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1. Electricity portfolio management

We consider a power utility owning a hydro-thermal generation sys-

tem and producing and trading electric power.
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System and trading constraints: Capacity, reservoir, operational,
load, reserve (and risk) constraints “«| » |

Objective: Maximization of (expected) revenue

Decisions: Mixed-integer (large scale)

Stochastic data processes: Electrical load, fuel and electricity « | >

prices, inflows
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1.1. Data process approximation by scenario trees

The data process £ = {&}1 | is approximated by a process forming
a scenario tree which is based on a finite set A of nodes.

t—1 t t(n) T
Scenario tree with t, = 2, T = 5, [N'| = 23 and 11 leaves
The root node n = 1 stands for period ¢ = 1. Every other node
n has a unique predecessor n_ and a set N, (n) of successors.
Let path(n) be the set {1,...,n_,n} of nodes from the root to
node n, t(n) := |path(n)| and Ny == {n € N : N.(n) = 0}
the set of leaves. A scenario corresponds to path(n) for some
n € Np. With the given scenario probabilities {7, } ,e 7., we define

recursively node probabilities 7, ;== > Ty, W EN.

n4 €N+ (n)
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1.2. Stochastic power management model

Stochastic process: {&; = (dz, 1, Ve, o, B, Gt) Hen

(electrical load, spinning reserve, inflows, (fuel or electricity) prices)
given as a (multivariate) scenario tree

Mixed-integer programming problem:

min Z T Z[C” pityu) + St (ui)] st
neN =1

min

Pitmyti' < Pi < Pipmyui>, ui €{0,1}, ne N, i=1:1,

— n_ 1 _ .
T — T <yl 7=1:7%-1,neN, i=11,

(2

u?‘*(”l)—u’.“* <l-w, 7=Ln—-1,neN,i=11,

K3

U

0<'U <th(n),0<w <wm?X)0§l;LS ﬁ?;),nEN,jZLJ,
pdflatex
l?:l?’—v;t—f—njw?—kfyf, neN, j=1J,
B=0r, ;=0 neNp j=1/

I J
210?4—2(1)}1—11;?)Zd"7 nenN,

i=1 j=1
I
> (wipEEs —pp) =", neN.
i=1

C?" are fuel or trading costs and S!" start-up costs of unit ¢ at node n € \:

Ci (i, uft) = lgax_{ agpi + By}

gecag

Si(u;) == max i (u — Zun“

7=0,...,7¢



1.3. Solving the stochastic power management model

Nz| | V] variables constraints | nonzeros
binary | continuous

1| 168 4200 6652 13441 19657

20 | 1176 | 29400 45864 94100 | 137612

50 | 2478 | 61950 06642 198290 | 289976

100 | 4200 | 105000 163800 336100 | 491500

Dimension of the model for T' =168, I =25 and J =7

= Primal approaches seem to be hopeless !
=Lagrangian relaxation of coupling constraints

Solution of the dual problem
(proximal bundle method)

Solution of subproblems
(stochastic dynamic programming)
(descent algorithm)

A4

Lagrange heuristics

(stochastic) economic dispatch |




2. Generation of scenario trees

(i) Development of a stochastic model for the data process &
(parametric [e.g. time series model], nonparametric [e.g. resampling])

and generation of simulation scenarios;

(ii) Construction of a scenario tree out of the stochastic model
or of the simulation scenarios;

(iii) optional scenario tree reduction.
Approaches for (ii):

(1) Barycentric scenario trees (conditional expectations w.r.t. a
decomposition of the support into simplices);

(2) Fitting of trees with prescribed structure to given moments;
(3) Conditional sampling by integration quadratures;
(4) Clustering methods for bundling scenarios;

(5) Scenario tree construction based on optimal approximations
w.r.t. certain probability metrics.
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3. Distances of probability distributions

Let P denote the probability distribution of the stochastic data
process {&}L |, where & has dimension 7, i.e., P has support
ECR'=PR.
The Kantorovich functional or transportation metric takes the fol-
lowing form
ue(P,Q) = inf{ | cf€, y(de, df) : mn = P, mm = Q},
SX =2

where ¢ : = X = — IR is a certain cost function.

X
Example: (¢, €) = max{L, ][, [€]PP~"}IE — €]l (p=>1)

Approach:

Select a probability metric a function ¢ : = X = — IR such that the
underlying stochastic optimization model is stable w.r.t. ..

Given P and a tolerance € > (0, determine a scenario tree such that
its probability distribution P}, has the property

MC(Pa Ptr) S €.
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Distances of discrete distributions
P: scenarios &; with probabilities p;, 1 =1,..., N,
(): scenarios &; with probabilities ¢;, j =1,..., M.

Then it holds
N M Home Page |
MC(Pa Q) — Sup{zplul -+ Z q;U; - U; + Vj < C(fia fj) \V/Za]} Title Page |
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— mf{%: nijc(&i, &) = mij 2> 0, Zj:mj = Di, ZZ:%’ = ¢;} «ll
(linear transportation problem) < | |
Optimal scenario generation: Pogesor0 |
Given P and € > 0, determine éj €= g €[0,1,5=1,...,M,
such that it holds . e
MC(Pv Zq.]5£j) < €.
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4. Scenario Reduction

We consider the transportation metric . and distributions P and
() as described above.

