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Abstract. A dynamic (multi-stage) stochastic programming model for the weekly cost-optimal generation
of electric power in a hydro-thermal generation system under uncertain demand (or load) is developed.
The model involves a large number of mixed-integer (stochastic) decision variables and constraints linking
time periods and operating power units. A stochastic Lagrangian relaxation scheme is designed by assigning
(stochastic) multipliers to all constraints coupling power units. It is assumed that the stochastic load process
is given (or approximated) by a finite number of realizations (scenarios) in scenario tree form. Solving the
dual by a bundle subgradient method leads to a successive decomposition into stochastic single (thermal or
hydro) unit subproblems. The stochastic thermal and hydro subproblems are solved by a stochastic dynamic
programming technique and by a specific descent algorithm, respectively. A Lagrangian heuristics that
provides approximate solutions for the first stage (primal) decisions starting from the optimal (stochastic)
multipliers is developed. Numerical results are presented for realistic data from a German power utility
and for numbers of scenarios ranging from 5 to 100 and a time horizon of 168 hours. The sizes of the
corresponding optimization problems go up to 200 000 binary and 350 000 continuous variables, and more
than 500 000 constraints.

Keywords: multistage stochastic programming, mixed-integer, Lagrangian relaxation, power management,
stochastic unit commitment

1. Introduction

Mathematical models for the efficient operation of electric power generation systems
often lead to rather complex optimization problems. In particular, they are character-
ized by combinations of challenges like mixed-integer decisions, nonlinear costs, large
dimensions and data uncertainty. The latter aspect mostly concerns uncertainties of elec-
trical load forecasts, of generator failures, of flows to hydro reservoirs or plants, and of
fuel or electricity prices (cf. [12,13,18,29] for earlier relevant work). The present paper
aims at treating power optimization in a hydro-thermal system under uncertain electrical
load. More precisely, a generation system comprising thermal units and pumped hydro
storage plants as encountered at the German utility VEAG Vereinigte Energiewerke AG
Berlin is considered. The relevant mathematical optimization model contains a large
number of binary and continuous variables, constraints and uncertainty appearing in the
load constraints. The time horizon is about 7 days as it is needed for the efficient weekly
operation of hydro-thermal systems involving weekly load and pumping cycles.
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The machinery of stochastic programming offers modelling and solution tech-
niques for such optimization problems under uncertainty. In the present paper, a multi-
stage stochastic programming model in which the expected production costs are mini-
mized and stages refer to the availability of further observations of the load is developed.
In particular, the first stage refers to the time period for which a reliable load forecast is
available. The attention is focused on the (deterministic) first-stage scheduling decisions
(on/off and outputs), which are obtained by minimizing the total expected generation
costs and, hence, hedge against uncertainty. Since the stochastic programming model
contains mixed-integer decisions in all stages and is large-scale, new questions on the
design of solution algorithms are raised.

Nowadays, solution methods are well developed for linear multi-stage stochastic
programs without integrality constraints (cf. the monographs [3,16,17,38] and the state-
of-the-art surveys [2,34]). Recently, progress has been made for mixed-integer stochastic
programming models and applications to power optimization. The following algorithmic
approaches for mixed-integer multi-stage models appear in the literature:

(a) stochastic branch and bound methods [26],

(b) scenario decomposition by splitting methods combined with suitable heuristics [25,
32,36,37],

(c) scenario decomposition combined with branch and bound [6,7], and

(d) stochastic (augmented) Lagrangian relaxation of coupling constraints [8,10,30,33].

The approaches in (b) and (c) are based on a successive decomposition of the sto-
chastic program into finitely many deterministic (or scenario) programs, which may be
solved by available conventional techniques. The idea of (d) is a successive decompo-
sition into finitely many smaller stochastic subproblems for which (efficient) solution
techniques have to be developed eventually. Due to the nonconvexity of the underlying
stochastic program, the successive decompositions in (b)–(d) have to be combined with
certain global optimization techniques (branch-and-bound, heuristics, etc.).

