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Abstract We consider randomized QMC methods for approximating the expected
recourse in two-stage stochastic optimization problems containing mixed-integer
decisions in the second stage. It is known that the second-stage optimal value func-
tion is piecewise linear-quadratic with possible kinks and discontinuities at the
boundaries of certain convex polyhedral sets. This structure is exploited to provide
conditions implying that first and second order ANOVA terms of the integrand have
mixed first order partial derivatives in the sense of Sobolev. This shows that the in-
tegrand can be decomposed into a smooth part and a not well-behaved but small
part if the effective dimension is low. This leads to good convergence properties
of randomized QMC methods. In a case study we consider an optimization model
for generating and trading electricity under normal load and price stochasticity. Our
numerical experiments where we compare Monte Carlo and two randomized QMC
methods indicate that the latter can be superior which confirms our analysis.

1 Introduction

Two-stage stochastic programming models represent a classical approach to deal
with optimization problems containing random parameters in the constraints. Its
idea is to introduce a two-stage decision process, where the first-stage decision x
has to be decided before the randomness occurs, and the second-stage decision y
satisfies the constraints that depend on x and the random parameter. Then the sum of
the first-stage objective and the expected optimal value of the second-stage problem
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is optimized with respect to x. If the second-stage problem contains also integer
decisions, we arrive at mixed-integer two-stage stochastic programs. We refer to
Section 2 for a formal mathematical description and for recalling some structural
properties. For further information we refer to [22, 29] and to [30] for a recent
monograph on stochastic programming. We also refer to Section 6 for a practical
application from electricity management.

Mixed-integer two-stage stochastic programs belong to the most complicated op-
timization problems. For a long time it was believed that the only way to tackle the
solution of such models is by Monte Carlo (MC) methods [13]. In this paper, we
study the possibility of applying randomized Quasi-Monte Carlo (QMC) methods
and thereby extending our earlier work [11, 20] on two-stage models without integer
decisions. In the present paper we review in Sections 2 to 4 theoretical results from
[21], but discuss exclusively the error analysis in Section 5 and the numerical ex-
periments on solving a practical optimization problem from electric power industry
by using randomized QMC methods.

We consider two specific randomized QMC methods, namely, randomly scram-
bled Sobol’ point sets [27, 5] and randomly shifted lattice rules [31, 15]. For further
reading we refer to a survey of randomized QMC mehods [19] and to the recent sur-
vey [4]. It is well known that such methods display their power and fast convergence
in weighted tensor product Sobolev spaces of functions on [0,1]d or Rd (see [4] and
Section 5). However, there exist several attempts to study the convergence behavior
also for functions with kinks [8] and discontinuities [9, 10]. The performance of ran-
domized QMC methods may be significantly deteriorated for such functions. In [10]
the authors derive convergence rates for functions of the form g(x)1lB(x), x ∈ [0,1]d ,
where the function g is smooth and B is a convex polyhedron. They show that the
convergence rate can be improved if some of the discontinuity faces of B are parallel
to some coordinate axes (best case being all faces parallel to some coordinate axes
since then the function exhibits bounded HK variation).

Integrands of mixed-integer two-stage models are piecewise linear-quadratic
with kinks and discontinuities at boundaries of convex polyhedral sets. However,
the structure of the convex polyhedra is not known, but hidden in the problem data.
Therefore, our approach is different and motivated by the work of [8]. We study
the smoothness of lower order ANOVA terms of the integrands and show that they
are indeed much smoother than the integrand itself under certain conditions (Sec-
tion 4). Hence, the integrands my be decomposed into a smooth part consisting of
lower order ANOVA terms and a nonsmooth part which is small if the effective di-
mension of the integrand is low (see Section 3). This fact indicates that randomized
QMC methods can be applied to mixed-integer two-stage models if the integrand
has low effective dimension relative to the underlying probability distribution. De-
tails are discussed in the error analysis for randomly shifted lattice rules (see Sec-
tion 5) where we derive an error estimate for the root mean square error of true and
approximate optimal values. In our numerical experiments we consider a practical
electricity optimization model under uncertainty with normal load and price pro-
cesses (see Section 6). In that case the effective dimension of the integrand can be
reduced by factorizing the covariance matrix using principal component analysis.



QMC methods for mixed-integer stochastic programs 3

2 Mixed-integer two-stage stochastic programs

We consider the mixed-integer two-stage stochastic optimization problem

min
{
〈c,x〉+

∫
Rd

Φ(q(ξ ),h(ξ )−V x)P(dξ ) : x ∈ X
}
, (1)

where Φ denotes the parametric infimal function of the second-stage program

Φ(u, t) := inf{〈u1,y1〉+ 〈u2,y2〉 : W1y1 +W2y2 ≤ t,y1 ∈ Rm1 ,y2 ∈ Zm2} (2)

for all (u, t)∈Rm1+m2×Rr, and c∈Rm, a closed subset X of Rm, (r,m1) and (r,m2)-
matrices W1 and W2, (r,m)-matrix V , affine functions q(ξ )∈Rm1+m2 , h(ξ )∈Rr, and
a Borel probability measure P on Rd . To characterize the domain of Φ we introduce

