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Abstract A multistage stochastic programming approach to airline network revenue
management is presented. The objective is to determine seat protection levels for all
itineraries, fare classes, points of sale of the airline network and all dcps of the booking
horizon such that the expected revenue is maximized. While the passenger demand
and cancelation rate processes are the stochastic inputs of the model, the stochastic
protection level process represents its output and allows to control the booking process.
The stochastic passenger demand and cancelation rate processes are approximated by
a finite number of tree structured scenarios. The scenario tree is generated from his-
torical data using a stability-based recursive scenario reduction scheme. Numerical
results for a small hub-and-spoke network are reported.

Keywords Airline revenue management · Seat inventory control · Multistage
stochastic programming · Scenario tree generation

1 Introduction

Revenue management in the airline industry refers to strategies for controlling the sale
of seats according to the passenger demand in a flight network in order to maximize
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revenue. Revenue management started with the pioneering work of Littlewood (1972)
and became standard in airline industries. For introductions and overviews we refer
to Weatherford (1998), McGill and van Ryzin (1999), Pak and Piersma (2002), Klein
and Petrick (2003), Van Ryzin and Talluri (2003), Talluri and van Ryzin (2004).

While earlier approaches to revenue management used linear programming models
based on the average demand, more recently, probabilistic optimization approaches are
suggested due the stochastic nature of the passenger demand and of the entire booking
process. In Talluri and van Ryzin (1999) a randomized linear programming approach
is proposed, where a deterministic model is solved for a sequence of demand samples.
The averages of the resulting dual multipliers are then used as bid prices to control
the booking process. The authors of Talluri and van Ryzin (1999) showed that their
method outperforms the deterministic approach. In Bertsimas and de Boer (2005), a
combination of a stochastic gradient algorithm and of approximate dynamic program-
ming ideas is used to improve initial booking limits. In Higle and Sen (2005), De Boer
et al. (2002), Cooper and Homen-de-Mello (2006), Chen and Homen-de-Mello (2006)
two-stage stochastic programs are proposed to deal with the stochastic character of the
booking process. In De Boer et al. (2002) a simple recourse model is used, where the
LP relaxation is replaced by an equivalent problem based on Wets (1983). Compared
to other approaches, e.g., Wollmer (1986) based on expected marginal revenue, this
model does not require additional integer variables to deal with the stochastic passen-
ger demand. The authors of Higle and Sen (2005) propose a two-stage model within
a bid price approach where the capacity constraints in the first stage uses leg based
seat allocations. The seats allocated to itineraries are then considered in the second
stage. The simulation experiments provide higher revenues in most cases than prob-
abilistic nonlinear programs as formulated, e.g., in Talluri and van Ryzin (1998).
In Cooper and Homen-de-Mello (2006) a hybrid method is suggested where the
second stage corresponds to the solution of a Markov decision problem. In Chen
and Homen-de-Mello (2006) two-stage and multistage stochastic programs are con-
sidered. Due to the non-convexity of the multi-stage program (and its continuous
relaxation), solving two-stage stochastic programs (similar to De Boer et al. 2002) on
a rolling horizon is suggested.

The multistage stochastic programming approach to revenue management is so
far only proposed in our earlier work Möller et al. (2004) and in the recent paper
DeMiguel and Mishra (2006). In DeMiguel and Mishra (2006) a different model for
network revenue management is considered by making optimal decisions on sales
instead of seat protection levels and by excluding cancelations. This leads to a sim-
pler and linear programming model. The focus of DeMiguel and Mishra (2006) is on
testing different strategies for generating scenario trees (Monte Carlo sampling, prin-
cipal components sampling, moment matching and bootstrapping methods), where
the branching structure of the tree is prescribed. The authors of DeMiguel and Mishra
(2006) test in-sample and out-of-sample stability for evaluating scenario trees and
the performance on a small and a large flight network. They show that their multi-
stage stochastic programming approach outperforms the deterministic approach and
that the performance is also better than the approach of Talluri and van Ryzin (1999)
if Monte Carlo sampling with a sufficiently high number of scenario branchings is
employed.
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In the present paper, we continue and extend our earlier work Möller et al. (2004) on
multistage stochastic programming models in network revenue management into sev-
eral directions. As in Möller et al. (2004) seat protection levels are determined and the
cancelation process is taken into account allowing for overbooking in all time periods
before departure. The disjunctive constraints describing the dynamics and constraints
of the booking process are incorporated and reformulated by introducing auxiliary
binary variables. After approximating the underlying stochastic process, the model is
solved by mixed-integer linear programming algorithms. A new method (see Heitsch
and Römisch 2005) for generating scenario trees as approximate representation of
the passenger demand and cancelation rate process is used. It is based on a recent
stability result for multistage stochastic programs in Heitsch et al. (2006) and does
not impose conditions on the underlying probability distribution. The method starts
with a certain number of possible scenarios for the passenger demand and cancelation
rate process. It generates clusters of scenarios and branchings using a recursive sce-
nario reduction procedure such that the maximal expected revenue of the original
problem is approximated. Due to the multi-dimensionality of the multivariate passen-
ger demand and cancelation rate process (containing various statistical dependencies
between booking classes, dcps and legs), the generation technique for scenario trees is
of great significance. The latter effect was also observed in the computational studies
of DeMiguel and Mishra (2006). Our approach is tested on a single hub-and-spokes
airline network and a variety of different starting scenario sets.

In the last 2 years, airline revenue management was challenged by increasing low
fare competition which involved dismantling of booking class restrictions. The conse-
quential change in passenger booking demand has required changes in the modeling
assumptions. However, we believe, that this development will not affect all markets.
In particular, the large network carriers which dominate long-haul routes will have to
manage a combination of unrestricted low fare markets and more traditional markets,
where rules and regulations cause different passenger demand patterns. Hence, we
feel certain, that our model still meets the requirements of practice.

