauser
(1977) among other exact and approximate methods. The computational experience in
(Heitsch and Römisch 2003; Heitsch and Römisch 2007) suggests that simple forward and
backward greedy heuristics with final optimal redistribution lead to good results in many
situations. We thus employ such heuristics to solve the n-median problem. Figure 14.2
provides an illustrative example of the scenario reduction approach applied to a temperature
depending gas flow at some typical exit point.

Finally, we mention that the scenario reduction approach is extended by Heitsch and
Römisch (2007) to Kantorovich-Rubinstein type metrics (e.g., Fortet-Mourier metrics) and
by Henrion, Küchler, and Römisch (2008) to rectangular and polyhedral discrepancies.

14.3 Generating quantiles for verifying booked capacities

In the previous section, scenario-based approximations of a given probability measure
have been discussed. We now want to complement this approach by another possibility
of characterizing multivariate distributions, namely the generation of quantiles. To this
aim, let ξ be a d -dimensional random vector. To know the distribution of ξ means to
know the probabilities P(ξ ∈ A) for all Borel-measurable subsets A⊆Rd . Fortunately,
all these probabilities of possibly complicated sets can be recovered from probabilities
P(ξ ∈ z+Rd

≤0) =P(ξ ≤ z) of relatively simple sets, so-called cells, which are the negative
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Figure 14.2: Illustration of optimal scenario reduction from N = 2340 temperature depending gas load scenarios
with identical probability 1

N to n = 50. The new probabilities after redistribution are proportional to the
diameters of the points representing the remaining scenarios.

orthants attached to arbitrary points z ∈ Rd . The cumulative distribution function
associated with ξ is defined as

Fξ (z) :=P(ξ ≤ z).

Therefore, Fξ carries the whole information about the distribution of ξ . In the one-
dimensional case, d = 1, one defines a (univariate) p-quantile, p ∈ [0,1], of the random
variable ξ as the quantity

qp (ξ ) := inf{t | Fξ (t )≥ p},
which can be understood as the inverse of the distribution function. The benefit of
univariate quantiles consists in the equivalence

Fξ (z)≥ p ⇐⇒ z ≥ qp (ξ ), (14.7)

which allows to transform a probabilistic inequality into an explicit inequality. Note
that univariate quantiles are easily calculated for all prominent distributions by standard
software.

A multidimensional analogue of this concept is the so-called multivariate p-quantile
(Prékopa 2012). It is defined for a d -dimensional random vector ξ as the set

Qp (ξ ) := {z ∈Rd | Fξ (z)≥ p and Fξ (y)≥ p, y ≤ z imply y = z}, (14.8)

which is easily seen to reduce in the one-dimensional case, d = 1, to the classical quantile
qp (ξ ). If ξ has a density which is positive everywhere (as the Gaussian one), then the
p-quantile is just the p-level set of the distribution function Fξ , i.e.,

Qp (ξ ) = {z | Fξ (z) = p}.
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In contrast to the univariate case, multivariate quantiles are no longer singletons but sets
(typically curved hypersurfaces in Rd ). The generalization of (14.7) now reads as follows:

Fξ (z)≥ p ⇐⇒ ∃q ∈Qp (ξ ) : z ≥ q . (14.9)

Let us illustrate the use of multivariate quantiles in the context of the probabilistic
inequality (14.3) which is central in the present chapter. We make the following monotonic-
ity assumption for the feasibility of statistical load scenarios Pstat, P ′stat ∈RV± (for notation
see Section 14.1):

P ′stat ≤ Pstat and ΥB (Pstat) = 1 =⇒ ΥB (P
′
stat) = 1, (14.10)

i.e., if a statistical load scenario is technically feasible in the sense of (14.2), then the
same should hold true for all statistical load scenarios which are at most as large in each
component. We recall that technical feasibility of Pstat means that all booking-compliant
nominations P extending Pstat are technically feasible. Under the simplifying assump-
tion (14.10), one immediately infers that the probabilistic inequality (14.3) is satisfied
whenever we find a quantile q ∈Qp (ξ ) with ΥB (q) = 1. Indeed, this last relation along
with (14.9) and (14.10) implies that

P(ΥB (ξ ) = 1)≥P(ΥB (ξ ) = 1,ξ ≤ q) =P(ξ ≤ q) = Fξ (q)≥ p.