The approach followed in the present paper consists in a stochastic version of the
classical Lagrangian relaxation idea [23], which is very popular in power optimiza-
tion [1,11,14,24,35,39,40]. Since the corresponding coupling constraints contain ran-
dom variables, stochastic multipliers are needed for the dualization, and the dual prob-
lem represents a nondifferentiable stochastic program. Subsequently, the approach is
based on the same, but stochastic, ingredients as in the classical case: a solver for
the nondifferentiable dual, subproblem solvers, and a Lagrangian heuristics. It turns
out that, with a state-of-the-art bundle method for solving the dual, efficient stochastic
subproblem solvers based on a specific descent algorithm and stochastic dynamic pro-
gramming, respectively, and a specific Lagrangian heuristics for determining a nearly
optimal first-stage solution, this stochastic Lagrangian relaxation algorithm becomes
efficient.

The paper is organized as follows. In Section 2 a detailed description of the hydro-
thermal generation system is given and the stochastic programming model is devel-



STOCHASTIC LAGRANGIAN 253

oped. Section 3 describes the stochastic Lagrangian relaxation approach together with
its components: algorithms for solving the stochastic dual, single-unit and economic
dispatch problems, and the Lagrangian heuristics. Numerical experience is provided for
all (sub)algorithms. Finally, numerical results for the stochastic Lagrangian relaxation
based algorithm are reported in Section 4 for realistic data of the VEAG system.

2. Model

We consider a power generation system comprising (coal-fired and gas-burning) thermal
units, pumped hydro storage plants and delivery contracts, and describe a model for its
weekly cost-optimal generation under uncertainty on the electrical load (cf. [10,28]).
Let T denote the number of time intervals obtained from a uniform discretization of the
operation horizon. Let I and J denote the number of thermal and pumped hydro storage
units in the system, respectively. Delivery contracts are regarded as particular thermal
units. The decision variables in the model correspond to the outputs of units, i.e., the
electric power generated or consumed by each unit of the system. They are denoted by
ut
i , pt

i , i = 1, . . . , I, and stj , wt
j , j = 1, . . . , J, t = 1, . . . , T , where ut

i ∈ {0, 1} and pt
i

are the on/off decisions and the production levels of the thermal unit i during the time
period t . Thus, ut

i = 0 and ut
i = 1 mean that the unit i is off-line and on-line during

period t , respectively. stj , wt
j are the generation and pumping levels of the pumped

hydro storage plant j during the period t , respectively. Further, by ltj we denote the
storage level (or volume) in the upper reservoir of plant j at the end of the interval t . All
variables mentioned above have finite upper and lower bounds representing unit limits
and reservoir capacities of the generation system:

pmin
i ut

i � pt
i � pmax

i ut
i , ut

i ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T ,
0 � stj � smax

j , 0 � wt
j � wmax

j ,

0 � ltj � lmax
j , j = 1, . . . , J, t = 1, . . . , T .

(1)

The constants pmin
i , pmax

i , smax
j , wmax

j , and lmax
j denote the minimal/maximal outputs of

the units and the maximal storage levels in the upper reservoirs, respectively. The dy-
namics of the storage level, which is measured in electrical energy, is modelled by the
equations:

ltj = lt−1
j − stj + ηjwt

j , t = 1, . . . , T ,
l0j = linj , lTj = lend

j , j = 1, . . . , J.
(2)

Here, linj and lend
j denote the initial and final levels in the upper reservoir, respectively,

and ηj is the cycle (or pumping) efficiency of plant j . The cycle efficiency is defined
as the quotient of the generation and of the pumping load that correspond to the same
amount of water. The equalities (2) show, in particular, that there occur no in- or outflows
in the upper reservoirs and, hence, that the storage plants of the system operate with
a constant amount of water. Together with the upper and lower bounds for ltj Eqs. (2)
mean that certain reservoir constraints have to be maintained for all storage plants during
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the whole time horizon. Further single-unit constraints are minimum up- and down-
times and possible must-on/off constraints for each thermal unit. Minimum up- and
down-time constraints are imposed to prevent thermal stress and high maintenance costs
due to excessive unit cycling. Denoting by τi the minimum down-time of unit i, the
corresponding constraints are described by the inequalities:

ut−1
i − ut

i � 1 − uτ
i , τ = t + 1, . . . ,min{t + τi − 1, T }, t = 1, . . . , T . (3)

Analogous constraints can be formulated describing minimum up-times. The next con-
straints are coupling across power units: the load and reserve constraints. The first
constraints are essential for the operation of the power system and express that the sum
of the output powers is greater than or equal to the load demand in each time period.
Denoting by dt the electrical load (or demand) during period t , the load constraints are
described by the inequalities:

