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SP and approximation issues

We consider a stochastic program of the form

min

{∫
Ξ

Φ(ξ, x)P (dξ) : x ∈ X
}
,

where X ⊆ Rm is a constraint set, P a probability distribution on

Ξ ⊆ Rd, and f = Φ(·, x) is a decision-dependent integrand.

Any approach to solving such models computationally requires to

replace the integral by a quadrature rule

Qn,d(f ) =

n∑
i=1

wif (ξi),

with weights wi ∈ R and scenarios ξi ∈ Ξ, i = 1, . . . , n.

If the natural condition wi ≥ 0 and
∑n

i=1wi = 1 is satisfied,

Qn,d(f ) allows the interpretation as integral with respect to the

discrete probability measure Qn having scenarios ξi with probabili-

ties wi, i = 1, . . . , n.
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Example: Linear two-stage stochastic programs

We consider two-stage linear stochastic programs with random right-

hand sides:

min

{
〈c, x〉 +

∫
Ξ

ϕ(h(ξ)− Tx)P (dξ) : x ∈ X
}

where c ∈ Rm, X is a polyhedral subset of Rm, Ξ a closed subset

of Rd, T a (r,m)-matrix, h(·) an affine mapping from Rd to Rr,

P a Borel probability measure on Ξ and

ϕ(t) = inf{〈q, y〉 : Wy = t, y ≥ 0}
= sup{〈t, z〉 : W>z ≤ q} = sup

z∈D
〈t, z〉 ,

where q ∈ Rm̄, W a (r, m̄)-matrix (having rank r) and t varies in

the polyhedral cone W (Rm̄). If D 6= ∅ there exist vertices vj of D
and polyhedral cones Kj, j = 1, . . . , `, decomposing domϕ such

that ϕ(t) = 〈vj, t〉, ∀t ∈ Kj, and ϕ(t) = maxj=1,...,`〈vj, t〉. Hence

Φ(ξ, x) = 〈c, x〉 + max
j=1,...,`

〈vj, h(ξ)− Tx〉
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Assumption: P has a density ρ w.r.t. λd.

Now, we set F = {Φ(·, x)ρ(·) : x ∈ X} and assume that the set

F is a bounded subset of some linear normed space Fd with norm

‖ · ‖d and unit ball Bd = {f ∈ Fd : ‖f‖d ≤ 1}.

The absolute error of the quadrature rule Qn,d is

e(Qn,d) = sup
f∈Bd

∣∣∣∣∣
∫

Ξ

f (ξ)dξ −
n∑
i=1

wif (ξi)

∣∣∣∣∣
and the approximation criterion is based on the relative error and

a given tolerance ε > 0, namely, it consists in finding the smallest

number nmin(ε,Qn,d) ∈ N such that

e(Qn,d) ≤ εe(Q0,d),

holds, where Q0,d(f ) = 0 and, hence, e(Q0,d) = ‖Id‖ with

Id(f ) =

∫
Ξ

f (ξ)dξ.
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Alternatively, we look for a suitable set F of functions such that

{CΦ(·, x) : x ∈ X} ⊆ F for some constant C > 0 and, hence,

e(Qn,d) ≤
1

C
sup
f∈F

∣∣∣∣∫
Ξ

f (ξ)P (dξ)−
∫

Ξ

f (ξ)Qn(dξ)

∣∣∣∣ = D(P,Qn),

and that D is a metric distance between probability distributions.

Example: Fortet-Mourier metric (of order r ≥ 1)

ζr(P,Q) := sup

∣∣∣∣∫
Ξ

f (ξ)(P −Q)(dξ) : f ∈ Fr(Ξ)

∣∣∣∣,
where

Fr(Ξ) := {f : Ξ 7→ R : f (ξ)− f (ξ̃) ≤ cr(ξ, ξ̃), ∀ξ, ξ̃ ∈ Ξ},

cr(ξ, ξ̃) := max{1, ‖ξ‖r−1, ‖ξ̃‖r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξ).
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The behavior of e(Qn,d) with respect to n ∈ N and of nmin(ε,Qn,d)

with respect to ε is of considerable interest. In both cases the de-

pendence on the dimension d of P is often crucial, too.