The generation of such a quantile can be realized by employing codes for evaluating
multivariate distribution functions, see, e.g., (Genz and Bretz 2009) for the examples of
Gaussian and t -distributions.

Since there exists a continuous set of multivariate quantiles, the technical infeasibility
of one of them does not exclude the technical feasibility of a different one. Hence, we can
generate another quantile if necessary. With respect to the probabilistic inequality (14.3),
this quantile-based approach has the advantage of possibly requiring only a few statistical
load scenarios to be validated in contrast to a typically large number of statistical load
scenarios for the sampling method of the preceding section. On the other hand, it relies
on the monotonicity assumption (14.10) which is not strictly satisfied in reality and can
distort the true value of the probability to be determined in (14.3).

14.4 Modeling capacity contracts

As discussed in Chapter 3, there is a sophisticated regulatory framework governing the use
of gas transmission networks. Consequently, there are many different kinds of capacity
contracts (see Table 3.1) and related conditions that are relevant for capacity planning
in gas transmission networks. In this section we describe the typical data constituting
a capacity contract and introduce a mathematical model for them. We note that apart
from the capacity contracts described here, there are further types of contracts relevant
for planning and operating a gas network. In particular, there are contractual limits for
the pressures at entries and exits, which we will briefly discuss at the end of Section 14.5.

The model presented below not only covers capacity products that are sold to transport
customers, but allows to incorporate agreements between TSOs regarding the interconnec-
tion capacities between different networks or market areas. In principle, these agreements
correspond to transmission capacities but they feature more complex conditions like al-
ternative capacities that may not be used at the same time. To capture these conditions,
we introduce binary variables and thus arrive at a Mixed-Integer Linear Program (MILP)
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instead of an Linear Program (LP) model, as suggested in the introduction. The implica-
tions of this choice for the overall method are discussed in Section 14.8. We will briefly
elaborate on the modeling power of our capacity contract model at the end of this section.

A capacity contract defines the capacity rights of a gas transport customer, i.e., the
minimum and maximum amount of gas to supply or withdraw, including additional terms
and conditions. Recall that we call the set of all capacity contracts booked at a certain
point in time a booking, denoted B , and that we call a nomination booking-compliant, if
it satisfies all conditions that are related to the capacity contracts. In our model, a capacity
contract c consists of one or more capacity positions, which is either a freely allocable capacity
(FAC) position or a restrictively allocable capacity (RAC) position. The difference between
FAC positions and RAC positions is in the balancing requirement: The total nomination
of all entry FAC positions together has to match the total nomination of all exit FAC
position (see the discussion of market areas in Section 3.2.2). In contrast, the nominations
on entry and exit RAC positions have to match within the same contract, which usually
limits nominations to a few entry and exit points. We denote by CFAC and CRAC the sets of
contracts containing FAC positions and RAC positions, respectively. Moreover, let C FAC

be the set of all FAC positions and C RAC the set of all RAC positions.
Each capacity position c defines the capacity rights at a set of points V (c) in the gas

network. We require that all points in V (c) are of the same type, i.e., either all entries
or all exits. In most cases, V (c) is just a single point, i.e., a single entry or exit. Putting
more points in V (c) allows to realize zoning (see Section 3.2.2), i.e., defining a common
capacity for a group of points that have to be treated as a single (virtual) point w.r.t. these
capacity rights. A capacity position is usually valid for a certain time interval and possibly
a restricted temperature range, since often the amount of capacity required depends on the
temperature as defined in the contract. We implicitly assume that all capacity positions
in B are valid for a common temperature T and date and thus define a booking situation
that may occur at a single day.