I∑
i=1

pt
i +

J∑
j=1

(
stj − wt

j

)
� dt , t = 1, . . . , T . (4)

In order to compensate unexpected events (e.g., sudden load increases or decreases,
outages of units) within a specified short time period, a spinning reserve describing the
total amount of generation available from all units synchronized on the system minus
the present load is prescribed. The corresponding constraints are given by the following
inequalities:

I∑
i=1

(
pmax
i ut

i − pt
i

)
� rt , t = 1, . . . , T , (5)

where rt > 0 is the spinning reserve in period t , which is assumed to be proportional
to dt . The objective function is given by the total costs for operating the thermal units.
These costs consist of the sum of the costs of each individual unit over the whole time
horizon, i.e.,

I∑
i=1

T∑
t=1

[
Ci

(
pt
i ,ut

i

)+ Sti (ui)
]
, (6)

where Ci are the fuel costs for the operation of the thermal unit i during period t and Sti
are the start-up costs for getting the unit on-line in this period. We assume that each Ci

is piecewise linear convex, strictly monotonically increasing and of the form

Ci(p,u) = max
l=1,...,L

{ailp + bilu}, (7)

where ail and bil are fixed cost coefficients. The start-up costs Sti (ui) may vary from
a maximum cold-start value to a much smaller value when the unit i is still relatively
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close to its operation temperature. The following description of start-up costs reflects
this dependence on the down-time:

Sti (ui) = max
τ=0,...,τ ci

cτi

(
ut
i −

τ∑
κ=1

ut−κ
i

)
,

where c0
i = 0 and cτi , τ = 0, . . . , τ ci , are fixed increasing cost coefficients, τ ci is the

time the unit i needs to cool down, and c
τci
i its maximum cold-start costs. Altogether,

minimizing the objective function (6) subject to the constraints (1)–(5) leads to a cost-
optimal schedule for all units of the power system during the specified time horizon.
It is worth mentioning that a cost-optimal schedule has the following two interesting
properties, which are both a consequence of the strict monotonicity of the fuel costs. If a
schedule (u,p, s,w) is optimal, then the load constraints (4) are typically satisfied with
equality and we have stjwt

j = 0 for all j = 1, . . . , J, t = 1, . . . , T , i.e., generation and
pumping do not occur simultaneously (cf. [15]).

The minimization problem (1)–(6) represents a mixed-integer program with linear
constraints, and IT binary and (I+2J )T continuous decision variables, respectively. For
a typical configuration of the VEAG-owned generation system with I = 25 (thermal),
J = 7 (hydro) and T = 168 (i.e., 7 days with hourly discretization), the dimension of
the model is shown in the first row of Table 1.

Figure 1 shows a typical load curve of a peak load week and a corresponding
cost-optimal hydro-thermal schedule. The load curve in Figure 1 exhibits two overlap-
ping cycles: a daily and weekly cycle. Pumped hydro storage plants are designed to
exploit these two cycles by saving fuel costs when serving the peak load with hydro-
energy and pumping to refill the reservoir during off-peak periods, i.e., during the
nights and weekends. The hydro schedule in Figure 1 reflects this typical operation

Figure 1. Load curve and hydro-thermal schedule.
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of pumped hydro storage plants. The remaining load, i.e., the difference between the
original system load and the hydro schedule, shows a more uniform structure than
the original load. This portion of the load is covered by the total output of thermal
units. So far we have tacitly assumed that the electrical load is given and determinis-
tic over the whole time horizon. In electric utilities, schedulers forecast the electrical
load for each time period of the day or week in advance. But, clearly, the actual elec-
trical load may deviate from the predicted load at any time period due to various un-
foreseeable (random) influences (temperature, daylight, switch off of local consumers,
etc.). This gives rise to a stochastic model of the electrical load {dt : t = 1, . . . , T }
as a (discrete-time) stochastic process on some probability space (�,A,P) reflecting
that the information on the load is complete for t = 1, and that the uncertainty in-
creases with growing t . Let {At}Tt=1 be the filtration generated by the load process,
i.e., At is the σ -field generated by the random vector (d1, . . . ,dt ). Hence, we have
{∅,�} = A1 ⊆ A2 ⊆ · · · ⊆ At ⊆ · · · ⊆ AT ⊆ A. The sequence of scheduling
decisions {(ut ,pt , st ,wt ): t = 1, . . . , T } also forms a stochastic process on (�,A,P),
which is assumed to be adapted to the filtration of σ -fields, i.e., non-anticipative. The
latter condition means that the decision (ut ,pt , st ,wt ) depends only on the data history
(d1, . . . ,dt ) or, equivalently, that (ut ,pt , st ,wt ) is At -measurable. Since all decision
variables are uniformly bounded, we may restrict our attention to decisions (u,p, s,w)
belonging to L∞(�,A,P; R