The behavior of both quantities depends heavily on the normed

space Fd and the set F , respectively.

It is desirable that an estimate of the form

nmin(ε,Qn,d) ≤ C dqε−p (’tractability’)

is valid for some constants q ≥ 0, C, p > 0 and for every ε ∈ (0, 1).

Of course, q = 0 is highly desirable for high-dimensional problems.

Proposition: (Stability)

Let the set X be compact. Then there exists L > 0 such that∣∣∣∣∣ inf
x∈X

∫
Ξ

Φ(ξ, x)ρ(ξ)dξ − inf
x∈X

n∑
i=1

wiΦ(ξi, x)ρ(ξi)

∣∣∣∣∣ ≤ Le(Qn,d).

The solution set mapping is outer semicontinuous at P .
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Examples of normed spaces Fd relevant in SP:

(a) The Banach space Fd = Lip(Rd) of Lipschitz continuous func-

tions equipped with the norm

‖f‖d = |f (0)| + sup
ξ 6=ξ̃

|f (ξ)− f (ξ̃)|
‖ξ − ξ̃‖

.

The best possible convergence rate is e(Qn,d) = O(n−
1
d).

It is attained for wi = 1
n and certain ξi, i = 1, . . . , n, if P has

finite moments of order 1 + δ for some δ > 0. (Graf-Luschgy 00)

(b) Assumption: Ξ = [0, 1]d (attainable by suitable transformations).

We consider the Banach space Fd = BVHK([0, 1]d) of functions

having bounded variation in the sense of Hardy and Krause

equipped with the norm ‖f‖d = |f (0)| + VHK(f ).

Then for wi = 1
n, i = 1, . . . , n, there exist ξi ∈ [0, 1]d, i ∈ N,

such that the convergence rate is

e(Qn,d) = O

(
(log n)d−1

n

)
.
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(c) The tensor product Sobolev space

Fd,γ =W (1,...,1)
2,mix ([0, 1]d) =

d⊗
i=1

W 1
2 ([0, 1])

of real functions on [0, 1]d having first order mixed weak deriva-

tives with the (weighted) norm

‖f‖d,γ =

(∑
u⊂D

γ−1
u

∫
[0,1]|u|

∣∣∣∣∂|u|∂ξu
f (ξu, 1−u)

∣∣∣∣2 dξu
)1

2

,

where D = {1, . . . , d}, γ1 ≥ γ2 ≥ · · · ≥ γd > 0, γ∅ = 1 and

γu =
∏
j∈u

γj (u ⊆ D).

Note that any f ∈ W (1,...,1)
2,mix ([0, 1]d) is of bounded variation in

the sense of Hardy and Krause.

For n prime, wi = 1
n, and a suitable choice of (γj), points

ξi ∈ [0, 1]d, i = 1, . . . , n can be constructed such that

e(Qn,d) ≤ C(δ)n−1+δ‖Id‖
for some C(δ) > 0 (not depending on d) and all 0 < δ ≤ 1

2
(Sloan, Woźniakowski 98, Kuo 03).
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Scenario generation methods

We will discuss the following four scenario generation methods for

stochastic programs without nonanticipativity constraints:

(a) Monte Carlo sampling from the underlying probability distribu-

tion P on Rd
(Shapiro 03).

(b) Optimal quantization of probability distributions (Pflug-Pichler 10).

(c) Quasi-Monte Carlo methods (Koivu-Pennanen 05, Homem-de-Mello 06).