The capacity of a capacity position c is given by the parameters κc and κc , 0≤ κc ≤ κc ,
which give the minimum and maximum power, respectively, that may be nominated on
this capacity position. To model capacity contracts that specify alternative capacities, there
is, for each capacity position c , a set C cap

¬ (c) of capacity positions that are “incompatible”
with c , i.e., it is not allowed to nominate on c and another capacity position from C cap

¬ (c)
at the same time. C cap

¬ (c)may contain capacity positions from any contract, not just the
one to which c belongs.

We now describe a mixed-integer linear model for the set of booking-compliant nom-
inations for a given booking B . Of course, the first condition is that the load flow vec-
tor (Pu )u∈V± has to be a nomination, i.e., balanced:

∑
u∈V+

Pu =
∑
u∈V−

Pu . (14.11)

For each capacity position c and each point u ∈V (c), we introduce a variable P c
u ≥ 0 for

the power nominated on c . Denoting by C cap(u) the set of capacity positions c at point u,
the total power nominated at u is then given by

Pu =
∑

c∈C cap(u)

P c
u for all u ∈V . (14.12)

We set Pu = 0 if there is no capacity position for point u. Moreover, we have a binary
variable x c ∈ {0,1} for each capacity position c indicating whether this capacity position
is used (x c = 1) or not (x c = 0).
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For each capacity position c ∈C FAC ∪C RAC, the model for booking-compliant nom-
inations has to ensure that the load flows nominated at the points V (c) are within the
booked capacity limits κc and κc , and that there is no load flow if the capacity position is
not used. This is achieved by the constraints

κc x c ≤ ∑
u∈V (c)

P c
u ≤ κc x c for all c ∈C FAC ∪C RAC. (14.13)

In the common case that V (c) = {u}, we have that P c
u is in the interval [κc ,κc] if the

capacity position c is used. In the case of zoning, i.e., if |V (c)|> 1, power may be nominated
at any point in V (c) as long as the sum is within the given capacity limits. Moreover, we
have to ensure that capacity position c ∈ C FAC ∪C RAC and each incompatible capacity
position c̄ ∈C cap

¬ (c) are not used simultaneously:

x c + x c̄ ≤ 1 for all c ∈C FAC ∪C RAC, c̄ ∈C cap
¬ (c). (14.14)

In contrast to FAC positions, RAC positions within contract c are not independent
of each other, but need to be balanced. Let CRAC ⊆ B be the subset of contracts with
restrictively allocable capacity (RAC) positions and consider a contract c ∈ CRAC, denoting
by C RAC(c) the set of all RAC positions in contract c. Balancing is then ensured by the
condition

∑
c∈C RAC(c)

∑
u∈V (c)∩V+

P c
u =

∑
c∈C RAC(c)

∑
u∈V (c)∩V−

P c
u for all c ∈ CRAC. (14.15)

This model is already quite powerful. It allows to model standard FAC and RAC
products (see Table 3.1), which may be either defined for single points or entire entry and
exit zones. Moreover, conditional versions of these products are also covered, as long as the
conditions refer to temperature only, which is the usual case. This property is due to the
fact that we verify booked capacities assuming a small temperature range (see Section 14.6
for details). We can thus evaluate temperature-dependent conditions and use the variant of
the capacity contract that applies. The same reasoning applies to capacity contracts that
are valid for a limited period only. It is also possible to model more complex conditions
arising from interconnection agreements between different TSOs. These are typically
based on the condition that certain hybrid points are used as an entry or as an exit point.
Using the exclusion mechanism, one can ensure that either the capacities applying for
entry usage or the ones for exit usage are used for nomination. So far, the model assumes
that all capacities are firm capacities. It is possible to include interruptible capacities as
well. However, deciding whether or not nominations should be interrupted has to be
done during the nomination validation step since this is an operational measure. As the
nomination validation methods presented in this book do not yet support this, we focus
on firm capacities only.