m), where m := 2(I + J )T . Then the non-anticipativity
condition can be formulated equivalently as

(u,p, s,w) ∈ T×
t=1

L∞(�,At ,P; R
2(I+J )

)
, (8)

and the (stochastic) optimization problem consists in minimizing the expected costs

E

{
I∑

i=1

T∑
t=1

[
Ci

(
pt
i ,ut

i

)+ Sti (ui)
]}

(9)

over all decisions (u,p, s,w) satisfying the non-anticipativity constraint (8), and
P-almost surely, the constraints (1)–(5). Among the constraints (1)–(5), (2) and (3)
reflect the dynamics of the model and (4), (5) couple power units. Altogether, the
stochastic program involves 2(I + J )T stochastic decision variables. It is a discrete-
time dynamic or multi-stage stochastic recourse problem, where the stages correspond
to steps in the decision process at which new observations of the stochastic load are
taken into account. For the numerical solution of the dynamic recourse model we
now assume that an (approximate) discrete multivariate probability distribution of the
stochastic load vector d = (d1, . . . ,dT ) is given, such that its support consists of fi-
nitely many atoms or scenarios and that the non-anticipativity constraint (8) is satis-
fied. This approximation of the load can be represented in the form of a scenario tree.
Each path of the tree from the root to a leaf corresponds to one scenario; each node
of the tree corresponds to a component of the decision (u,p, s,w). Figure 2 shows
an example of a load scenario tree over a weekly time horizon, where new observa-
tions of the electrical load lead to a number of additional daily scenarios. Since the
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Figure 2. Example of a scenario tree.

Table 1
Dimension of the mixed-integer LP depending on the numbers of nodes and

scenarios with T = 168, I = 25 and J = 7.

Scenarios Nodes Variables Constraints Non-zeros
binary continuous

1 168 4200 6652 13441 19657
10 756 18900 29484 60490 88462
20 1176 29400 45864 94100 137612
30 1663 41575 64857 133070 194601
50 2478 61950 96642 198290 289976

100 4200 105000 163800 336100 491500

decision variable (u,p, s,w) exhibits the same tree structure as the load, the model
may easily become extremely large if the number of nodes in the scenario tree in-
creases.

Table 1 shows how the dimension of the model (1)–(5), (8), (9) increases with
the number of nodes and scenarios for a scenario tree with equidistant binary branches
(without taking into account the constraints of type (3) and the objective function).

3. Stochastic Lagrangian relaxation

The huge size of the model, described in the previous section, prevents the application
of state-of-the-art mixed-integer LP solvers. However, decomposition techniques may
provide a practicable alternative. Here, we make use of the fact that the model is loosely
coupled with respect to the operation of different units. Associating stochastic Lagrange
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multipliers with the coupling constraints (4) and (5) leads to the Lagrangian L and the
dual function D:

L(u,p, s,w;λ) = E

T∑
t=1

{
I∑

i=1

[
Ci

(
pt
i ,ut

i

)+ Sti (ui)
]

+ λt
1

(
dt −

I∑
i=1

pt
i −

J∑
j=1

(
stj − wt

j

))+ λt
2

(
rt −

I∑
i=1

(
ut
ip

max
i − pt

i

))}
, (10)

D(λ) = min
(u,p,s,w)

L(u,p, s,w;λ), (11)

where the minimization in (11) is subject to the remaining single unit constraints (1)–(3)
and (8). Justified by general duality results for convex multi-stage stochastic programs
(see [31] and Section 4 of [10]) we consider the dual problem

max

{
D(λ): λ = (λ1,λ2) ∈ T×

t=1
L1
(
�,At ,P; R

2
+
)}
. (12)