(d) Quadrature rules based on sparse grids (Chen-Mehrotra 08).
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Monte Carlo sampling

Monte Carlo methods are based on drawing independent identi-

cally distributed (iid) Ξ-valued random samples ξ1(·), . . . , ξn(·), . . .
(defined on some probability space (Ω,A,P)) from an underlying

probability distribution P (on Ξ) such that

Qn,d(ω)(f ) =
1

n

n∑
i=1

f (ξi(ω)),

i.e., Qn,d(·) is a random functional, and it holds

lim
n→∞

Qn,d(ω)(f ) =

∫
Ξ

f (ξ)P (dξ) = E(f ) P-almost surely

for every real continuous and bounded function f on Ξ.

If P has finite moment of order r ≥ 1, the error estimate

E

(∣∣∣∣∣1n
n∑
i=1

f (ξi(ω))− E(f )

∣∣∣∣∣
r)
≤ E ((f − E(f ))r)

nr−1



Home Page

Title Page

Contents

JJ II

J I

Page 12 of 45

Go Back

Full Screen

Close

Quit

is valid. Hence, the mean square convergence rate is

‖Qn,d(ω)(f )− E(f )‖L2 = σ(f )n−
1
2 ,

where σ2(f ) = E
(
(f − E(f ))2

)
.

The latter holds without any assumption on f except σ(f ) <∞.

Advantages:

(i) MC sampling works for (almost) all integrands.

(ii) The machinery of probability theory is available.

(iii) The convergence rate does not depend on d.

Deficiencies: (Niederreiter 92)

(i) There exist ’only’ probabilistic error bounds.

(ii) Possible regularity of the integrand does not improve the rate.

(iii) Generating (independent) random samples is difficult.

Practically, iid samples are approximately obtained by pseudo ran-

dom number generators as uniform samples in [0, 1]d and later trans-

formed to more general sets Ξ and distributions P .
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Survey: L’Ecuyer 94.

Classical generators for pseudo random numbers are based on linear

congruential methods. As the parameters of this method, we choose

a large M ∈ N (modulus), a multiplier a ∈ N with 1 ≤ a < M

and gcd(a,M) = 1, and c ∈ ZM = {0, 1, . . . ,M − 1}. Starting

with y0 ∈ ZM a sequence is generated by

yn ≡ ayn−1 + c mod M (n ∈ N)

and the linear congruential pseudo random numbers are

ξn =
yn
M
∈ [0, 1).

Excellent pseudo random number generator: Mersenne Twister

(Matsumoto-Nishimura 98).

Use only pseudo random number generators having passed a series

of statistical tests, e.g., uniformity test, serial correlation test, serial

test, coarse lattice structure test etc.
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Optimal quantization of probability measures

Let D be a distance of probability measures on Rd such that the

underlying stochastic program behaves stable w.r.t. D (Römisch 03).

Examples:
(a) Fortet-Mourier metric ζr of order r,

(b) Lr-minimal metric `r (or Wasserstein metric), i.e.

`r(P,Q) = inf{(E(‖ξ − η‖r))
1
r : L(ξ) = P, L(η) = Q}

Let P be a given probability distribution on Rd. We are looking for

a discrete probability measure Qn with support

supp(Qn) = {ξ1, . . . , ξn} and Qn({ξi}) =
1

n
, i = 1, . . . , n,

such that it is the best approximation to P with respect to D, i.e.,

D(P,Qn) = min{D(P,Q) : |supp(Q)| = n,Q is uniform}.

Existence of best approximations, called optimal quantizers, and

their convergence rates are well known for `r (Graf-Luschgy 00).
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In general, however, the function

ΨD(ξ1, . . . , ξn) := D
(
P,

1

n

n∑
i=1

δξi
)

Ψ`r(ξ
1, . . . , ξn) =

(∫
Rd

min
i=1,...,n

‖ξ − ξi‖rP (dξ)

)1
r

is nonconvex and nondifferentiable on Rdn.

Hence, the global minimization of ΨD is not an easy task.

Algorithmic procedures for minimizing Ψ`r globally may be based on

stochastic gradient algorithms, stochastic approximation methods

and stochastic branch-and-bound techniques (e.g. Pflug 01, Hochreiter-

Pflug 07, Pagés 97, Pagés et al 04).