Theorem: (optimal reduction of a scenario set .J)
Dj;:=  min Z Pide, Z q;0¢;) = Z D; mm c(w;, wj)
qJ'ZO’ZJ'qJ:l idJ ieJ
The minimum is attained at q; = p; + Zg pi, V7 & J, where
={ieJ:j=j@)}and j(i) € argrjr;zlﬁlc(wl,w]) Vi e J.
(optimal redistribution)

Optimal reduction of a scenario set with fixed cardinality:

mm{DJ—szmmc &,¢) JCc{l,..,N}, #J =N —n}

1€J

(combinatorial optimization problem of set-covering type)




5. Fast reduction heuristics

Algorithm 1: (Simultaneous backward reduction)

Step [0]: Sorting of {c(&;, &) : Vi}, VE,
JO =@

Step [i]: [; € arg min Z pr - min - c(&, &)
1gJli=1] — jeJli=1u{i}
keJli=lu{1}

Ji .= gty {1
Step [N-n+1]: Optimal redistribution.




Algorithm 2: (Fast forward selection)

Step [0]: Compute c(&k, &), k,u=1,..., N,
O0.—{1,..., N}
St il: = 1 1 &),
ep [i]: w; €arg uemj%g}l] Z pe min (& &)
—\{u}
JU = gl \{ul}

Step [n+1]: Optimal redistribution.
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6. Constructing scenario trees from data scenarios

Let a fan of data scenarios &' = (&, ..., &) with probabilities 7/,
1 =1,..., N, be given, i.e., all scenarios coincide at the starting
pointt =1, i.e, 511 = ... = §{V =: &]. Hence, it has the form

t = 1 may be regarded as the root node of a scenario tree consisting
of N branches (leaves, scenarios).

Now, P is the (discrete) probability distribution of £&. Let ¢ be
adapted to the underlying stochastic program containing P.

We describe an algorithm that produces, for each € > 0, a scenario
tree with distribution P, root node &7, less nodes than P and

pe(P, P.) < e.
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Algorithm:

let & > 0, ¢t = 1,...,T, be given such that Zlest < g, set
t:=T, Ipy ={1,...,N}, 7TiT+1 = 7' and Pr ;= P.
Fort="1T,...,2:

Step t: Determine an index set I; C I; 1 such that

,ucf<Pt, Pii) < &,

where {€}ic1, is the support of B and ¢; is defined by
Ct(ﬁaf) = C((fl,.. -,gt,o,-- '70)7(517' . 7575707' . 70));

(scenario reduction w.r.t. {1,...,t})

Step 1: Determine a probability measure P such that its marginal
distributions P.II;* are Ogr for t =1 and

—1 E : 15 T . 1 E : J
1€ ly jGJf’j

where J;; = {7 € L1\ I; 1 it(J) = i}, () € arg Hél]n c(&,8Y)}
i€ly

are the index sets according to the redistribution rule.
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Blue: compute c-distances of scenarios; delete the green scenario & add its weight to the red one



Application:
¢ is the multivariate data process having the components
a) electrical load,

)

b) electricity prices for baseload contracts (at EEX),

c) electricity prices for peakload contracts (at EEX), __ tome Page_|
)

d) electricity prices for individual hours (at EEX). Tite Page

Data scenarios are obtained from a stochastic model calibrated to
the historical load data of the German power utility VEAG and e
historical price data of the European Energy Exchange (EEX) at «|»]

Frankfurt/Leipzig. ——
<l
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7. GAMS/SCENRED

e GAMS/SCENRED introduced to GAMS Distribution 20.6 (May
2002)

e SCENRED is a collection of C++ routines for the optimal re-
duction of scenarios or scenario trees

e GAMS/SCENRED provides the link from GAMS programs to
the scenario reduction algorithms. The reduced problems can «| » |
then be solved by a deterministic optimization algorithm pro-

vided by GAMS. I
e SCENRED contains three reduction algorithms: P o |
- FAST BACKWARD method _

- Mix of FAST BACKWARD /FORWARD methods
- Mix of FAST BACKWARD /BACKWARD methods _ Fusren |
Automatic selection (best expected performance w.r.t. running o
time)

Quit

Details: www.scenred.de, www.scenred.com



8. Numerical tests

We tested the link between the Lagrangian relaxation and the sce-
nario tree construction algorithms.

e Portfolio management problem for 25 thermal generation units
and 7 pumped-storage hydro units

e Time horizon: 1 week; Discretization: 1 hour

e Initial fan of 100 load scenarios simulated from a statistical
model for the load process (combines a time series model for
the daily mean load with regression models for the intra-day
behaviour)
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Dimension and solution time for the dual

Erel S N Variables Nonzeros | time[s]
binary | continuous
0.6 1| 168 4200 7728 44695 7.83
0.1 67 | 515 | 12875 23690 137459 17.09
0.05 81 901 22525 41446 240233 37.82 Home Page
0.01 94 | 2660 | 66500 122360 708218 | 150.14
0.005 | 96 | 3811 | 95275 175306 | 1014398 | 291.65
0.001 | 100 | 9247 | 231175 425362 | 2460402 | 1176.38 Uit Pte
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