In particular, this means that the stochastic multiplier process λ is nonnegative P-almost
surely and adapted to the filtration {At}Tt=1 generated by the load process. Hence, λ1 and
λ2 exhibit the same tree structure as d. Furthermore, the dimension of the dual problem
(12) is twice the number N of nodes in the scenario tree. The optimal value of the dual
problem (12) provides a lower bound for the optimal costs of the nonconvex (primal)
model. For a discussion of the (relative) duality gap in our context of power optimization,
the reader is referred to [1,24] and Section 4 of [10]. Due to the relaxation of the coupling
constraints (4) and (5), the minimization in (11) decomposes into stochastic single unit
subproblems and the dual function takes the form

D(λ) =
I∑

i=1

Di(λ) +
J∑

j=1

D̂j (λ1) + E

T∑
t=1

[
λt

1dt + λt
2rt
]
, (13)

where Di(λ) and D̂j (λ1) refer to the optimal values of the thermal and hydro subprob-
lems, respectively. They have the following form:

Di(λ) = min
ui

{
E

T∑
t=1

(
min

pti

[
Ci

(
pt
i ,ut

i

)− (
λt

1 − λt
2

)
pt
i

]− λt
2ut

ip
max
i + Sti (ui)

)
:

ut
ip

min
i � pt

i � ut
ip

max
i , ut

i ∈ {0, 1}, (ui ,pi) ∈ T×
t=1

L∞(�,At ,P; R
2
)
,

ut−1
i − ut

i � 1 − uτ
i , τ = t + 1, . . . ,min{t + τi − 1, T }, t = 1, . . . , T

}
, (14)

D̂j (λ1) = min
(sj ,wj )

{
E

T∑
t=1

[
λt

1

(
wt
j − stj

)]
: (sj ,wj )∈

T×
t=1

L∞(�,At ,P; R
2
)
, (15)
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0 � stj � smax
j , 0 � wt

j � wmax
j , 0 � ltj � lmax

j , t = 1, . . . , T , (16)

ltj = lt−1
j − stj + ηjwt

j , t = 1, . . . , T , l0j = linj , lTj = lend
j

}
. (17)

The thermal subproblem (14) for unit i is a mixed-integer multi-stage stochastic pro-
gram. But, it reduces to a combinatorial multi-stage stochastic program, since the inner
minimization with respect to the one-dimensional continuous variable pt

i can be carried
out explicitly by examining the kinks of the fuel costs Ci . The hydro subproblem (15)
for plant j is a linear multi-stage stochastic program. Altogether, the dual function D is
concave and nondifferentiable on R

2N , and polyhedral due to (7).
Similar to the deterministic case, the stochastic Lagrangian relaxation algorithm

for solving the model in Section 2 consists of the following ingredients:

(a) Maximization of the dual function D by a proximal bundle method using function
and subgradient information (Section 3.1);

(b) Efficient solvers for the stochastic single unit subproblems: stochastic dynamic pro-
gramming (Section 3.2) and a specific descent algorithm (Section 3.3);

(c) Lagrangian heuristics for finding a feasible first-stage decision (Section 3.4);

(d) Economic dispatch for determining a nearly optimal first-stage decision (Sec-
tion 3.5).

In the remaining part of this section we provide a description of these ingredients.

3.1. Proximal bundle method

We consider the maximization of the dual concave function D on the set R
2N+ , and

assume that the set of maximizers is nonempty. Function values D(λ) are evalu-
ated according to (13) and a corresponding subgradient g(λ) ∈ ∂D(λ) is given by
(g1(λ), . . . , gN(λ), gN+1(λ), . . . , g2N(λ)), where gn(λ) for n = 1, . . . , N is equal to
the value of the stochastic process{

dt −
I∑

i=1

pt
i(λ) −

J∑
j=1

(
stj (λ)− wt

j (λ)
)}T

t=1

at node n and gN+n(λ) for n = 1, . . . , N is equal to the value of the stochastic process{
rt −

I∑
i=1

(
ut
i(λ)p

max
i − pt

i(λ)
)}T

t=1

at node n. Here, (u(λ),p(λ), s(λ),w(λ)) is a Lagrangian solution, i.e., it belongs to
arg min(u,p,s,w) L(u,p, s,w;λ).
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The proximal bundle method [19,21] generates a sequence (λk) in R
2N+ converging

to some maximizer, and trial points λ̄k ∈ R
2N+ starting with λ̄1 = λ1 for evaluating

subgradients g(λ̄k) of D and its polyhedral upper approximation

D̃k(λ) = min
j∈J k

{
D
(
λ̄j
)+ 〈

g
(
λ̄j
)
,λ − λ̄j

〉}
, (18)

where J k is a subset of {1, . . . , k}. In iteration k the next trial point λ̄k+1 is selected by