Our paper is organized as follows. First we describe the network revenue man-
agement problem and introduce a stochastic model which is refined in the sequel.
Next, we discuss the approximation of the stochastic input process by scenario trees
and describe a stability-based scenario tree generation method. The tree structure is
used to reformulate the problem in node representation. Then, the incorporation of
cancelations is motivated by an example. In the next section, we present numerical
results which suggest the applicability of the approach (at least) to small networks.
Finally, concluding comments are given.

2 Multistage stochastic programming model

2.1 Problem description

We consider a flight network consisting of I origin-destination itineraries (ODI),
J fare classes, K points of sale (POS), L legs and M(l) compartments in each leg
l = 1, . . . , L . The booking horizon is subdivided into T booking intervals. The interval
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bounds t = 0, . . . , T are called data collection points (dcp). The subscripts i , j , k, t
are used to denote the itinerary, fare class, point of sale and dcp, respectively.

The stochastic input parameters are the unconstrained passenger demand di, j,k,t ∈
Z and the cancelation ratesγi, j,k,t ∈ [0, 1). Let dt andγt denote the vectors (di, j,k,t )i, j,k

and (γi, j,k,t )i, j,k , respectively, containing all itineraries, fare classes and points of sale.
The passenger demand and the cancelation rates are represented by a discrete time
stochastic process ξ = (ξ0, ξ1, . . . , ξT ) on some probability space (Ω,F , P), where
ξt := (dt , γt ). For each t ∈ {0, . . . , T } we denote by Ft ⊆ F the σ -field generated by
the random vector (ξ0, . . . , ξt ). The σ -fields Ft , t = 0, . . . , T , represent a filtration,
i.e., it holds F0 = {∅,Ω}, Ft ⊆ Ft+1 and without loss of generality FT = F .

The decision variables are the protection levels Pt = (Pi, j,k,t )i, j,k , t = 0, . . . , T −1,
for the next booking interval (t, t + 1]. These protection levels restrict the number of
sold and uncanceled tickets of each itinerary, fare class and point of sale up to dcp t +1.
The decision variables Pt form a stochastic process on (Ω,F , P), too. We require, that
this process is adapted to the filtration of σ -fields Ft , t = 0, . . . , T , i.e., the decision
Pt at dcp t only depends on the information available until t (non-anticipativity).

The products, i.e., the tickets for each itinerary, fare class and point of sale, are
assigned to the resources, i.e., the capacitiesCl,m of the compartments m = 1, . . . , M(l)
on the legs l = 1, . . . , L , by a matrix A = (ai jk,lm). Let Il denote the set of itineraries
containing leg l and Jm(l) the set of fare classes belonging to compartment m on leg
l. The entries ai jk,lm of A belong to {0, 1}, where ai jk,lm = 1 if i ∈ Il and j ∈ Jm(l)
and ai jk,lm = 0 else. Let C denote the vector (Cl,m)l,m of capacities.

2.2 Stochastic model

The objective of the stochastic network revenue management model consists in deter-
mining protection levels Pt such that the expected revenue is maximized, i.e.,

max
(P0,...,PT −1)

E

[
T∑

t=0

(〈 f b
t , bt 〉 − 〈 f c

t , ct 〉)
]

(1)

where f b
t = ( f b

i, j,k,t )i, j,k and f c
t = ( f c

i, j,k,t )i, j,k denote the vectors of fares and
refunds, respectively, bt = (bi, j,k,t )i, j,k and ct = (ci, j,k,t )i, j,k denote the number of
bookings and cancelations, respectively, during the booking interval (t − 1, t], the
scalar product 〈 f b

t , bt 〉 is given as usual by

〈 f b
t , bt 〉 =

∑
i, j,k

f b
i, j,k,t bi, j,k,t .

and 〈 f c
t , ct 〉 accordingly.

The number of tickets sold depends on the passenger demand and on the protection
levels. Bookings will be made as long as the passenger demand is not satisfied and the
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protection levels allow bookings, respectively. Hence, we have the constraints

bt = min

{
Pt−1 −

t−1∑
τ=0

bτ +
t∑

τ=0

cτ , dt

}
, t = 1, . . . , T, P-a.s., (2)

which describe the dynamics of the booking and cancelation process. We note that the
vectors b0 ∈ Z and c0 ∈ Z contain the bookings and cancelations, respectively, made
before the optimization horizon starts.

Since the number of uncanceled seats in all compartment on each leg may not exceed
the physical capacity of the compartments, we arrive at the capacity constraints

∑
i∈Il

∑
j∈Jm(l)

K∑
k=1

Pi, j,k,T −1 ≤ Cl,m, m = 1, . . . , M(l), l = 1, . . . , L , P-a.s.,

or more compactly
A PT −1 ≤ C P-a.s. (3)

The latter constraint is required only for the last booking interval (T − 1, T ] to allow
overbookings in the preceding booking intervals without additional efforts like over-
booking rules. We note that dcp T − 1 is usually very close to departure. Since the
constraint (2) implies

∑T
τ=0(bτ − cτ ) ≤ PT −1 P-a.s. (3) refers indeed to the time of

departure.
Furthermore, some variables of the optimization problem have to satisfy integrality

and non-negative conditions.

bt , Pt ∈ Z
I×J×K bt , Pt ≥ 0 t = 1, . . . , T, P-a.s. (4)

Finally, we require that the state and decision variables of the stochastic program are
non-anticipative, i.e.,

bt and Pt are Ft -measurable. (5)

The non-anticipativity constraint (5) expresses how the information flow evolves over
time. If the stochastic input process has only a finite number of scenarios, the con-
straint (5) may be modeled by finite linear equality constraints in various ways, see
(Ruszczyński and Shapiro, 2003, Chap. 3.6) and Römisch and Schultz (2001).

2.3 Reformulation of the optimization model

We denote by Bi, j,k,t := ∑t
τ=0 bi, j,k,t the number of cumulative bookings and by

Ci, j,k,t the number of cumulative cancelations. The number of cumulative cancela-
tions Ci, j,k,t is then set to Ci, j,k,t := �γi, j,k,t Bi, j,k,t + 0.5	, where �α	 ∈ Z means
the lower integer part of α ∈ R. The number of cancelations in (t − 1, t] is given by
ct = Ct −Ct−1. The initial cumulative bookings and cancelations in dcp 0 are denoted
by B̄0 and C̄0, respectively.
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To derive an approximation for the equation in (2), we start from

bt = min {Pt−1 − Bt−1 + γt (Bt−1 + bt ), dt }

and obtain the equation

bt = min
{
(1 − γt )

−1 Pt−1 − Bt−1, dt

}
.