14.5 An adversarial heuristic for generating booking-compliant nominations
from statistical load scenarios

Assume that we obtained a statistical load scenario s = (su )u∈Vstat
and we now want to

check whether all extending booking-compliant nominations of s are technically feasible
(i.e., evaluate ΥB (s ) in the notation of Section 14.1). We propose the following adversarial
heuristic to construct a small set of extending nominations that are challenging for the
gas network, i.e., which are likely to be a subset of the technically infeasible extending
nominations of s . This approach is similar in spirit to the one explained in Section 4.2.
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First we need a means to specify which parts of a nomination are derived from the
statistical load scenario s and which are provided by the adversarial model. To this end,
we distinguish substitutable capacity positions and non-substitutable capacity positions. The
idea is that load flows for the substitutable capacity positions are “substituted” from s ,
whereas load flows for the non-substitutable capacity positions are determined adversarially.
Thus capacities that are assumed to be used in the future as they were used in the past
may be modeled using substitutable capacity positions and the remaining capacities as
non-substitutable capacity positions.

It is usually not possible to generate the statistical load scenario s such that it necessarily
complies with the booked capacity contracts. For instance, the support of the multivariate
normal distribution is unbounded. Hence, it may happen that samples exceeding the
available capacities or even negative samples are generated. To deal with this issue, we
adjust s in a first step such that booking-compliant extending nominations exist, obtaining
the adjusted statistical load scenario s ′. Note that this adjustment in general affects the
stochastic properties of s ′, i.e., s ′ may no longer be a multivariate quantile with the same
p-value or its probability is different from that of s . We therefore choose s ′ as close as
possible to s . Finally, we select some of the nominations extending s ′.

We refine the model for booking-compliant nominations from Section 14.4 as follows.
For every point u ∈Vstat, we divide the set of capacity positions C cap(u) into the set of
substitutable capacity positions C cap

s (u) and the set C cap
ns (u) of non-substitutable capacity

positions. Equation (14.12) is then replaced, for any point u ∈Vstat, by

Pu =
∑

c∈C cap
s (u)

P c
u +

∑
c∈C cap

ns (u)

P c
u , (14.16)

i.e., we now distinguish between substitutable and non-substitutable capacity positions.
Ideally, assuming that C cap

s (u) is the set of substitutable capacity positions at a point u ∈
Vstat, we would like to have the power nominated on C cap

s (u) to be given by su , i.e.,∑
c∈C cap

s (u) P
c
u = su . To cover the potential need for adjustment, we introduce a slack

variable ∆u ∈R for any point u ∈Vstat. The capacity constraints (14.13) together with
the constraint ∑

c∈C cap
s (u)

P c
u = su +∆u for all u ∈Vstat, (14.17)

ensure that we obtain booking-compliant values for the substitutable capacity positions C cap
s (u).

We determine values for the∆u -variables whose sum of absolute values is as small as
possible, i.e., that change the original sample vector s the least, using the following MILP:

min
∑

u∈Vstat

∆′u (14.18)

s.t. (14.11), (14.16), (14.13), (14.14), (14.15), (14.17),

∆′u ≥∆u for all u ∈V±,

∆′u ≥−∆u for all u ∈V±,
Pu , P c

u ,∆u ≥ 0 for all u ∈V±,

x c ∈ {0,1} for all c ∈C FAC ∪C RAC.

For each sampled statistical load scenario s = (su )u∈Vstat
, we solve the (easy) MILP (14.18)

and use its optimal solution to construct the adjusted statistical load scenario s ′ = (s ′u )u∈Vstat

defined by
s ′u := su +∆u .
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Note that we do not restrict the values of the variables at non-statistical points – these are
just computed to ensure that there is a feasible extension of the adjusted statistical load
scenario.

Having obtained the adjusted statistical load scenario s ′, we now need to choose
booking-compliant extending nominations. The goal is to construct such extending nomi-
nations that are likely to be a subset of the technically infeasible extending nominations
of s ′. Usually, more extreme nominations, i.e., high-load and low-load nominations, but
also ones with high regional imbalances, are more critical w.r.t. technical feasibility than
less extreme ones. To obtain such nominations, we construct nominations that are extreme
points of the set of booking-compliant nominations that extend s ′, which we just formu-
lated as a MILP. To this end, we choose a random direction in the space of all nominations
and compute a solution of the extension MILP that maximizes the value in this direction.