T = {t ∈ Rr : ∃(y1,y2) ∈ Rm1 ×Zm2 such that W1y1 +W2y2 ≤ t}

U =
{

u = (u1,u2) ∈ Rm1+m2 : ∃v ∈ Rr
− such that W>1 v = u1,W>2 v = u2

}
the primal and dual feasible right-side sets of (2) and assume:
(A1) The matrices W1 and W2 have only rational elements.
(A2) The cardinality of the set⋃

t∈T
{y2 ∈ Zm2 : ∃y1 ∈ Rm1 such that W1y1 +W2y2 ≤ t}

is finite, i.e., the number of integer decisions appearing in (2) is finite.
It is well known that the presence of integer decisions in (2) leads to discontinuities
of Φ . By imposing conditions (A1) and (A2) the structure of the function Φ and
of its discontinuity and nondifferentiability regions can be further characterized by
utilizing results from parametric mixed-integer linear programming [1, Section 5.6].

Proposition 1. [21] Assume (A1) and (A2). The function Φ is finite and lower semi-
continuous on U ×T and there exists a finite index set N and a decomposition
of U ×T consisting of Borel sets Uν ×Bν , ν ∈N , such that their closure is con-
vex polyhedral and Φ is bilinear in (u, t) on each Uν ×Bν . Φ may have kinks and
discontinuities at the boundaries of Uν ×Bν .

In order to have the integrand in (1) well defined we need the additional assumptions
known as relatively complete recourse and dual feasibility:
(A3) For each pair (x,ξ ) ∈ X×Rd it holds that h(ξ )−V x ∈T .
(A4) For each ξ ∈ Rd the recourse cost q(ξ ) belongs to the dual feasible set U .

Proposition 2. [21] Assume (A1)–(A4). Then the integrand

f (x,ξ ) = 〈c,x〉+Φ(q(ξ ),h(ξ )−V x) (3)

in (1) is finite and lower semicontinuous on X×Rd .
For fixed x ∈ X the function f (x, ·) is linear-quadratic in ξ on the Borel sets
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Ξν(x) = {ξ ∈ Rd : q(ξ ) ∈Uν ,h(ξ ) ∈V x+Bν}, ν ∈N , (4)

that decompose Rd and have convex polyhedral closures. Kinks and discontinuities
of f (x, ·) may appear at the boundaries of Ξν(x).

If the probability distribution P has at least finite second order moments, the objec-
tive function of (1) is finite and lower semicontinuous due to Fatou’s lemma. Hence,
the minimization problem (1) is well defined and solvable if the objective is inf-
compact. Later we assume even a stronger moment condition in order to be able to
use properties of the ANOVA decomposition which we recall next.

3 ANOVA decomposition and effective dimension

We consider a nonlinear function f : Rd→R and intend to compute the expectation
E[ f (ξ )] with respect to a probability distribution P having a density ρ given in
product form

ρ(ξ ) =
d

∏
k=1

ρk(ξk) (ξ ∈ Rd).

In this context, representations of f that are of interest are of the form

f (ξ ) = f0 +
d

∑
i=1

fi(ξi)+
d

∑
i, j=1
i< j

fi j(ξi,ξ j)+ · · ·+ f12···d(ξ1, . . . ,ξd).

Such representations can be written more compactly in the form

f (ξ ) = ∑
u⊆D

fu(ξ
u) , (5)

where D= {1, . . . ,d}, fu is defined on R|u| and ξ u belongs to R|u| and contains only
the components ξ j with j ∈ u. Here and in what follows, |u| denotes the cardinality
of u and −u the complement D\u of u.

Next we make use of the space L2,ρ(Rd) of all real-valued square integrable
functions with inner product

〈 f , f̃ 〉2,ρ =
∫
Rd

f (ξ ) f̃ (ξ )ρ(ξ )dξ .

For each function f ∈ L2,ρ(Rd) a representation of the form (5) is called ANOVA
decomposition of f and the functions fu are called ANOVA terms if∫

R
fu(ξ

u)ρk(ξk)dξk = 0 holds for all k ∈ u and u⊆D.

The ANOVA terms fu, /0 6= u⊆D, are orthogonal in L2,ρ(Rd), i.e.
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〈 fu, fv〉2,ρ =
∫
Rd

fu(ξ ) fv(ξ )ρ(ξ )dξ = 0 if and only if u 6= v,

and allow a representation by means of (so-called) ANOVA projections. The latter
are defined recursively as follows. The first and higher order projections Pk = P−{k},
k ∈D, and Pu, u⊆D, are given by

(Pk f )(ξ k) =
∫

∞

−∞

f (ξ1, . . . ,ξk−1,s,ξk+1, . . . ,ξd)ρk(s)ds

Pu f (ξ u) =
(
∏
k∈u

Pk f
)
(ξ u)

and it holds (see [17])

fu =
(
∏
j∈u

(I−Pj)
)

P−u( f ) = P−u( f )+ ∑
v(u

(−1)|u|−|v|P−v( f ). (6)

To define the effective dimension we consider the variances of f and fu

σ
2( f ) = ‖ f − Id,ρ( f )‖2

2,ρ and σ
2
u ( f ) = ‖ fu‖2

2,ρ . (7)

Due to the orthogonality of the ANOVA terms we obtain

σ
2( f ) = ‖ f‖2

2,ρ − (Id,ρ( f ))2 = ∑
/06=u⊆D

σ
2
u ( f ) .