To have bt ∈ Z, we introduce an auxiliary variable Baux
t ∈ Z by setting Baux

t =⌊
(1 − γt )

−1 Pt−1 + 0.5
⌋

and replace the equation in (2) by

bt = min
{

Baux
t − Bt−1, dt

}
,

which is equivalent to

Bt ≤ Baux
t (6)

bt ≤ dt (7)

(6) or (7) are active. (8)

The disjunctive constraints (8) may be modeled by introducing binary auxiliary vari-
ables (see Nemhauser and Wolsey 1988, Sect. I.4). For this purpose we introduce
vectors of binary variables z̃t ∈ {0, 1}I×J×K as well as vectors of slack variables
zd

t ∈ Z
I×J×K , and z P

t ∈ Z
I×J×K . The conditions (6)–(8) are then replaced by the

(in)equalities

Bt + z P
t = Baux

t bt + zd
t = dt 0 ≤ zd

t ≤ z̃t dt 0 ≤ z P
t ≤ (1 − z̃t )� ,

where � is a sufficiently large positive constant.
The stochastic network revenue management model now reads

max
(P0,...,PT −1)

E

[
T∑

t=1

(〈 f b, bt 〉 − 〈 f c, ct 〉)
]

subject to the dynamics of the cumulative bookings

B0 := B̄0 Bt = Bt−1 + bt P-a.s.

the protection level conditions

Bt + z P
t =

⌊
(1 − γt )

−1 Pt−1 + 0.5
⌋

P-a.s.

the passenger demand constraints

bt + zd
t = dt P-a.s.
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the disjunctive constraints for the number of bookings

0 ≤ zd
t ≤ z̃t dt 0 ≤ z P

t ≤ (1 − z̃t )� P-a.s.

the approximations of the cumulative cancelations

Ct := �γt Bt + 0.5	 P-a.s.

the number of cancelations

ct = Ct − Ct−1 where C0 := C̄0
P-a.s.

the capacity constraints
A PT −1 ≤ C P-a.s.

the integrality and non-negativity constraints

Bt , Ct , Pt , zd
t ∈ Z

I×J×K , z̃t ∈ {0, 1}I×J×K , bt , ct ≥ 0 P-a.s.

as well as the non-anticipativity constraints

bt , Pt , z̃t and zd
t are Ft -measurable.

2.4 Approximation of the stochastic process by scenario trees

The first step of solving the stochastic revenue management model consists in approx-
imating the discrete-time stochastic process ξ = (ξ0, ξ1, . . . , ξT ) by a stochastic pro-
cess ξ̃ = (ξ̃0, ξ̃1, . . . , ξ̃T ) having a finite number of scenarios with known probabilities.
The stability result for multistage stochastic programs in Heitsch et al. (2006) implies
that the process ξ̃ should be close to ξ in the sense of the L1-distance (9) and of the
filtration distance (10), where

‖ξ − ξ̃‖1 := E[|ξ − ξ̂ |] (9)

Df(ξ, ξ̂ ) := sup
x∈B∞

T −1∑
t=1

‖E[xt |Ft (ξ)] − E[xt |Ft (ξ̃ )]‖1, (10)

B∞ = {x : Ω → R
(T +1)dx : x is measurable, |x(ω)| ≤ 1,∀ω ∈ Ω} (with dx denot-

ing the dimension of decisions at each t ∈ {0, 1, . . . , T }), and Ft (ξ) and Ft (ξ̃ ) are σ -
fields generated by (ξ0, . . . , ξt ) and by (ξ̃0, . . . , ξ̃t ), respectively. Here, E[· |G] denotes
the conditional expectation with respect to some σ -subfield G of F . Since Ft (ξ)

increases with respect to t , the same property has to required forFt (ξ̃ ), t = 0, 1, . . . , T .
Such properties can only be achieved if ξ̃ consists of a sufficiently large number of
scenarios and of scenario branchings, i.e., ξ̃ is representable as a scenario tree.

Formally, a scenario tree consists of nodes and arcs, where the nodes at period
t correspond to possible values of ξ̃t , t = 0, . . . , T , and the arcs describe which
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Fig. 1 Scenario tree with
T = 4, N = 21 and 11 leaves

n = 0 n−

n

ξn

N+(n)

NT

t = 0 t = 1 t(n) T

nodes are connected to scenarios. Let N := {0, 1, . . . , N } ⊂ N denote the set of
all nodes, where n = 0 corresponds to the root node at t = 0 and t (n) denotes the
time period belonging to node n. By Nt we denote the set {n ∈ N : t (n) = t} for
each t = 0, . . . , T . Each node n ∈ Nt , t ∈ {1, . . . , T }, is connected with the unique
predecessor node n− at t − 1 by an arc. To each node n ∈ Nt with t ∈ {0, . . . , T − 1}
a nonempty set N+(n) ⊂ Nt+1 of successors is associated. By path(n) we denote
the set {0, . . . , (n−)−, n−, n} of nodes from the root to node n. Hence, each scenario
corresponds to path(n) for some leaf n ∈ NT . The number of scenarios or leaves is
denoted by S. We say that the first stage begins at time t = 0 and that t ∈ {1, . . . , T }
marks the beginning of a new stage if there exists n ∈ Nt−1 such that N+(n) is not
a singleton. We refer to Fig. 1 for a scenario tree instance with four stages. With the
given scenario probabilities πn , n ∈ NT , we associate a probability πn to each node
n ∈ N by the recursion πn = ∑

m∈N+(n) πm . Hence, we obtain
∑

n∈Nt
πn = 1 for

each t = 0, . . . , T and, in particular, π0 = 1. In the following, we use the notation
{ξn}n∈N for the scenario tree representing the approximate stochastic input process.