Network planners often have some expert knowledge about the gas network (see
Section 4.2.3), for instance about points which are “equivalent” from a gas network point
of view in the following sense: Given a total load flow for a set of points V ′, it does not
matter (much) how this total load flow is distributed among the single points in V ′ (e.g.,
since the points are rather close). Thus nominations with similar total load flow at a set of
equivalent points should be considered similar as well, despite differently distributing the
total load flow among the nodes. Moreover, when constructing a challenging nomination
it does not make sense to use an entry and an exit that are close to each other at the same
time. Hence, either the entry or the exit should be used. To model both aspects, we assume
that the points V are partitioned into subsets V 1, . . . ,V r of “equivalent” points. This
allows us to focus on the vector P̄ defined by

P̄ :=
�∑

u∈V i∩V+
Pu −

∑
u∈V i∩V−

Pu

�
1≤i≤r ,

that captures equivalence of the points by considering the net injections (which may be
negative) of each point set V i . Indeed, we will determine the final nomination P such that
the vector P̄ is extreme in the sense explained above, i.e., equivalent entries and exits will
never be used at the same time if this is not enforced by some capacity positions.

In general we do not know which nominations are likely to be technically infeasible.
We therefore try to select a set of nominations that are rather separate. To this end, we
choose the direction θ for determining each extending nomination uniformly at random
from the r -dimensional hypersphere. Since we generate just a few random directions, we
use the same randomized QMC techniques to sample the direction that are also used for
sampling statistical load scenarios. Again, the rationale is that QMC methods provide a
better approximation to the uniform distribution than pseudo-random MC methods. We
use the direction θ to determine a single extending booking-compliant nomination, i.e.,
an element of π−1(s ′)∩B=, that maximizes the value of that nomination in this direction.
This is done by solving the following MILP that is similar to (14.18):

max
∑

1≤i≤r

θi

 ∑
u∈V i∩V+

Pu −
∑

u∈V i∩V−

Pu

!
(14.19a)

s.t. (14.11), (14.16), (14.13), (14.14), (14.15), (14.19b)∑
c∈C cap

s (u)

P c
u = s ′u for all u ∈Vstat, (14.19c)

Pu , P c
u ,∆u ≥ 0 for all u ∈V±, (14.19d)

x c ∈ {0,1} for all c ∈C FAC ∪C RAC. (14.19e)
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Note that we use the constraint (14.19c) instead of (14.17), i.e., we require that the feasible
solutions are booking-compliant nominations extending s ′. Observe further that this
construction does not provide a uniform sampling of the extreme points of the feasible set
of the MILP.

To obtain complete inputs for the nomination validation methods, we provide the
pressure limits corresponding to each nomination as well. These pressure limits depend
on the actual use of the network, i.e., the load flows. However, once a nomination is
determined, it is clear which entries and exits are used and the corresponding pressure
limits can be taken into account when checking technical feasibility.

14.6 Methods to verify booked capacities

We now described all ingredients of the two methods outlined in Section 14.1 to check
Inequality (14.3), i.e., to verify that the validity probability β of a given booking B is at
least α. In the following, we present our overall approach to this problem. As discussed in
Chapter 13, we construct a stochastic model for the load flows at the statistical points for
each temperature class in order to deal with the temperature dependency of the load flows.

The two methods we propose differ in how they incorporate the stochastic information:

1. The first method uses sampled statistical load scenarios to represent the stochastic
nature of exit loads (see Section 14.2).

2. The second method uses multivariate quantiles to represent the stochastic nature of
exit loads (see Section 14.3).

Formally, both methods require convexity of the set T of technically feasible nominations
to be valid. In addition, the quantile-based method is formally only valid if the monotonic-
ity assumption (14.10) is fulfilled. However, it may require validating significantly fewer
nominations to certify that the validity probabilityβ is at least α. In contrast, the sampling-
based method does not rely on the monotonicity assumption, but requires many statistical
load scenarios and extending nominations, resulting in considerable computational effort
for validating those nominations.