Since the quotients σ2
u ( f )/σ2( f ) indicate for any u⊆D the importance of the group

ξ j, j ∈ u, of variables of f relative to the underlying distribution P, we define for
small ε ∈ (0,1) (e.g. ε = 0.01) the effective (superposition) dimension dS(ε) of f
given P [26] as

dS(ε) = min

{
s ∈D : ∑

|u|≤s
σ

2
u ( f )≥ (1− ε)σ2( f )

}
. (8)

An important property of the effective dimension consists in the estimate (see [32])∥∥∥∥∥ f − ∑
|u|≤dS(ε)

fu

∥∥∥∥∥
2,ρ

≤
√

εσ( f ) (9)

showing that the function f is approximated by a truncated ANOVA decomposition
which contains all ANOVA terms fu such that |u| ≤ dS(ε).
If the function f is nonsmooth, the ANOVA terms fu, |u| ≤ dS(ε), are often smoother
than f due to their relation to ANOVA projections and the smoothing effect of in-
tegration (see [8, 9]). Hence, the estimate (9) indicates that the main part of f can
be smooth and the remaining nonsmooth part be small. Unfortunately, the effective
superposition dimension is hardly computable in general, but an upper bound can
be computed by finding the smallest s ∈D such that
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∑
v⊆{1,...,s}

σ
2
v ( f )≥ (1− ε)σ2( f ) . (10)

This relies on a particular integral representation of the left-hand side of (10), where
the occuring integrals can be computed approximately by means of Monte Carlo
or Quasi-Monte Carlo methods based on large samples. It should be mentioned,
however, that the upper bound can be (extremely) conservative.

4 ANOVA terms of mixed-integer two-stage integrands

According to Proposition 2 mixed-integer two-stage integrands (3) are discontinu-
ous and piecewise linear-quadratic and may be written in the form

f (x,ξ ) = 〈Aν(x)ξ ,ξ 〉+ 〈bν(x),ξ 〉+ cν(x) (11)

for all ξ ∈ Ξν(x), ν ∈N , x ∈ X if (A1)–(A4) are satisfied. Here, Aν(·) are (d,d)-
matrices, bν(·) ∈ Rd and cν(·) ∈ R, which are all affine functions of x. The sets
Ξν(x), ν ıN , x ∈ X , are defined in (4). They decompose Rd and their closures are
convex polyhedral.

In this section we need further assumptions to prove our main results:
(A5) The probability distribution P has finite fourth order absolute moments.
(A6) P has a density ρ with respect to the Lebesgue measure on Rd and ρ admits
product form

ρ(ξ ) =
d

∏
i=1

ρi(ξi) (ξ = (ξ1, . . . ,ξd) ∈ Rd ,

where the densities ρi are positive and continuously differentiable, and ρi and its
derivative are bounded on R.
(A7) For each face F of dimension greater than zero of the polyhedra clΞν(x),
ν ∈N , the affine hull aff(F) of F does not parallel any coordinate axis in Rd for
each x ∈ X (geometric condition).
Due to (A5) and (A6) we may use the concepts ANOVA decomposition and effec-
tive dimension for studying mixed-integer two-stage integrands. Using the repre-
sentation (11) of f the structure of first and second order ANOVA projections can
be computed explicitly. This allows conclusions also on the smoothness of higher
order projections and, hence, of lower order ANOVA terms due to (6). Finally this
leads to the main result of this section. It is proved in [21] and states that at least
lower order ANOVA terms of f = f (x, ·) for fixed x ∈ X have all mixed first order
partial derivatives in the sense of Sobolev.

Theorem 1. Assume (A1)–(A7). For fixed x ∈ X we consider f = f (x, ·). Then the
ANOVA terms fu, |u| ≤ 2, u ⊂ D, of f are continuously differentiable and have
partial mixed first Sobolev derivatives which belong to L2,ρ(Rd).
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We recall that a real-valued function g on Rd is the partial weak or Sobolev
derivative Dα f of a given function f if it is measurable on Rd and satisfies∫

Rd
g(ξ )v(ξ )dξ = (−1)|α|

∫
Rd

f (ξ )(Dα v)(ξ )dξ for all v ∈C∞
0 (Rd), (12)

where C∞
0 (Rd) denotes the space of infinitely differentiable functions with compact

support in Rd and

Dα v =
∂ |α|v

∂ξ
α1
1 · · ·∂ξ

αd
d

(13)

is the classical derivative of v of order |α| = ∑
d
i=1 αi, where α = (α1, . . . ,αd) is a

multi-index. The same symbol as in (13) is also used for partial Sobolev derivatives,
since classical are also Sobolev derivatives. In the classical case equation (12) is just
the classical multivariate integration by parts formula.