λ̄k+1 ∈ arg max

{
D̃k(λ) − 1

2
uk
∥∥λ − λk

∥∥2
: λ ∈ R

2N
+

}
, (19)

where uk is a proximity weight. A descent step to λk+1 = λ̄k+1 occurs if D(λ̄k+1) �
D(λk) + κδk, where κ ∈ (0, 1) is fixed and δk = D̃k(λ̄

k+1) − D(λk) � 0. If δk = 0,
then λk is optimal. Otherwise, a null step λk+1 = λk improves the next polyhedral
function D̃k+1. Strategies for updating uk and choosing J k+1 are discussed in [19,21].
The method is implemented such that the cardinality of J k is bounded (by some natural
number NGRAD) and that it terminates if δk is less than a given (relative) optimality
tolerance opt.tol.

Our computational experience with the proximal bundle code NOA 3.0 [20] for
solving (12) is very encouraging (cf. Section 4). In our test runs, for instance, NOA 3.0
applied to solving (12) performed in 300 iterations as good as a standard subgradient
method (with step lengths 1/k) in 10.000 iterations.

3.2. Stochastic dynamic programming

In order to solve the thermal subproblem (14) by dynamic programming, the state space
is extended by including the recent history such that minimum up/down-times and start-
up costs depend just on the current and the previous state. Figure 3 shows a part of
the state transition graph of a thermal unit having a minimum up-time of 6 hours, a
minimum down-time of 5 hours, and a cooling down-time of 8 hours. It shows possible
and feasible transitions on some fixed arc of the scenario tree, where the arrows refer to
feasible transitions. Let αt

i (s) denote the node weight at time t and state s and Ŝi(s, s̃)

the arc weight for the arc from state s to state s̃ in the state transition graph. The node
weights αt

i (s) are equal to 0 for off-line states s and it holds

αt
i (s) = min

pi

{
Ci(pi, 1) − (

λt
1 − λt

2

)
pi − λt

2p
max
i : pmin

i � pi � pmax
i

}
(20)

for on-line states s. The arc weights Ŝi(s, s̃) describe start-up costs for the thermal unit.
They are independent of λ, and are non-zero only for arcs leading from off-line states to
on-line states. The cost-to-go functions are given by

γ t
i (s) = αt

i (s) + E

(
min
s̃

{
Ŝi(s, s̃) + γ t+1

i (s̃)
}|At

)
, (21)

where E(·|At ) denotes the conditional expectation w.r.t. the σ -field At . Now, the dy-
namic programming algorithm works as follows. First the cost-to-go functions are com-
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Figure 3. Transition graph for 2 time periods.

puted for all states s via the backward recursion (21). Then the optimal decisions are
obtained by a forward computation. Since each node of the scenario tree is considered
only twice, the algorithm is reasonably fast. For one thermal unit, one load scenario, and
one week with an hourly discretization the algorithm needs just 40 milliseconds running
time on an HP-workstation.

3.3. Descent algorithm for stochastic storage problems

The hydro subproblem (15) for unit j is solved by a descent method that generates a
finite sequence of feasible decisions (sj ,wj ) with decreasing objective values

E

T∑
t=1

λt
1

(
wt
j − stj

)
and terminates with an optimal solution. The method begins by finding a hydro decision
that is feasible, i.e., it satisfies (16) and (17).