2.5 Generation of scenario trees

Potential users of multistage stochastic programming models are often able to gen-
erate a (large) number of scenarios with given probabilities. Such scenarios may be
obtained, e.g., by simulating from stochastic models that are calibrated to histori-
cal data or by using the past observations obtained under comparable circumstances
directly as scenarios and by assigning them identical probabilities. In many practical
cases, however, such sets of scenarios are not tree-structured except the appearance of
the root node that corresponds to the presently available or initial information. We refer
to the discussion in Dupačová et al. (2000, Sect. 3) for further information and relevant
references. Presently available approaches to scenario tree generation are based on the
use of bounds Kuhn (2005), on Monte Carlo Shapiro (2003) or Quasi-Monte Carlo
methods Pennanen (2006), on moment matching Høyland and Wallace (2001), on
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metric distances of distributions Pflug (2001) and on stability arguments Heitsch and
Römisch (2005). Most of them make use of a prescribed branching structure. Some
of these methods have been implemented in DeMiguel and Mishra (2006) and tested
on several instances of network revenue management models.

We will briefly describe the approach of Heitsch and Römisch (2005) which starts
with a stochastic process ξ̂ having a finite number of scenarios ξ s = (ξ s

0 , ξ s
1 , . . . , ξ s

T )

with probabilities ps , s = 1, . . . , S, and being defined on the same probability space
(Ω,F , P) as the original process ξ . It is assumed that ξ̂ consists of scenarios with
common root, i.e., ξ1

0 = · · · = ξ S
0 = ξ∗

0 , and has the property that the mean or
L1-distance (9) and the filtration distance (10) are small. It is shown in Heitsch and
Römisch (2005, Example 5.3) that, for example, sampling from some discrete prob-
ability distribution leads to suitable approximations ξ̂ satisfying the above conditions
for sufficiently large sample sizes.

Starting from ξ̂ the approach of Heitsch and Römisch (2005) determines adaptively
a stochastic process ξtr on (Ω,F , P), whose scenarios have tree form, and satisfies
the condition

‖ξ̂ − ξtr‖1 ≤ ε (11)

where ε > 0 is a prescribed tolerance. We denote by It ⊂ {1, . . . , S} the index set of
realizations of ξtr at t ∈ {0, . . . , T } and by It,i the index set of scenarios coinciding
with scenario i ∈ It at t . In particular, the set I0 is a singleton.

It is shown in Heitsch and Römisch (2005, Sect. 5) that, if ‖ξ − ξ̂‖1 is sufficiently
small, there exists a constant K > 0 such that the estimate

|v(ξ) − v(ξtr)| ≤ K (‖ξ − ξ̂‖1 + Df(ξ, ξ̂ ) + ‖ξ̂ − ξtr‖1 + Df(ξ̂ , ξtr))

≤ K (‖ξ − ξ̂‖1 + Df(ξ, ξ̂ ) + ε + g(ε))

holds for the optimal values v(ξ) and v(ξtr) of a multistage stochastic program with
inputs ξ and ξtr , respectively, in the right-hand side of linear constraints. The func-
tion g has the property that g(ε) tends to 0 as ε → 0. The estimate is valid if the
stochastic programming model is linear (without integrality requirements). Although
the underlying optimization model for revenue management is mixed-integer (due to
the disjunctive constraints even if the integrality constraints are relaxed), we consider
the preceding estimate as a justification of our tree generation process.

Next we describe an algorithm to construct the process ξtr starting from ξ̂ and such
that (11) for a given tolerance ε is satisfied. To this end, let further tolerances εt for each
period t = 1, . . . , T be given such that

∑T
t=1 εt ≤ ε holds. For each t = 1, . . . , T

we define clusters Ct of scenarios, i.e., partitions of the index set I := {1, . . . , S}, and
processes ξ̂ t such that ξtr := ξ̂ T , where the scenarios of ξtr and their probabilities are
given by the structure of the final partition CT . The algorithm may be described as
follows.

Step 0: Set ξ̂0 := ξ̂ and C0 = {I }, i.e., the first cluster contains all scenarios
of ξ̂ .
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Step 1: Determine disjoint index sets I1 := I 1
1 and J 1

1 such that I1 ∪ J 1
1 = I and

J 1
1 =∪i∈I 1

1
J 1

1,i , J 1
1,i :={ j ∈ J 1

1 : i = i1
1( j)}, i1

1( j)∈arg min
i∈I1

|ξ̂1,i
1 −ξ̂

1, j
1 |.

We define ξ̂1 = {ξ̂1
τ }T

τ=1 via its scenarios ξ̂1,i , i ∈ I , by setting

ξ̂1,i
τ =

{
ξ

α1(i)
τ , τ = 1,

ξ i
τ , otherwise,

where scenario ξ̂1,i appears with probability pi , i ∈ I , and the mapping
α1 : I → I1 is given by

α1( j) =
{

i1
1( j), j ∈ J 1

1 ,

j, otherwise.

The index sets I1 and J 1
1 are determined such that the estimate

∑
i∈I1

∑
j∈J 1

1,i

p j |ξ j
1 − ξ i

1| =
∑
j∈J 1

1

p j min
i∈I1

|ξ i
1 − ξ

j
1 | ≤ ε1

holds. Set C1 = {α−1
1 (i) : i ∈ I1}.

Step t: Let Ct−1 = {C1
t−1, . . . , C Kt−1

t−1 }. Determine disjoint index sets I k
t and J k

t

such that I k
t ∪ J k

t = Ck
t−1, k = 1, . . . , Kt−1 and

It := ∪Kt−1
k=1 I k

t , J k
t = ∪i∈I k

t
J k

t,i , J k
t,i := { j ∈ J k

t : i = i k
t ( j)},

i k
t ( j) ∈ arg min

i∈I k
t

|ξ̂ t−1,i
t − ξ̂

t−1, j
t |.