Remark 1. Theorem 1 shows that the second order ANOVA approximation

f (2) = ∑
|u|≤2
u∈D

fu (14)

of the mixed-integer two-stage integrand f (see (3)) has all mixed first partial
Sobolev derivatives. If the effective dimension dS(ε) of f (see (8)) is at most 2,
the mean square distance between the integrand f and f (2) satisfies

‖ f − f (2)‖2
2,ρ ≤ εσ

2( f )

due to (9). For a discussion of techniques for reducing the effective dimension we
refer to [32, 33].

While the assumptions (A1)–(A6) are reasonable, assumption (A7) seems some-
what implicit and restrictive at first sight and needs further explanation. For a nor-
mal probability distribution P with nonsingular covariance matrix Σ , the orthogonal
matrix Q of eigenvectors allows a transformation of Σ into a diagonal matrix D con-
taining the eigenvalues in its main diagonal. This observation enables the following
characterization of the geometric condition (A7) using the Haar measure over the
topological group of orthogonal matrices. For its proof we refer to [21] and for fur-
ther information on the Haar measure to [3, Chapter 9].

Theorem 2. We consider (1) and assume (A1)–(A4). If P is multivariate normal on
Rd with nonsingular covariance matrix Σ , the geometric condition (A7) is satisfied
almost everywhere with respect to the Haar measure over the topological group of
orthogonal (d,d) matrices needed to transform Σ into diagonal form.
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5 Error analysis of randomly shifted lattice rules

In this section we provide an error analysis for randomly shifted lattice rules ap-
plied to solving mixed-integer two-stage stochastic programs (1). Since typical in-
tegrands in stochastic programming are defined on Rd , we introduce first appropri-
ate Sobolev spaces. Following [17, 25] we start with the weighted Sobolev spaces
W 1

2,γi,ρi,ψi
(R) of functions h ∈ L2,ρi(R) that are absolutely continuous with deriva-

tives h′ ∈ L2,ψi(R) with positive continuous weight functions ψi, i ∈ D. They are
endowed with the weighted inner product

〈h, h̃〉γi,ψi =
(∫

R
h(ξ )ρi(ξ )dξ

)(∫
R

h̃(ξ )ρi(ξ )dξ

)
+

1
γi

∫
R

h′(ξ )h̃′(ξ )ψ2
i (ξ )dξ ,

where for each i ∈D the weight γi is positive and we assume that for any x, x̃ ∈ R∫ x̃

x
ψ
−2
i (t)dt < ∞ .

The latter condition implies that the weighted Sobolev space is complete [14] and,
thus, a Hilbert space. Then the weighted tensor product Sobolev space

Fd = W
(1,...,1)

2,γ,ρ,ψ,mix(R
d) =

d⊗
i=1

W 1
2,γi,ρi,ψi

(R)

is equipped with the inner product

〈 f , f̃ 〉γ,ψ = ∑
u⊆D

γ
−1
u

∫
R|u|

Iu,ρ( f )(ξ u)Iu,ρ( f̃ )(ξ u)∏
i∈u

ψ
2
i (ξi)dξ

u,

where the integrands Iu,ρ( f )(ξ u) and the weights γu are defined by

Iu,ρ( f )(ξ u) =
∫
R|−u|

∂ |u| f
∂ξ u (ξ ) ∏

i∈−u
ρi(ξi)dξ

−u and γu = ∏
i∈u

γi , γ /0 = 1 .

In the QMC literature, this is called the unanchored setting with product weights.
In order to apply QMC methods to the computation of integrals

Iρ( f ) =
∫
Rd

f (ξ )ρ(ξ )dξ =
∫
Rd

f (ξ )
d

∏
i=1

ρi(ξi)dξ

with f ∈ Fd , the Hilbert space Fd has to be transformed to a Hilbert space Gd of
functions g on [0,1]d by the isometry

f ∈ Fd ⇐⇒ g(·) = f (Φ−1(·)) ∈Gd ,
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where Φ−1(t)= (φ−1
1 (t1), . . . ,φ−1

d (td)), t ∈ [0,1]d , and φi denotes the one-dimensional
distribution function to the density ρi, i ∈D. The inner product of Gd is

〈g, g̃〉γ = 〈 f (Φ−1(·)), f̃ (Φ−1(·))〉γ = 〈 f , f̃ 〉γ,ψ .