For the description of a descent step we consider for simplicity the case ηj = 1
and set xj = wj − sj . Since the descent algorithm employs the underlying scenario
tree structure, we need some additional notation. By N we denote the set of nodes of
the tree, by n = 1 its root node, by path(n) the path from the root to node n, by N+(n)
the set of successors to node n, and by πn the probability of node n. Furthermore, NL

denotes the set of leaves, i.e., the set of all nodes n with N+(n) = ∅. Denoting by xnj
and λn1 the value of xj , and λ1 at node n, the objective function takes the form∑

n∈N
πnλ

n
1x

n
j . (22)
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The next feasible iterate x̃j is chosen such that the objective (22) decreases and that
x̃nj = xnj holds for each node n ∈ N \ ({nG} ∪ GL), i.e.,∑

n∈N
πnλ

n
1

(
x̃nj − xnj

) =
∑

n∈{nG}∪GL

πnλ
n
1

(
x̃nj − xnj

)
< 0, (23)

where nG and GL denote the root node and the set of leaves of a subtree with a set G of
nodes contained in N , i.e., it holds that {nG} ∪ GL ⊆ G, nG ∈ path(n) for each n ∈ G,
N+(n)∩G = ∅ for each n ∈ GL and N+(n) ⊆ G for each n ∈ G\GL. A subtree having
these properties is called d-subtree. It is shown in [27] that for each nonoptimal feasible
hydro decision xj , a d-subtree and a feasible decision x̃j exist such that (23) is satisfied.
Moreover, the conditions on a node n to form a root node of a d-subtree are as follows:

• Case of increasing the level lnj : min{xmax
j − xnj , d

up
n }{λn1πn + r

up
n } � 0,

• Case of decreasing the level lnj : min{xnj − xmin
j , ddown

n }{λn1πn + rdown
n } � 0,

where lnj denotes the value of lj at node n, xmax
j = wmax

j , xmin
j = −smax

j and d
up
n , ddown

n ,
r

up
n and rdown

n are for each n ∈ N defined by

dup
n =


xnj − xmin

j if bup
n = 1,

min
{
lmax
j − lnj , min

n+∈N+(n)
d

up
n+

}
if bup

n = 0,

ddown
n =


xmax
j − xnj if bdown

n = 1,

min
{
lnj , min

n+∈N+(n)
ddown
n+

}
if bdown

n = 0,

rup
n =


λn1πn if bup

n = 1,∑
n+∈N+(n)

r
up
n+ if bup

n = 0,

rdown
n =


λn1πn if bdown

n = 1,∑
n+∈N+(n)

rdown
n+ if bdown

n = 0.

Here, bup
n and bdown

n are binary decisions at node n ∈ N . All superscripts up/down refer
to cases of an increased/decreased level lnj for n ∈ G \GL. In case of an increased level,
the correspondence of binary decisions to the tree G is determined by

n ∈ GL ⇔ bup
n = 1 and n ∈ G \GL ⇔ bup

n = 0.

The decision to reduce the storage is denoted by b
up
n = 1, while b

up
n = 0 refers to the

decision to keep the additional amount. Similarly, the notations bdown
n = 1 and bdown

n = 0
are used.
Now, the descent algorithm EXCHA works as follows:

Step 1: Input and initialization;

Step 2: Determine a feasible point;



STOCHASTIC LAGRANGIAN 263

Figure 4. Computing times [s] of EXCHA.

Step 3: Compute dup
n , ddown

n , rup
n , and rdown

n at all nodes n ∈ N ;

Step 4: Find the root node of the d-subtree having steepest descent; else STOP;

Step 5: Update xnj and lnj at all nodes n ∈ N ;

Step 6: Goto Step 3.

The extension of the descent algorithm to the case ηj ∈ (0, 1) and implementation is-
sues are given in [27]. The algorithm EXCHA was implemented and tested for solving
stochastic hydro storage subproblems (15). Figure 4 shows the computing times (in sec-
onds) of EXCHA on an HP-workstation for subproblems with T � 18 and binary trees
branching at all time periods with numbers of scenarios ranging up to 200 000. The
efficiency of the algorithm is due to the fact that in each step only a few elementary
computations are needed and some variable attains its upper or lower bound.

3.4. Lagrangian heuristics

When the bundle method delivers a solution λ∗ of the dual stochastic program (12), the
optimal value D(λ∗) provides a lower bound for the optimal cost of the primal model. In
general, however, the “dual optimal” scheduling decisions (u(λ∗),p(λ∗), s(λ∗),w(λ∗))
violate the load and reserve constraints (4) and (5). In the following, we describe a La-
grangian heuristics that determines a nearly optimal primal first-stage decision starting
from the optimal multiplier λ∗. In a first step, the mean value functions of the (discrete-
time) stochastic processes d (load), r (reserve), l (storage levels) and λ∗ are computed.
Clearly, they coincide with their realizations (scenarios) during all time periods belong-
ing to the first stage. Next, generation and pumping decisions, sj and wj , are determined
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Figure 5. Schedules after averaging.