However, asymptotically optimal quantizers can be determined ex-

plicitly in several cases (Pflug-Pichler 10).
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Quasi-Monte Carlo methods

The basic idea of Quasi-Monte Carlo (QMC) methods is to replace

random samples in Monte Carlo methods by deterministic points

that are uniformly distributed in [0, 1]d. The latter property may be

defined in terms of the so-called star-discrepancy of ξ1, . . . , ξn

D∗n(ξ1, . . . , ξn) := sup
ξ∈[0,1]d

∣∣∣∣∣λd([0, ξ))− 1

n

n∑
i=1

1l[0,ξ)(ξ
i)

∣∣∣∣∣,
by calling a sequence (ξi)i∈N uniformly distributed in [0, 1]d

D∗n(ξ1, . . . , ξn)→ 0 for n→∞ .

A classical result due to Roth 54 states

D∗n(ξ1, . . . , ξn) ≥ Bd
(log n)

d−1
2

n

for some constant Bd and all sequences (ξi) in [0, 1]d.
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Classical convergence results:

Theorem: (Proinov 88)

If the real function f is continuous on [0, 1]d, then there exists

C > 0 such that

|Qn,d(f )− Id(f )| ≤ Cωf

(
D∗n(ξ1, . . . , ξn)

1
d

)
,

where ωf(δ) = sup{|f (ξ)− f (ξ̃)| : ‖ξ− ξ̃)‖ ≤ δ, ξ, ξ̃ ∈ [0, 1]d} is

the modulus of continuity of f .

Theorem: (Koksma-Hlawka 61)

If f is of bounded variation in the sense of Hardy and Krause, it

holds

|Id(f )−Qn,d(f )| ≤ VHK(f )D∗n(ξ1, . . . , ξn) .

for any n ∈ N and any ξ1, . . . , ξn ∈ [0, 1]d.

There exist sequences (ξi) in [0, 1]d such that

D∗n(ξ1, . . . , ξn) = O(n−1(log n)d−1).
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First general construction: (Sobol 69, Niederreiter 87)

Elementary subintervals E in base b:

E =

d∏
j=1

[
aj

bdj
,
aj + 1

bdj

)
,

with ai, di ∈ Z+, 0 ≤ ai < di, i = 1, . . . , d.

Let m, t ∈ Z+, m > t.

A set of bm points in [0, 1]d is a (t,m, d)-net in base b if every

elementary subinterval E in base b with λd(E) = bt−m contains bt

points.

A sequence (ξi) in [0, 1]d is a (t, d)-sequence in base b if, for all

integers k ∈ Z+ and m > t, the set

{ξi : kbm ≤ i < (k + 1)bm}

is a (t,m, d)-net in base b.

Proposition: (0, d)-sequences exist if d ≤ b.



Home Page

Title Page

Contents

JJ II

J I

Page 19 of 45

Go Back

Full Screen

Close

Quit

Theorem:
The star-discrepancy of a (0,m, d)-net {ξi} in base b satisfies

D∗n(ξi) ≤ Ad(b)
(log n)d−1

n
+ O

(
(log n)d−2

n

)
.

Special cases: Sobol, Faure and Niederreiter sequences.

Second general construction: (Korobov 59, Sloan-Joe 94)

Let g ∈ Zd and consider the lattice points{
ξi =

{ i
n
g
}

: i = 1, . . . , n
}
,

where {z} is defined componentwise and for z ∈ R+ it is the

fractional part of z, i.e., {z} = z − bzc ∈ [0, 1).

Randomly shifted lattice points with a uniform 4:{
ξi =

{ i
n
g +4

}
: i = 1, . . . , n

}
,

There is a component-by-component construction algorithm for g

such that for some constant C(δ) and all 0 < δ ≤ 1
2

e(Qn,d) ≤ C(δ)n−1+δ‖Id‖ (Sloan, Kuo 03).
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Quadrature rules with sparse grids

Again we consider the unit cube [0, 1]d in Rd. Let nested sets of

grids in [0, 1] be given, i.e.,

Ξi = {ξi1, . . . , ξimi
} ⊂ Ξi+1 ⊂ [0, 1] (i ∈ N),

for example, the dyadic grid

Ξi =

{
j

2i
: j = 0, 1, . . . , 2i

}
.