We define ξ̂ t = {ξ̂ t
τ }T

τ=1 via its scenarios ξ̂ t,i , i ∈ I , by setting

ξ̂ t,i
τ =

{
ξ

αt (i)
τ , τ ≤ t,
ξ i
τ , otherwise,

where scenario ξ̂ t,i appears with probability pi , i ∈ I , and the mapping
αt : I → It is given by

αt ( j) =
{

i k
t ( j), j ∈ J k

t ,

j, otherwise.
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 t = 0  t = 1  t = 2  t = 3  t = 4  t = 0  t = 1  t = 2  t = 3  t = 4  t = 0  t = 1  t = 2  t = 3  t = 4

 t = 0  t = 1  t = 2  t = 3  t = 4  t = 0  t = 1  t = 2  t = 3  t = 4  t = 0  t = 1  t = 2  t = 3  t = 4

Fig. 2 Illustration of the above algorithm for an example with T = 4 starting with a scenario fan containing
N = 58 scenarios

The index sets I k
t and J k

t , k = 1, . . . , Kt−1, are determined such that

Kt−1∑
k=1

∑
j∈J k

t

p j min
i∈I k

t

|ξ i
t − ξ

j
t | ≤ εt .

Set Ct = {α−1
t (i) : i ∈ I k

t , k = 1 . . . , Kt−1}.
Step T+1: Let CT = {C1

T , . . . , C KT
T }. Determine a stochastic process ξtr having

the KT scenarios ξ̂ T,k where ξ̂
T,k
t := ξ

αt (i)
t if i ∈ Ck

T , k = 1, . . . , KT ,
t = 1, . . . , T .

It is shown in (Heitsch and Römisch, 2005, Theorem 4.4) that then the estimate

‖ξ̂ − ξtr‖1 ≤
T∑

t=1

εt ≤ ε

and, hence, (11) is valid.
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The above algorithm is illustrated in Fig. 2. The first and last picture show the
original scenario set ξ̂ and the final scenario tree ξtr , respectively. Picture i corre-
sponds to the situation after Steps i − 1, i = 2, . . . , 5.

2.6 Stochastic programming model in node representation

After rewriting the stochastic programming model in node representation, where the
node index is denoted by the superscript n, it consists in maximizing the total expected
revenue

max
(Pn

i, j,k)

N∑
n=1

πn
I∑

i=1

J∑
j=1

K∑
k=1

[
f b
i, j,k,t (n)b

n
i, j,k − f c

i, j,k,t (n)c
n
i, j,k

]
(12)

subject to the dynamics for the cumulative bookings

B0
i, j,k = B̄0

i, j,k Bn
i, j,k = Bn−

i, j,k + bn
i, j,k (n ∈ N \ {0}) (13)

the protection level conditions

Bn
i, j,k + z P,n

i, j,k =
⌊
(1 − γ n

i, j,k)
−1 Pn−

i, j,k + 0.5
⌋

(14)

the passenger demand constraints

bn
i, j,k + zd,n

i, j,k = dn
i, j,k (n ∈ N \ {0}) (15)

the disjunctive constraints for the number of bookings (� > 0 sufficiently large)

0 ≤ zd,n
i, j,k ≤ z̃n

i, j,kdn
i, j,k 0 ≤ z P,n

i, j,k ≤ (1 − z̃n
i, j,k)� (n ∈ N \ {0}) (16)

the approximations of the cumulative cancelations

Cn
i, j,k =

⌊
γ n

i, j,k Bn
i, j,k + 0.5

⌋
(n ∈ N \ {0}) (17)

the number of cancelations

cn
i, j,k = Cn

i, j,k − Cn−
i, j,k (n ∈ N \ {0}), C0

i, j,k = C̄0
i, j,k (18)

the leg-capacity limits for all m = 1, . . . , M(l) and l = 1, . . . , L

∑
i∈Il

∑
j∈Jm (l)

K∑
k=1

Pn
i, j,k ≤ Cl,m (n ∈ NT −1) (19)

and the non-negativity and integrality constraints

Bn
i, j,k, Cn

i, j,k, Pn
i, j,k ∈ Z, z̃n

i, j,k ∈ {0, 1}, bn
i, j,k, cn

i, j,k ≥ 0. (20)
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All constraints except (19) have to be satisfied for all i = 1, . . . , I , j = 1, . . . , J and
k = 1, . . . , K . The non-anticipativity constraints are satisfied by construction.

Compared to Möller et al. (2004) the optimization model takes into account the
disjunctive constraints. The cumulative bookings Bn

i, j,k play the role of a major state
variable.

Altogether, the optimization model (12)–(20) represents a large-scale structured
mixed-integer linear program. It contains 4I J K N continuous variables, I J K (N +
1− S)+2I J K N integer variables, I J K N binary variables and 7I J K N +∑

n∈NT −1∑L
l=1 M(l) constraints. Here, S denotes the number of scenarios in the scenario tree

(see also Sect. 2.4).
After solving the optimization model, the (deterministic) protection levels P0

i, j,k
of dcp t0 = 0 may be taken as decision variables to control the booking requests.
As current inventory systems cannot handle P0

i, j,k directly, these decision variables
could be utilized by a separate component to which all booking requests are directed
from the inventory system (so called “seamless operational mode”). A new scenario
tree may then be generated having its root node at the next dcp t0 + 1 and the multi-
stage stochastic program is resolved to get the protection level decisions for the next
booking interval. This procedure may be continued until the booking horizon ends
(moving horizon). Alternatively, the information from the state variables Bt0+1 and
Ct0+1 may be used to approximate a decision from the solution tree. If there is some
n ∈ Nt0+1 with Bt0+1 = Bn and Ct0+1 = Cn , then the protection levels Pn may
be used to control the booking process during the booking interval (t (n), t (n) + 1].
Otherwise, some information on the probability distribution (like averages, quantiles
etc.) of the relevant protection levels based on the difference between (Bt0+1, Ct0+1)

and (Bn, Cn)t (n)=t0+1 could be taken to compute approximate protection levels at
t0 + 1.