The choice of the weight functions ψi depends on the marginal densities ρi, i ∈D.
We refer to [16, 25] for a discussion of this aspect and for a list of marginal densities
and the corresponding weight functions.
Now we consider randomly shifted lattice rules for numerical integration in Gd
(see [31, 15]). Let Zn = {z ∈ N : 1≤ z≤ n, gcd(z,n) = 1} denote the set of natural
numbers between 1 and n that are relatively prime to n. Given a generating vector g∈
Zd

n and a random shift vector4 which is uniformly distributed in [0,1]d , the shifted
lattice rule points are t j = { jg

n +4}, j = 1, . . . ,n, where the braces indicate taking
componentwise the fractional part. The corresponding randomized QMC method on
Gd is of the form

Qn,d(g) =
1
n

n

∑
j=1

g(t j) (g ∈Gd ,n ∈ N). (15)

Let ϕ(n) denote the cardinality of Zn, thus, ϕ(n) = n if n is prime, and let ξ j =
Φ−1(t j) for j = 1, . . . ,n. Then we obtain from [25, Theorem 8] that a generating
vector g ∈ Zd

n can be constructed by a component-by-component algorithm such
that for each δ ∈ (0, 1

2 ] there exists C(δ )> 0 with

(
E
∣∣Id,ρ( f )−Qn,d( f (Φ−1(·)))

∣∣2) 1
2 ≤C(δ )‖ f‖γ,ψ ϕ(n)−1+δ (16)

if the following condition
∞

∑
i=1

γ

1
2(1−δ )

i < ∞ (17)

on the weights is satisfied and f belongs to Fd . To state our next result we denote
by v(P) the infimal value of (1) and by v(Qn,d) the infimum if the integral in (1) is
replaced by the randomly shifted lattice rule (15).

Theorem 3. Let (A1)–(A7) be satisfied and X be compact. Assume that all inte-
grands f = fx, x ∈ X, of the form (3) have at most effective superposition dimension
dS(ε) = 2 for some ε > 0 and that the second order ANOVA approximation f (2) of f
belongs to Fd . Furthermore, we assume that Qn,d is a randomly shifted lattice rule
(15) satisfying (16). Then, for each δ ∈ (0, 1

2 ], there exists Ĉ(δ )> 0 such that

(
E
∣∣v(P)− v(Qn,d)

∣∣2) 1
2 ≤ Ĉ(δ )ϕ(n)−1+δ +an , (18)

where the sequence (an) converges to zero and allows the estimate

an ≤
√

ε σ( f ) (19)
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with σ( f ) denoting the variance (7) of f .

Proof. Let x∈ X be fixed and we consider f = fx. The QMC error may be estimated
using the ANOVA approximation f (2) of f of order 2 as follows:

∣∣Id,ρ( f )−Qn,d( f (Φ−1(·))))
∣∣ ≤ ∣∣∣∫

Rd
f (2)(ξ )ρ(ξ )dξ − 1

n

n

∑
j=1

f (2)(ξ j)
∣∣∣

+
∣∣∣∫

Rd
f−(2)(ξ )ρ(ξ )dξ − 1

n

n

∑
j=1

f−(2)(ξ j)
∣∣∣,

where f−(2) = f − f (2). For any δ ∈ (0, 1
2 ] we continue

(
E
∣∣Id,ρ( f )−Qn,d( f (Φ−1(·)))

∣∣2) 1
2 ≤

(
E
∣∣Id,ρ( f (2))−Qn,d( f (2)(Φ−1(·)))

∣∣2) 1
2 (20)

+
(
E
∣∣Id,ρ( f−(2))−Qn,d( f−(2)(Φ−1(·)))

∣∣2) 1
2

≤ C(δ )‖ f (2)‖γ,ψ ϕ(n)−1+δ +an , (21)

where we use (16) with f = f (2) to estimate the first term and denote the second term
by an. Since the integrand f−(2) is Riemann-integrable, the sequence (an) converges
to zero. Next we utilize [18, Proposition 4] on expressing the variance of randomly
shifted lattice rules in terms of squared Fourier coefficients, Parseval’s identity for
‖ f − f (2)‖2

2,ρ and the estimate (9) to obtain

an ≤ ‖ f − f (2)‖2,ρ ≤
√

ε σ( f ).

Our next step is to study how the right-hand side in the estimate (20), (21) depends
on x ∈ X . The only term depending on x is the Fd-norm of f (2) = f (2)x . Since f (2)

contains only ANOVA terms of order 1 and 2, its norm is given by

‖ f (2)‖2
γ,ψ = ∑

|u|≤2
γ
−1
u

∫
R|u|

∣∣∣∫
R|−u|

∂ |u| f (2)

∂ξ u (ξ ) ∏
i∈−u

ρi(ξi)dξ
−u
∣∣∣2 ∏

i∈u
ψ

2
i (ξi)dξ

u.

Due to (14) and (6) the second order ANOVA approximation allows a representa-
tion in terms of ANOVA projections Pu f with d−2≤ |u| ≤ d. The modulus of such
ANOVA projections and of their first and second order derivatives can be bounded
by some constant times max{1,‖x‖}‖ξ−u‖2 (at least almost everywhere). Since X
is compact, those bounds being continuous functions with respect to x are uniformly
bounded on X . Using (A5) this implies that ‖ f (2)‖γ,ψ can be bounded by some uni-
form constant C̄. Now, it remains to appeal to a standard stability result for stochastic
programs (see [28, Theorem 5]) to obtain(

E
∣∣v(P)− v(Qn,d)

∣∣2) 1
2 ≤ sup

x∈X

(
E
∣∣Id,ρ( fx)−Qn,d( fx(Φ

−1(·)))
∣∣2) 1

2

≤ C(δ )C̄ϕ(n)−1+δ +an ,
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which completes the proof. �

We note that the differentiability properties of f (2) in Theorem 1 motivate the con-
dition for f (2) imposed in Theorem 3.