Then the point set suggested by Smolyak

H(n, d) :=
⋃

∑d
j=1 ij=n

Ξi1 × · · · × Ξid (n ∈ N)

is called a sparse grid in [0, 1]d. In case of dyadic grids in [0, 1] the

set H(n, d) consists of all d-dimensional dyadic grids with product

of mesh size given by 1
2n .
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The corresponding tensor product quadrature rule for n ≥ d on

[0, 1]d with respect to the Lebesgue measure λd is of the form

Qn,d(f ) =
∑

n−d+1≤|i|≤n

(−1)n−|i|
(
d− 1

n− |i|

)mi1∑
j1=1

· · ·
mid∑
jd=1

f (ξi1j1, . . . , ξ
id
jd

)

d∏
l=1

a
il
jl
,

where |i| =
∑d

j=1 ij and the coefficients aij (j = 1, . . . ,mi, i =

1, . . . , d) are weights of one-dimensional quadrature rules.

Even if the one-dimensional weights are positive, some of the weights

wi may become negative. Hence, an interpretation as discrete prob-

ability measure is no longer possible.

Theorem: (Bungartz-Griebel 04)

If f belongs to Fd = W
(r,...,r)
2 ([0, 1]d), it holds∣∣∣∣∣

∫
[0,1]d

f (ξ)dξ −
n∑
i=1

wif (ξi)

∣∣∣∣∣ ≤ Cr,d‖f‖d
(log n)(d−1)(r+1)

nr
.
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Example (continued)

Proposition: (Owen 05)

Let d ≥ 3, bi ∈ R, i = 0, 1, . . . , d, and we consider for ξ ∈ [0, 1]d

f (ξ) = max{〈b, ξ〉 − b0, 0}.

If {ξ ∈ [0, 1]d : 〈b, ξ〉 = b0} has positive (d−1)-dimensional volume

and none of b1, . . . , bd is zero, it holds VHK(f ) =∞.

Conclusion: Typical integrands in two-stage linear stochastic pro-

gramming are not of bounded variation in general.

Alternatives ? (open problem)

(a) Smoothing of stochastic programs ?

(b) Arguing via smoother ANOVA decomposition terms of f and

small effective dimension ?
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Scenario reduction

Assume that a two-stage stochastic program behaves stable with

respect to a Fortet-Mourier metric ζr for some r ≥ 1 (Römisch-Wets 07).

Proposition: (Rachev-Rüschendorf 98)

If Ξ is bounded, ζr may be reformulated as transportation problem

ζr(P,Q) = inf

{∫
Ξ×Ξ

ĉr(ξ, ξ̃)η(dξ, dξ̃) :π1η=P, π2η =Q

}
,

where ĉr is a metric (reduced cost) with ĉr ≤ cr and given by

ĉr(ξ, ξ̃) := inf

{
n−1∑
i=1

cr(ξli, ξli+1) : n ∈ N, ξli ∈ Ξ, ξl1 = ξ, ξln = ξ̃

}
.

We consider discrete distributions P with scenarios ξi and proba-

bilities pi, i = 1, . . . , N , and Q being supported by a given subset

of scenarios ξj, j 6∈ J ⊂ {1, . . . , N}, of P .
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Best approximation given a scenario set J :

The best approximation of P with respect to ζr by such a distribu-

tion Q exists and is denoted by Q∗. It has the distance

DJ := ζr(P,Q
∗) = min

Q
ζr(P,Q) =

∑
i∈J

pi min
j 6∈J

ĉr(ξ
i, ξj)

and the probabilities q∗j = pj +
∑
i∈Jj

pi, ∀j 6∈ J, where

Jj := {i ∈ J : j = j(i)} and j(i) ∈ arg min
j 6∈J

ĉr(ξ
i, ξj), ∀i ∈ J

(optimal redistribution) (Dupačová-Gröwe-Römisch 03).