So far we assumed that checking a nomination for technical feasibility either establishes
feasibility or proves infeasibility. In practice, however, it may also happen that there is no
conclusive answer, e.g., since the time limit for the computation has been reached before
technical feasibility could be decided. In the description of our methods we assume that
each check for technical feasibility yields one of the answers “feasible”, “infeasible”, or
“unknown”.

In both methods we need to check whether all extending booking-compliant nomina-
tions of s are technically feasible (i.e., evaluate ΥB (s ) in the notation of Section 14.1); we do
this by considering a set of n booking-compliant nominations extending s generated by the
adversarial heuristic explained in Section 14.5). We consider s to be technically feasible (i.e.,
ΥB (s) = 1), if all n extending nominations of s are “feasible”. In the case that at least one
extending nomination is “infeasible”, s is infeasible as well (i.e., ΥB (s ) = 0). The remaining
case is that some extending nominations are “feasible” and the rest is “unknown”, so the
feasibility of s is unknown, too.

14.6.1 Sampling-based verification of booked capacities

This method estimates the validity probability β of the given booking B using sampled
statistical load scenarios. Since the feasibility of a statistical load scenario may be un-
known, we actually compute two estimates β̂ and β̂∗ for the validity probability β: β̂ is
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a pessimistic estimate, assuming that all of the statistical load scenarios whose feasibility
is unknown are infeasible. In contrast, β̂∗ is optimistic since it assumes that all of the
statistical load scenarios with unknown feasibility are in fact feasible.

Using sampling to approximately check the probability requirement (14.3), the overall
procedure to verify a booking is as follows. Note that we decided to base the final decision
for or against validity of the booking on the pessimistic estimate β̂.

A. For each temperature class perform the following steps:

1. Based on the stochastic model for this temperature class, sample a set of statis-
tical load scenarios s1, . . . , s M using the randomized QMC method described in
Section 14.2. Each of these statistical load scenarios has probability 1/M .

2. Use the scenario reduction technique outlined in Section 14.2.2 to find a smaller
representative subset s1, . . . , sN of the statistical load scenarios (N �M ) together
with updated probabilities p1, . . . , pN .

3. Set I = I ∗ = ;.
4. For each statistical load scenario s = s i , 1≤ i ≤N :

a) Compute an adjusted statistical load scenario s ′ for which at least one booking-
compliant nomination extending s ′ exists (see Section 14.5).

b) Generate a set P 1, . . . , P n of booking-compliant nominations extending s ′ (see
Section 14.5).

c) Check the technical feasibility of P 1, . . . , P n . If all of them are “feasible”, add i
to the index set I . If none of them is “infeasible”, add i to the index set I ∗.

5. Compute the estimates β̂ and β̂∗ for the validity probability β as

β̂=
∑
i∈I

pi , β̂∗ =
∑
i∈I ∗

pi .

B. The overall booking is considered feasible if we have β̂≥ α for all temperature classes.

14.6.2 Quantile-based verification of booked capacities

This method uses multivariate quantiles to ensure that the validity probability β is at
least α. To be correct, it requires the monotonicity assumption (14.10) to hold. Again, it
may happen that the feasibility of a statistical load scenario (now a quantile) is unknown.

The overall procedure for quantile-based verification of the probability requirement (14.3)
is as follows. To arrive at an overall conclusion in case the feasibility of all considered
quantiles is unknown, we take the pessimistic view again and decide for invalidity then.

A. For each temperature class perform the following steps:

1. Based on the stochastic model for this temperature class, generate a set of multi-
variate quantiles q1, . . . , qN .

2. Try each multivariate quantile q = q i , 1≤ i ≤N , in turn, stopping if q i has been
successfully validated (see below):

a) Compute an adjusted quantile q ′ for which at least one booking-compliant
nomination extending q ′ exists (see Section 14.5).

b) Generate a set P 1, . . . , P n of booking-compliant nominations extending q ′
(see Section 14.5).

c) Check whether all nominations P 1, . . . , P n are technically feasible. If this is
the case, we successfully validated q i , i.e., q i certifies (assuming monotonicity)
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that the desired probability level α is attained and stop. Otherwise, i.e., if at
least one nomination is “infeasible” or “unknown”, continue with the next
quantile.