6 Application to electricity optimization under uncertainty

We consider a model for the optimal operation of an electricity company in the
presence of stochasticity of the electrical load ξλ and market price ξπ . The company
owns a number of thermal units and bilateral contracts with other power producers.
In addition it trades at electricity markets. Load and price are components of the
random vector

ξ = (ξλ ,1, . . . ,ξλ ,T ,ξπ,1, . . . ,ξπ,T )
>.

The time horizon consists of T hourly intervals. At each time period t ∈ {1, . . . ,T}
the load has to be covered. During peak load periods the production capacity based
on their own m units does eventually not suffice to cover the load. Hence, it has to
buy the necessary extra amounts from other m1 markets and m2 producers at prices

p1, j1,t(ξ ) = p̄1, j1,t +ξπ,t , p2, j2,t = p̄2, j2,t , t = 1, . . . ,T, j1 = 1, . . . ,m1, j2 = 1, . . . ,m2,

where the vector ξπ,t represents the stochastic part of the prices p1, j1,t at the markets,
and p̄1, j1,t , p̄2, j2,t , t = 1, . . . ,T , represent contractual fixed prices. The aim of the
company consists in minimizing its expected costs in the presence of uncertain load
and prices. The two-stage stochastic electricity optimization model is of the form

min
{ T

∑
t=1

m

∑
j=1

c j,t x j,t +
∫
R2T

inf{g(x,y,u,ξ ) : (y,u) ∈ Y (x,ξ )}P(dξ ) : x ∈ X
}

(22)

with the convex polyhedral feasible set

X :=

{
x ∈ RmT

∣∣∣∣∣ ai,t ≤ xi,t ≤ bi,t , i = 1, . . . ,m , t = 1, . . . ,T
|xi,t − xi,t+1| ≤ δi,t , i = 1, . . . ,m , t = 1, . . . ,T −1

}
,

where the linear constraints model capacity limits and ramping constraints. The
second-stage objective function g is given by

g(x,y,u,ξ ) =
T

∑
t=1

[
m1

∑
j1=1

p1, j1,t(ξ )(y1, j1,t +η j1u j1,t)+
m2

∑
j2=1

p2, j2,ty2, j2,t

]

and the second-stage constraint set Y (x,ξ ) as subset of points (y,u) ∈ R(m1+m2)T ×
{0,1}m1T such that
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m

∑
i=1

xi,t +
m1

∑
j1=1

y1, j1,t +
m2

∑
j2=1

y2, j2,t ≥ ξλ ,t , t = 1, . . . ,T,

w2, j2,t ≤ y2, j2,t , j2 = 1, . . . ,m2 , t = 1, . . . ,T,
|y2, j2,t − y2, j2,t+1| ≤ ρ j2,t , j2 = 1, . . . ,m2 , t = 1, . . . ,T −1,
w1, j1,tu j1,t ≤ y j1,t ≤ z j1,tu j1,t , j1 = 1, . . . ,m1 , t = 1, . . . ,T,
u j1,τ −u j1,τ−1 ≤ u j1,t , τ = t− τ, . . . , t−1 , j1 = 1, . . . ,m1 , t = 1, . . . ,T,
u j1,τ−1−u j1,τ ≤ 1−u j1,t , τ = t− τ, . . . , t−1 , j1 = 1, . . . ,m1 , t = 1, . . . ,T,

with fixed positive costs ci,t , up/down price proportion η j1 , bounds ai,t , bi,t , δi,t ,
w1, j1,t ,w2, j2,t , z j1,t , ρ j2,t modeling capacity limits and ramp constraints. The vari-
ables u j1,t ∈ {0,1}, j1 = 1, . . . ,m1, t = 1, . . . ,T , model on/off decisions for external
units and the bounds τ , τ are their minimum up/down times.

We assume that the stochastic loads and prices ξλ ,t ,ξπ,t follow the condition(
ξλ ,t
ξπ,t

)
=

(
ξ̄λ ,t
ξ̄π,t

)
+

(
E1,t
E2,t

)
, t = 1, . . . ,T,

(
ξ̄λ ,1
ξ̄π,1

)
=B1

(
γ1,1
γ2,1

)
,

(
ξ̄λ ,t
ξ̄π,t

)
=A

(
ξ̄λ ,t−1
ξ̄π,t−1

)
+B1

(
γ1,t
γ2,t

)
+B2

(
γ1,t−1
γ2,t−1

)
, t = 2, . . . ,T,

where (E1,1, . . . ,E1,T ) and (E2,1, . . . ,E2,T ) are fixed mean vectors for loads and
prices simulating the trend or seasonality, A,B1,B2 ∈ R2×2, and γ1,t ,γ2,t ∼ N(0,1)
are independent standard normal random variables. The resulting stochastic pro-
cess ξ = {(ξλ ,t ,ξπ,t)}T