2.7 Motivation for incorporating cancelations

Cancelations are incorporated into the optimization model due to practical limitations.
In particular, cancelations are considered to allow booking and cancelation scenarios
where the number of cancelations may exceed the number of bookings during some
booking intervals. If in such a case the passenger demand and the cancelation rates
would instead be replaced by a reduced demand

d̃n
i, j,k := (1 − γ n

i, j,k)
∑

m∈path(n)\{0}
dm

i, j,k − (1 − γ
n−
i, j,k)

∑
m∈path(n−)\{0}

dm
i, j,k, (21)

which are possibly negative and if we allow negative numbers of bookings b̃n
i, j,k , then

each b̃n
i, j,k has to satisfy the condition

b̃n
i, j,k ≥ −

⎛
⎝γ n

i, j,k

∑
m∈path(n)\{0}

bm
i, j,k − γ

n−
i, j,k

∑
m∈path(n−)\{0}

bm
i, j,k

⎞
⎠ (22)
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Table 1 Parameter describing
the scenario tree structure

n 0 1 2 3 4

n− – 0 0 1 2

πn 1.0 0.7 0.3 0.7 0.3

t (n) 0 1 1 2 2

Table 2 Passenger demand,
cancelation rates and reduced
demand

d1
1,1,1 = 0 γ 1

1,1,1 = 0 ⇒ d̃1
1,1,1 = 0

d1
1,2,1 = 140 γ 1

1,2,1 = 0.2 ⇒ d̃1
1,2,1 = 112

d3
1,1,1 = 50 γ 3

1,1,1 = 0 ⇒ d̃3
1,1,1 = 50

d3
1,2,1 = 110 γ 3

1,2,1 = 0.2 ⇒ d̃3
1,2,1 = 88

d2
1,1,1 = 0 γ 2

1,1,1 = 0 ⇒ d̃2
1,1,1 = 0

d2
1,2,1 = 140 γ 2

1,2,1 = 0.2 ⇒ d̃2
1,2,1 = 112

d4
1,1,1 = 160 γ 4

1,1,1 = 0 ⇒ d̃4
1,1,1 = 160

d4
1,2,1 = 140 γ 4

1,2,1 = 0.3 ⇒ d̃4
1,2,1 = 84

where the quantities are defined as in Sect. 2.6. Hence, b̃n
i, j,k may not be smaller

than the maximally possible number of cancelations. But, the information on the can-
celation rates γ n

i, j,k and the number of bookings bn
i, j,k are no longer available if we

use d̃n
i, j,k and b̃n

i, j,k in the model. Therefore, the condition above can not be ensured.
Hence, the solution may require more cancelations as possible based on the passenger
demand and on the cancelation rates. The following two-stage, three-period example
demonstrates this effect.

Example N = 5, T = 2, I = 1, J = 2, K = 1, L = 1, M(1) = 1, C1,1 = 250,
f b
1,1,1,1 = f c

1,1,1,2 = f b
1,1,1,1 = f c

1,1,1,2 = 900.00, f b
1,2,1,1 = f c

1,2,1,2 = f b
1,2,1,1 =

f c
1,2,1,2 = 600.00, B̄0

1,1,1 = B̄0
1,2,1 = 0. The structure of the scenario tree is described

by the parameters given in Table 1. The passenger demand dn
i, j,k , the cancelation rates

γ n
i, j,k and the reduced demand d̃n

i, j,k are summarized in Table 2.

An optimal solution of the problem is given by P0
1,1,1 = 0, P0

1,2,1 = 112, P1
1,1,1 =

50, P1
1,2,1 = 200, P2

1,1,1 = 160 and P2
1,2,1 = 90. The optimality is implied by the facts

that in both scenarios (0, 1, 3) and (0, 2, 4), respectively, the airplane is operating at
full capacity as well as that in both scenarios the number of sold high fare tickets is
maximal. The corresponding values of b̃n

i, j,k are: b̃1
1,1,1 = 0, b̃1

1,2,1 = 112, b̃2
1,1,1 = 0,

b̃2
1,2,1 = 112, b̃3

1,1,1 = 50, b̃3
1,2,1 = 88, b̃4

1,1,1 = 160 and b̃4
1,2,1 = −22. Based on the

cancelation rate γ 2
1,2,1 = 0.2, there have to be 140 bookings when moving from node

0 to node 1 in order to achieve b̃2
1,2,1 = 112. On the other hand, γ 4

1,2,1 = 0.3 allows
only 14 additional cancelations for i = 1, j = 2 and k = 1 when moving from node 2
to node 4. Thus, b̃4

1,2,1 has to be greater than or equal to −14 which contradicts to the

solution b̃4
1,2,1 = −22. Hence, the optimal solution requires more cancelations than

we can expect from the cancelation rates γ 2
1,2,1 and γ 4

1,2,1.
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Table 3 Dimensions
I J K L M(l) (l = 1, . . . , 6) T

12 6 1 6 2 13

The effect occurs since the information about the cancelation rate is not available
and negative values for the reduced number of bookings (including cancelations) b̃n

i, j,k
are allowed. Because the inequality

0 ≥ −
⎛
⎝γ n

i, j,k

∑
m∈path(n)\{0}

bm
i, j,k − γ

n−
i, j,k

∑
m∈path(n−)\{0}

bm
i, j,k

⎞
⎠

holds, the effect does not occur if b̃n
i, j,k ≥ 0 is still required provided that a feasible

solution exists. But, the latter condition excludes solutions where the number of canc-
elations exceeds the number of bookings in some booking interval. While neglecting
the ratio of bookings and cancelations provides larger feasible sets in general, the
feasible set may be reduced by the condition b̃n

i, j,k ≥ 0 in particular cases which leads

to lower revenues if cancelation rates are ignored. In our example, b̃n
i, j,k ≥ 0 provides

a solution that neglects the 14 cancelations in fare class 2 when moving from node 2
to node 4. Thus, the canceled seats will be sold again in fare class 2 and not in fare
class 1 as possible. This results in a loss of an amount of 0.3 · 14 · (900 − 600) in
the objective function. The possible impact of taking cancelations into account was
already observed earlier, e.g., in Subramanian et al. (1999).