For mixed-integer two-stage stochastic programs the relevant dis-

tance is a polyhedral discrepancy. In that case, the new weights

have to be determined by linear programming (Henrion-Küchler-Römisch

08, 09).
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Determining the optimal index set J with prescribed cardinality

N − n is a clustering problem, thus, a combinatorial optimization

problem of n-median type:

min {DJ : J ⊂ {1, ..., N}, |J | = N − n}

Hence, the problem of finding the optimal set J for deleting scenar-

ios is NP-hard and polynomial time algorithms are not available

in general.

−→ Search for fast heuristics starting from n = 1 or n = N − 1.
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Fast reduction heuristics

Starting point (n = N − 1): min
l∈{1,...,N}

pl min
j 6=l

ĉr(ξ
l, ξj)

Algorithm 1: (Backward reduction)

Step [0]: J [0] := ∅ .
Step [i]: li ∈ arg min

l 6∈J [i−1]

∑
k∈J [i−1]∪{l}

pk min
j 6∈J [i−1]∪{l}

ĉr(ξ
k, ξj).

J [i] := J [i−1] ∪ {li} .
Step [N-n+1]: Optimal redistribution.
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Starting point (n = 1): min
u∈{1,...,N}

N∑
k=1

pkĉr(ξ
k, ξu)

Algorithm 2: (Forward selection)

Step [0]: J [0] := {1, . . . , N}.
Step [i]: ui ∈ arg min

u∈J [i−1]

∑
k∈J [i−1]\{u}

pk min
j 6∈J [i−1]\{u}

ĉr(ξ
k, ξj),

J [i] := J [i−1] \ {ui} .
Step [n+1]: Optimal redistribution.

(Heitsch-Römisch 03, 07)



Home Page

Title Page

Contents

JJ II

J I

Page 30 of 45

Go Back

Full Screen

Close

Quit

Example: (Electrical load scenario tree)

(Mean shifted ternary) Load scenario tree (729 scenarios)

−1000

−500

0

500

1000

24 48 72 96 120 144 168

<Start Animation>
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Reduced load scenario tree obtained by the forward selection method (15 scenarios)
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Reduced load scenario tree obtained by the backward reduction method (12 scenarios)
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Generation of scenario trees

In multistage stochastic programs the decisions x have to satisfy

the additional information constraint that xt is measurable with re-

spect to Ft = σ(ξτ , τ = 1, . . . , t), t = 1, . . . , T . The increase of

the σ-fields Ft w.r.t. t is reflected by approximating the underlying

stochastic process ξ = (ξt)
T
t=1 by scenarios forming a scenario tree.

Some recent approaches:

(1) Bound-based approximation methods: Kuhn 05, Casey-Sen 05.

(2) Monte Carlo-based schemes: Shapiro 03, 06.

(3) Quasi-Monte Carlo methods: Pennanen 06, 09 .

(4) Moment-matching principle: Høyland-Kaut-Wallace 03.

(5) Optimal quantization: Pagés et al. 99.

(6) Stability-based approximations: Hochreiter-Pflug 07, Mirkov-Pflug 07,

Pflug-Pichler 10, Heitsch-Römisch 05, 09.

Survey: Dupačová-Consigli-Wallace 00
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Theoretical basis of (6):
Quantitative stability results for multi-stage stochastic programs.

(Heitsch-Römisch-Strugarek 06; Mirkov-Pflug 07, Pflug 09)

Scenario tree generation: (Heitsch-Römisch 09)

(i) Generate a number of scenarios by one of the methods dis-

cussed earlier.

(ii) Construction of a scenario tree out of these scenarios by recur-

sive scenario reduction and bundling over time such that the

optimal value stays within a prescribed tolerance.