t=1 is thus a multivariate ARMA(1,1) process. Similar models
have been considered for simulating prices and demands in the energy industry in
the literature, see e.g. [6]. Note that since the model contains unbounded demands
ξλ ,1, . . . ,ξλ ,T , no upper bounds on the variables y2, j2,t , j2 = 1, . . . ,m2 , t = 1, . . . ,T
were imposed, allowing the latter to cover arbitrarily large demand values. We se-
lect in addition the prices π̄2, j2,t significantly higher than the prices π̄1, j1,t , such that
the variables y2, j2,t , j2 = 1, . . . ,m2 , t = 1, . . . ,T do not always represent the trivial
choice for costs minimization. For our tests, we chose the time horizon T = 100,
therefore the real dimension of the model is d = 2T = 200. Further model constants
were set to

A =

(
0.29 0.44
0.44 0.70

)
, B1 =

(
1 0
0 1

)
, B2 =

(
0.75 0.053
0.053 0.43

)
.

We refer to [2, Section 7] for detailed information about modeling with multivari-
ate ARMA processes. The resulting joint probability distribution P of the process is
normal with dimension d = 2T and covariance matrix Σ . The expectation integral
is transformed by factorizing the covariance matrix Σ = AA> as usually recom-
mended in normal high-dimensional integration (see [7, Sect. 2.3.3]). We carry out
our tests using the standard lower triangular Cholesky matrix for A (CH) and the
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principal component analysis factorization, in which A = (
√

λ1u1, . . . ,
√

λdud) with
the eigenvalues λ1 ≥ λ2 ≥ ·· · ,λd > 0 of Σ in decreasing order and the correspond-
ing orthonormal eigenvectors ui, i = 1, . . . ,d. Another description of PCA is

Σ = Qdiag(λ1, . . . ,λd)Q>,

where Q denotes the orthogonal matrix Q = (u1 · · ·ud). While the Cholesky factor-
ization seems to assign the same importance to every variable and, hence, is not
suitable to reduce the effective dimension, several authors report an enormous re-
duction of the effective dimension in financial models if PCA is used (e.g., [32]).
A simulated demands & prices-path ξ can then be obtained by

ξ = A(φ−1(z1), . . . ,φ
−1(z2T ))

>+(E1,1, . . . ,E1,T ,E2,1, . . . ,E2,T ),

where Z = (z1, . . . ,z2T ) ∼ U([0,1]2T ) (i.e., the probability distribution of Z is the
uniform distribution on [0,1]2T ), and φ−1(.) represents the inverse cumulative nor-
mal distribution function, which can be efficiently and accurately calculated by
Moro’s algorithm (see [7, Sect. 2.3.2]). The evaluation begins then with MC or
randomized QMC points for the samples Z ∼U([0,1]2T ). For MC points in [0,1]2T

we used the Mersenne Twister [24] as pseudo random number generator. For QMC,
we use randomly scrambled Sobol’ points with direction numbers given in [12] and
randomly shifted lattice rules [31, 15]. As scrambling technique we used random
linear scrambling described in [23]. For our tests, we considered cubic decaying
weights γ j =

1
j3 for constructing the lattice rules.

We chose the following parameters for the numerical experiments:

• m = 8, m1 = 3, m2 = 4.
• For all i, j1, j2, t, we select randomly ai,t ∈ [0.001,0.003], bi,t ∈ [0.3,0.6],

δi,t ∈ [0.3,0.35], w1, j1,t ,w2, j2,t ∈ [0.000001,0.00002], z j1,t ∈ [5,7], γ ∈ [0.1,0.3],
ρ j2,t ∈ [1.0,1.1], and τ = τ = 2.

• For all i, j1, j2, t, we select randomly ci,t ∈ [7,9], c̄1, j1,t ∈ [8,10], and
c̄2, j2,t ∈ [11,13]. We fixed (E1,1, . . . ,E1,d) = (6,6, . . . ,6), and
(E2,1, . . . ,E2,d) = (0,0, . . . ,0).

We performed the following computational experiments. We fixed N sampling
points ξ j and replaced the expected recourse costs by the corresponding equal-
weight MC or randomized QMC quadrature rule. Then the resulting approximate
stochastic program is of the form

min
x∈X

{
T

∑
t=1

m

∑
i=1

ci,t xi,t +
1
N

N

∑
j=1

g(x,y j,u j,ξ j) : (y j,u j) ∈ Y (x,ξ j), j = 1, . . . ,N

}
. (23)

It represents a mixed-integer linear program comprising (m+(m1 +m2)N)T con-
tinuous and m1NT binary variables. Since N ranges between 27 and 29, the pro-
gram (23) contains more than 30.000 to 150.000 binary variables. These large scale
mixed-integer linear programs are solved by means of the standard solver ILOG
CPLEX (2014). The aim of the experiments is to examine the convergence rate
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with respect to the sample size N of the estimated optimal value from (23) obtained
by replacing the expectation with MC or randomized QMC quadrature rules. We