B. The overall booking is considered feasible if, for all temperature classes, we found
a quantile for which all booking-compliant extensions are technically feasible. It is
considered infeasible otherwise.

14.7 Handling interruptible capacities and flow-adjusting measures

The presented methods for verifying booked capacities may already be applied in special
cases where interruptible capacities and operational options like flow commitments need
not be considered. For real-world planning, however, both aspects need to be taken into
account.

One way to model interruptible capacities is as follows. Recall from Section 15.2 that
interruptible capacities are only taken into account since, in general, the amount of booked
firm entry and exit capacities does not match. Thus interruptible capacities need to be used
on the deficit side to ensure overall balancing. If interruptible capacities are really necessary
to match demand and supply, the TSO may, in principle, interrupt any allocation that may
not be technically realized. To ensure technical feasibility on the surplus side, it is thus
sufficient that there is at least one partial nomination for the interruptible capacities such
that the overall nomination is technically feasible. In the NoVa models, we may thus relax
the nominated power values corresponding to interruptible capacity to power intervals,
adding a new balancing constraint that ensures that the (fixed) demand of the surplus side
is met. However, the NoVa approaches then need to deal with non-fixed nominations,
which is not possible in the sMINLP and RedNLP models.

Extending the NoVa methods presented in this book to deal with flow commitments
and other flow-adjusting measures is mathematically much more challenging. The reason
is that flow commitments and similar measures grant a TSO the right to influence the
load flow at certain entry or exit points, but the TSO has no control over how flows are
relocated among the remaining points in response to changing supply or demand at a few
points. Thus NoVa as discussed in this book needs to be interfaced with both, a model for
how load flows may be adjusted based on contractual agreements and another adversarial
model for the reaction of the transport customers. Straightforward modeling of flow
commitments thus leads to a bilevel problem, which is likely to be practically intractable
for the scale of problems considered here.

14.8 Conclusions

The presented approach to the problem of verifying booked capacities has been designed
with applicability to real-world gas networks in mind. In order to obtain a tractable
method, several aspects are done in a heuristic fashion, which we discuss in the following.

. The set T of technically feasible nominations is non-convex, in general. However,
many sources of nonconvexity of the stationary problem of validating nominations can
be removed when operating the network in a transient regime (see Section 11.1). Thus,
this assumption is justified to some extent from a practical point of view. In fact, it is
one way to limit the complexity of the problem and is implicitly used in all industrial
methods known to us, see Section 4.2.2. Alternatively, it might be possible to deal with
the nonconvexity by some kind of space-partitioning method.

. In general, the adjustment of statistical load scenarios or multivariate quantiles destroys
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their stochastic properties. In principle it is possible to use some form of rejection
sampling to ensure that the statistical load scenarios without adjustment allows booking-
compliant extending nominations. However, this might be rather inefficient.

. The adversarial heuristic non-uniformly samples among the extreme points corre-
sponding to the mixed-integer hull of the MILP (14.19). In contrast to explicitly given
polytopes, it is currently not known how to efficiently sample uniformly from such a
mixed-integer set.

Moreover, we see several places in which more mathematical research can lead to
improvements of the presented methods:

. The effectiveness of the adversarial heuristic in finding technically infeasible nomi-
nations and the formal justification of ingredients, if only in special cases, should be
investigated. For instance, does the proposed method eventually find a technically
infeasible nomination if one exists?

. One goal is to obtain rigorous results establishing the assumed convergence properties
of our randomized QMC method for our setting.

. Existing stability results for scenario reduction techniques establish that the optimal
solution w.r.t. the reduced scenario set does not deviate much from that for the original
scenario set. These should be adapted to the presented setting.

In any case, the proposed methods are a substantial improvement over the current state-
of-the-art in industry. We present preliminary computational results for both methods in
Chapter 15. For these computations, technical feasibility of each nomination is checked
using the methods from Chapters 6–10. These results indicate that the methods may
already be applied to gas networks of industrially relevant size.