3 Numerical results

Computational tests are carried out for a single hub-and-spoke flight network illus-
trated in Fig. 3. The dimensions of the corresponding revenue management problem
are summarized in Table 3. For each dcp t = 0, . . . , T the days to departure (d) are
listed in Table 4.

The compartments are denoted by “B” (m = 1) and “E” (m = 2), respectively. The
capacities of compartments B and E comprise 24 and 216 seats, respectively, on all
legs. The fare classes are “B1” ( j = 1), “B2” ( j = 2), “E1” ( j = 3), “E2” ( j = 4),

Fig. 3 Hub-and-Spoke flight
network

Hub

A

B

CH
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Table 4 Data collection points and days to departure

dcp 0 1 2 3 4 5 6 7 8 9 10 11 12 13

d 182 126 84 56 35 21 14 10 7 5 3 2 1 0

“E3” ( j = 5) and “E4” ( j = 6). As proposed in De Boer et al. (2002), Chen and
Homen-de-Mello (2006), Weatherford et al. (1993) the booking process is modeled
by a non-homogeneous Poisson process (NHPP). This process allows to model the
uncertainty of the total number of booking requests as well as the variability of the
arrival intensity for each fare class over time, simultaneously De Boer et al. (2002).
The total number of cumulative booking requests over the booking horizon Gi jk is
assumed to have a Gamma distribution. The arrival pattern of the booking requests
βi jk(t) is assumed to have a Beta distribution. The arrival intensity of the booking
requests λi jk(t) is then given by

λi jk(t) = βi jk(t) Gi jk Gi jk ∼ Gamma(pi jk, gi jk).

As in De Boer et al. (2002) we assume in this example that the cumulative booking
requests are independent for each i , j and k. The density function of the (standard)
Gamma distribution with shape and scale parameters p > 0 and g > 0, respectively,
is

fGamma(p,g)(x) := (x/g)p−1e−x/g

gΓ (p)
= (1/g)p

Γ (p)
x p−1e−x/g 0 ≤ x < +∞,

where Γ (z) := ∫ ∞
0 xz−1e−x dx denotes the Gamma function.

For t ∈ [0, T ] and parameter a > 0, b > 0 the density function β(t) of the Beta
distribution is defined by

β(t) := 1

T B(a, b)

(
t

T

)a−1 (
1 − t

T

)b−1

0 ≤ t ≤ T,

where B(a, b) := ∫ 1
0 xa−1(1 − x)b−1dx = Γ (a)Γ (b)

Γ (a+b)
denotes the beta function.

The cumulative booking requests Di jk(t) until some t ∈ [0, T ] now are

Di jk(t) =
t∫

0

λi jk(τ )dτ = Gi jk

t∫
0

βi jk(τ )dτ

For each itinerary i , fare class j and point of sale k we generate samples for the
Gamma distribution. The parameters of the Gamma distribution and the fares are
given in Table 5. Since the arrival intensity samples Gi jk do not reflect possible
cancelations so far, they are scaled by (1 − γi, j,k,T )−1, where for all j , k, t , the

123



Network revenue management by multistage stochastic programming 371

Table 5 Parameters of the Gamma distribution and fares

ODI Fare class POS p g Mean dcp Fare

AH, HA, B1 – 3.0 1.5 4.5 1–13 500

BH, HB B2 – 3.0 1.5 4.5 1–13 340

E1 – 10.0 1.2 12.0 1–13 200

E2 – 40/3 1.2 16.0 1–13 160

E3 – 22.0 1.0 22.0 1–13 130

E4 – 30.0 1.0 30.0 1–13 100

CH, HC B1 – 2.0 1.5 3.0 1–13 500

B2 – 2.0 1.5 3.0 1–13 340

E1 – 5.0 1.2 6.0 1–13 200

E2 – 20/3 1.2 8.0 1–13 160

E3 – 11.0 1.0 11.0 1–13 130

E4 – 15.0 1.0 15.0 1–13 100

AHB, BHA B1 – 2.0 1.5 3.0 1–13 800

B2 – 2.0 1.5 3.0 1–13 540

E1 – 7.5 1.2 9.0 1–13 320

E2 – 10.0 1.2 12.0 1–13 260

E3 – 16.5 1.0 16.5 1–13 210

E4 – 22.5 1.0 22.5 1–13 160

AHC, CHA B1 – 3.0 1.5 4.5 1–13 800

BHC, BHA B2 – 3.0 1.5 4.5 1–13 540

E1 – 15.0 1.2 18.0 1–13 320

E2 – 20.0 1.2 24.0 1–13 260

E3 – 33.0 1.0 33.0 1–13 210

E4 – 45.0 1.0 45.0 1–13 160

Table 6 Parameters of the Beta
distribution

ODI Fare class POS a b

All B1 – 12.0 1.5

B2 – 8.0 2.0

E1 – 6.0 2.0

E2 – 4.0 3.0

E3 – 3.0 4.0

E4 – 2.0 4.0

cancelation rates γi, j,k,t are set to 0.1 if i = 1, 2, 0.05 if i = 3, 4 and 0.0 if i = 5, 6,
respectively. For each dcp t , these scaled samples are multiplied with the value of
the cumulative distribution function of the Beta distribution at t . The parameters of
the Beta distribution are given in Table 6. In this way, scenarios for the entire flight
network are generated.
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Fig. 4 Input scenario tree

Table 7 SP model dimensions
S N Number of Number of Number of

cont. variables binary variables constraints

92 1,017 506,016 73,224 513,660

The booking request scenario tree is generated by the algorithm described in Sect.
2.5 starting with initial sets consisting of S = 100, 200, 300 and 400 scenarios, respec-
tively. For each S three sets of initial scenarios are generated as outlined above. The
parameters and tolerances needed for the generation algorithm in Sect. 2.5 are set to
r = 1, ε = 0.30 εmax, and εt ≈ Cqt+1, t = 1, . . . , 13, with q := 0.65 in all examples.
Here, the normalization constant εmax is defined as the smallest L1-distance between
the initial scenario set (with identical weights 1

S ) and one of its scenarios endowed

with unit mass. The constant C > 0 is choosen such that the condition
∑T

t=1 εt ≤ ε is
satisfied. The resulting scenario tree for example 1 of Table 8 is illustrated in Fig. 4. In
this example, branchings occur at the beginning of 11 of the 13 booking intervals, i.e.,
the optimization model has 11 stages. No branchings appear in the two last but one
intervals. The dimensions of this tree and of the corresponding optimization model
are given in Table 7.