Fig. 1 Shown are the Log10 of the relative RMSE with PCA factorization of covariance matrix for
computing the optimal value of (23) for parameters as stated above. Results for Mersenne Twister
MC and randomly scrambled Sobol’ QMC with N1 = 128, N2 = 256 and N3 = 512 points (MC
128,... or SOB 128,...), and randomly shifted lattice rules QMC with N1 = 127, N2 = 257 and
N3 = 509 lattice points (LAT 127,...).

performed 5 runs for all experiments by changing the set of randomly selected pa-
rameters. But the qualitative results remained very similar, therefore we only expose
one of these results in the figures. Figure 1 summarizes the convergence behavior
under PCA factorizations and Table 1 shows the mean and standard deviation of the
estimated optimal values under PCA for each sampling method and each sample
size over the 300 replications. We chose N1 = 128, N2 = 256, N3 = 512 as sample
sizes for the Mersenne Twister and for the scrambled Sobol’ points. For randomly
shifted lattices, we chose N1 = 127, N2 = 257, N3 = 509. The random shifts were
generated using the Mersenne Twister. We estimate the relative root mean square
errors (RMSE) of the optimal values by taking 10 runs of every experiment, and
repeat the process 30 times for the box plots in the figures. The box-plots show
the median value (red line), first quartile (lower bound of the box) and third quar-
tile (upper bound of the box). Outliers are marked in red and the rest of the results
lie between the brackets. The average of the estimated rates of convergence for the
tests under PCA were approximately −0.91 for randomly shifted lattice rules, and
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PCA mean standard deviation
N1 N2 N3 N1 N2 N3

MC 5022.61 5024.13 5026.24 121.86 77.53 62.28
LAT 5026.65 5026.79 5026.99 19.60 9.90 5.41
SOB 5027.14 5027.50 5027.53 4.34 2.16 0.96

Table 1 Mean and standard deviation of the estimated optimal values under PCA for different
sampling methods and sample sizes.

−1.05 for the randomly scrambled Sobol’ points, for different price- and bound-
parameters as listed above. This is clearly superior to the MC convergence rate of
−0.5. The upper bound for the effective dimension of the integrand f (x, ·) in (22)
was computed by means of (10) at 5 different feasible vertices x. We used the al-
gorithm proposed in [32] with 216 randomly scrambled Sobol’ points ensuring that
all results for the ANOVA total and partial variances were obtained with at least 3
digits accuracy. The upper bound of dS(ε) with ε = 0.01 is computed by using (10)
and remained always equal to 2. We observed also that the first variable under PCA
seems to accumulate always more than 90% of the total variance σ2( f (x, ·)). Hence,
PCA serves as excellent dimension reduction technique in this case. Additionally,
we performed the same test runs by using the Cholesky decomposition CH instead
of PCA for factorizing the covariance matrix. Using CH the observed results, see
Figure 2, were completely different than those under PCA. The average of the es-
timated rates of convergence of randomized QMC was approximately −0.5, which
is the same as the expected MC rate, although the implied error constants seem to
be smaller for randomly shifted lattice rules and randomly scrambled Sobol’ points
than for MC. The upper bound for the effective dimension of the integrand f (x, ·) in
(22) was estimated by using (10) to be 200 in all tests.

7 Conclusions

The theoretical and numerical results indicate that randomized QMC methods can
be superior to MC for solving two-stage stochastic programming problems at least
if the recourse cost function has low effective dimension and

√
εσ( f ) is smaller

than the target accuracy for solving the optimization problem. Then using random-
ized QMC methods instead of MC allows a reduction of sample sizes from N ap-
proximately to

√
N. This fact becomes especially important when solving practical

mixed-integer stochastic programming models because it reduces the dimension of
the large scale mixed-integer linear programs of type (23) and, hence, leads to a
considerable reduction of running time. But, Figure 2 shows that the error constants
for randomized QMC methods tend to be smaller than for MC even if the effec-
tive dimension is not low. Hence, the use of randomized QMC methods for solving
stochastic programs instead of MC seems to pay in any case.
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Fig. 2 Shown are the Log10 of relative RMSE with Cholesky factorization of covariance matrix for
computing the optimal value of (23) for parameters as stated above. Results for Mersenne Twister
MC and randomly scrambled Sobol’ QMC with N1 = 128, N2 = 256 and N3 = 512 points (MC
128,... or SOB 128,...), and randomly shifted lattice rules QMC with N1 = 127, N2 = 257 and
N3 = 509 lattice points (LAT 127,...).
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9. Griewank, A., Kuo, F. Y., Leövey, H., Sloan, I. H.: High dimensional integration of kinks and

jumps – smoothing by preintegration. Journal of Computational and Applied Mathematics
344, 259–274 (2018).



QMC methods for mixed-integer stochastic programs 17

10. He, Z., Wang, X.: On the convergence rate of randomized Quasi-Monte Carlo for discontinu-
ous functions. SIAM Journal on Numerical Analysis 53, 2488–2503 (2015).
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