Implementation: GAMS-SCENRED 2.0 (developed by H. Heitsch)
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 t = 1  t = 2  t = 3  t = 4  t = 5  t = 1  t = 2  t = 3  t = 4  t = 5  t = 3 t = 1  t = 2  t = 4  t = 5

 t = 1  t = 2  t = 3  t = 5 t = 4  t = 5 t = 1  t = 2  t = 3  t = 4  t = 1  t = 2  t = 3  t = 4  t = 5

Illustration of the forward tree generation for an example including T=5 time periods starting with
a scenario fan containing N=58 scenarios

<Start Animation>

file:E:/anim/animation.html
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Appendix A: Functions of bounded variation

Let D = {1, . . . , d} and we consider subsets u of D with cardinality

|u|. By −u we mean −u = D \ u.

The expression ξu denotes the |u|-tuple of the components ξj, j ∈
u, of ξ ∈ Rd. For example, we write

f (ξ) = f (ξu, ξ−u).

We set the d-fold alternating sum of f over the d-dimensional

interval [a, b] as

4(f ; a, b) =
∑
u⊆D

(−1)|u|f (au, b−u).

Furthermore, we set for any v ⊆ u

4u(f ; a, b) =
∑
v⊆u

(−1)|v|f (av, b−v).
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Let Gj denote finite grids in [aj, bj), aj < bj, j = 1, . . . , d, and

G = ×di=1Gj a grid in [a, b) = ×di=1[aj, bj). For g ∈ G let g+ =

(g+
1 , . . . , g

+
d ), where g+

j is the successor of gj in Gj ∪ {bj}.
Then the variation of f over G is

VG(f ) =
∑
g∈G

|4(f ; g, g+)| .

If G denotes the set of all finite grids in [a, b), the variation of f on

[a, b] in the sense of Vitali is

V[a,b](f ) = sup
G∈G

VG(f ) .

The variation of f on [a, b] in the sense of Hardy and Krause is

VHK(f ; a, b) =
∑
u⊂D

V[a−u,b−u](f (ξ−u, bu)) .

Bounded variation on [a, b] in the sense of Hardy and Krause then

means VHK(f ; a, b) <∞.
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Appendix B: Decomposition of multivariate L2 functions

Idea: If f isn’t of bounded variation or smooth, decompositions

of f may be used, where only some of the terms are relevant and,

hopefully, are of bounded variation or smooth.

ANOVA-decomposition of f :

f =
∑
u⊆D

fu ,

where f∅ = Id(f ) = ID(f ) and recursively

fu = I−u(f ) +
∑
v⊆u

(−1)|u|−|v|Iu−v(I−u(f )) ,

where I−u means integration with respect to ξj, j ∈ D \u. Hence,

fu is essentially as smooth as I−u(f ) and does not depend on ξ−u.

Proposition:
The functions {fu}u⊆D are orthogonal in L2([0, 1]d).
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We set σ2(f ) = ‖f − Id(f )‖2
L2

and have

σ2(f ) = ‖f‖2
L2
− (Id(f ))2 =

∑
∅6=u⊆D

‖fu‖2
L2
.

The truncation dimension dt of f is the smallest dt ∈ N such that∑
u⊆{1,...,dt}

‖fu‖2
L2
≥ pσ2(f ) (where p ∈ (0, 1) is close to 1).

Then it holds f ≈
∑

u⊆{1,...,dt} fu (in L2).

The fu can be smoother than f under certain conditions

(Griebel-Kuo-Sloan 10).

Problem:
How to determine the truncation dimension in SP ?

(Drew and Homem-de-Mello 06).
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Conclusions

• We presented a framework for approximating stochastic pro-

grams suitable for a number of scenario generation methods.

• We gave a survey of approaches for scenario generation.

• We outlined that a competitive theoretical basis is still open

for applying Quasi-Monte Carlo and sparse grid methods in

stochastic programming.

• We discussed strategies for scenario reduction and scenario tree

generation.
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