The computations are performed on a Linux-PC equipped with a 2.4 GHz Intel
Pentium 4 processor. The program input consists of the data of the flight network
and of the generated scenario tree. The integrality constraints in (20) are ignored, so
that only the binary variables z̃n

i, j,k are integer. The constant � is chosen as � :=
5 maxm=1,...,M(l), l=1,...,L Cl,m . The mixed-integer linear program was solved using
CPLEX 9.1 where the MIP gap is set to be 0.005. The program output consists in the
optimal protection levels. The optimal values and the computing times are summa-
rized in Table 8. The optimal values are very similar in all examples except Example 5.
This observation suggests that at least for the considered network the generation of
scenario trees starting with 100 initial scenarios provides sufficiently good results at
reasonably fast computing times.
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Table 8 Computational results for different samples sizes

Example Initial Scenario tree Optimal Computing time

Scenarios Nodes Scenarios value (h:mm:ss)

1 100 1,018 92 210,393 0:03:29.8

2 100 1,022 93 210,128 0:03:38.4

3 100 1,016 90 210,271 0:02:44.1

4 200 2,006 181 210,001 0:10:03.4

5 200 2,017 183 214,477 0:11:49.9

6 200 2,025 183 210,485 0:11:29.6

7 300 3,020 272 210,517 0:28:41.8

8 300 2,998 271 210,436 0:24:18.6

9 300 3,008 273 210,327 0:29:58.6

10 400 4,007 364 209,916 1:05:31.3

11 400 4,045 367 210,108 3:23:55.7

12 400 4,018 363 210,470 0:39:42.3

1 2 3 4 5 6
0

200

400

600

800
Fares ODI:12

1 2 3 4 5 6
0

2

4

6

8

10

12
Optimal Protection Level of the First Stage ODI: 12

Fig. 5 Fares and optimal first stage protection levels for ODI C-H-B (i = 12)

Figure 5 shows the fares and initial protection levels for ODI C-H-B from
example 1. Figure 6 illustrates the scenario trees for the cumulative passenger de-
mand and for the protection levels of selected fare classes from example 1. Each
picture also contains the mean value and the 5 and 95% quantiles. The passenger de-
mand for classes with essentially different fares arrives during different time intervals
with different intensity. For example, the demand of the low fare class 6 arrives earlier
than the that of the high fare class 3 of the same compartment and is is essentially
higher. The same effect can be observed for fare class 3 compared with the highest
class 1. As expected the protection levels of the low fare class 6 restrict the number
of tickets for sale compared to the passenger demand while in fare classes 1 and 3 the
protection levels are similar to the cumulative passenger demand.

Finally, the sum of the protection levels in both compartments of leg HC from
Example 1 are shown in Fig. 7. Recall that the capacity of compartments 1 and 2
are 24 and 215 passengers, respectively. The figures illustrate that the mean values
of the sum of the protection levels are close to the compartment capacity. The mean
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Fig. 6 Cumulative passenger demand and protection levels for selected fare classes of ODI C-H-B (i = 12)

value of about 22 passenges for compartment 1 is due to the fact that the demand and
cancelation rates are choosen such the resulting bookings and cancelations just meet
the compartment capacity and since sums of protection levels above this capacity are
truncated by the protection level constraints.

The results and computing times are reasonable and encourage the use of our solu-
tion approach at least for small airline networks.

4 Extension to bid prices

The Lagrange multipliers of the capacity constraints may serve as approximate bid
prices for the itineraries of the network. However, in our stochastic network revenue
management model capacity constraints are only required for the last time period,
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Fig. 7 Sum of protection level for leg HC (l = 6)

i.e., at dcp t = T − 1, in order to allow for overbookings in earlier time periods.
Hence, introducing capacity constraints at the dcp’s t = 0, . . . , T − 2 would lead to
approximate bid prices, but also to the loss of the overbooking option. In addition,
the dimension of the dual problem increases essentially. As a compromise, capacity
constraints might be introduced only at t = 0 or for a few time periods t = 0, . . . , t0
and the model be resolved with t0 as starting point. In this way, overbooking is still
possible in the remaining dcp’s t = t0, . . . , T −1, approximate bid prices are available
and the size of the dual problem remains reasonably small.

5 Conclusions and outlook

We propose a model for airline network revenue management that allows for
cancelations and overbookings, provides optimal seat protection levels and represents a
mixed-integer multistage stochastic program. The booking controls resulting from our
optimization approach are not yet in practical use for controlling booking requests,
though actual developments in inventory and revenue management systems set the
stage for it. The stochastic passenger demand and cancelation process is approximated
by a scenario tree with possible branchings in dcps. The scenario tree is generated by
a stability-based recursive reduction and bundling technique which allows to handle
multi-dimensional and multivariate stochastic processes. When solving real-life airline
network revenue management models, the initial scenario set should be based directly
on historical passenger demand data, which has to be adjusted subject to a suitable
demand model (unconstraining) in order to minimize or at least reduce spiral-down
effects (cf. Cooper et al. 2006). The node representation of the revenue management
model corresponds to a large scale, structured mixed-integer linear program which is
solved by standard MILP software (CPLEX). The numerical results and running times
confirm the applicability of our approach to small networks. Future work will focus
on the decomposition of the optimization problem into smaller subproblems for each
itinerary, fare class and point of sale by Lagrangian relaxation. Preliminary numeri-
cal results encourage the applicability of such a Lagrangian decomposition approach
to real-life flight networks. The model may be extended to compute approximate
bid prices by introducing additional capacity constraints as discussed in the previous
section.
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