from the constraints (2), where lj is replaced by its expectation E[lj ]. Furthermore,
binary decisions ui are computed by dynamic programming as solutions of the ther-
mal subproblems (14), where the stochastic multiplier λ∗ is replaced by its expectation
λ∗ = E[λ∗]. For one of the test runs explained in Section 4, Figure 5 shows the results
after the first step of the heuristics: the mean load and reserve curves E[dt ] and E[rt ],
the hydro generation and pumping curves

∑J
j=1 s

t
j and

∑J
j=1 w

t
j , and the reduced mean

load curve E[dt] − ∑J
j=1(s

t
j − wt

j ) for t = 1, . . . , T . Furthermore, it shows that the
reserve constraint (25) is violated, e.g., during 1 � t � 12 and 110 � t � 168.

In order to find scheduling decisions (u, p, s,w) that are feasible for the reserve
constraint (25), the schedules of the hydro and the thermal units, respectively, are modi-
fied during the next two steps. The second step consists in applying a water rescheduling
procedure, which is taken from [9]. Its idea is to reduce the value

E
[
dt
]+ E

[
rt
]+

J∑
j=1

(
wt
j − stj

)
(24)

by modifying the schedule of the hydro units if the (modified) reserve constraint

I∑
i=1

utip
max
i � E

[
dt
]+ E

[
rt
]+

J∑
j=1

(
wt
j − stj

)
(25)

is violated at time t and the value (24) is largest in a certain set of neighbouring time
periods. In the third step, the hydro schedules are kept fixed and binary variables uti
satisfying the reserve constraint (25) are determined by the thermal heuristics described
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in [40]. Its main idea consists in determining the time t , where the constraint (25) is
most violated, and in increasing λ∗t

2 as much as necessary to switch on (by dynamic
programming) just as many thermal units as needed to satisfy (25) at t . This is repeated
until the reserve constraint (25) is satisfied in all time periods. Since this technique does
not distinguish between identical units that appear quite often in real-life power systems,
the start-up costs of such units are slightly modified. In our numerical experiments this
modification led to improved results (cf. Section 4).

3.5. Economic dispatch

The Lagrangian heuristics ends with a binary schedule uti for the thermal units such that
a feasible schedule (u, p, s,w) exists for the primal model in Section 2 when replacing
the stochastic load d and reserve r by their expected values. In a final step, a cost-optimal
schedule (p, s,w) is determined for fixed u by solving the corresponding primal model
(with fixed start-up costs). The aim of this section is to develop an algorithmic approach
for solving this economic dispatch problem. The approach also applies to multi-stage
stochastic power scheduling models with fixed stochastic binary decisions u. Since this
may be of independent interest, we consider the model:

min
(p,s,w)

{
E

I∑
i=1

T∑
t=1

Ci

(
pt
i ,ut

i

)
: (p, s,w) ∈ T×

t=1
L∞(�,At ,P; R

I+2J
)
, (26)

ut
ip

min
i � pt

i � ut
ip

max
i , t = 1, . . . , T , i = 1, . . . , I, (27)

0 � stj � smax
j , 0 � wt

j � wmax
j , 0 � ltj � lmax

j , (28)

ltj = lt−1
j − stj + ηjwt

j , t = 1, . . . , T ,

l0j = linj , lTj = lend
j , j = 1, . . . , J, (29)

I∑
i=1

pt
i +

J∑
j=1

(
stj − wt

j

)
� dt , t = 1, . . . , T , (30)

I∑
i=1

(
ut
ip

max
i − pt

i

)
� rt , t = 1, . . . , T

}
. (31)

The structure of the stochastic program (26)–(31) is partly similar to (15) excepting
the thermal units. This motivates the idea to apply the same technique as in Section 3.3.
Thermal and hydro units are coupled by the constraints (30). Moving the sum

∑J
j=1(s

t
j−

wt
j ) to the right-hand side in (30) and taking the right-hand side as a parameter, the

optimization problem (26), (27), (30) decomposes into parametric programs for each
time period t and scenario ω. Denoting the parameter by θ , the parametric programs and
their optimal value functions φt,ω(·) have the form:
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φt,ω(θ) = min
pt

{
I∑

i=1

Ci

(
pt
i ,ut

i(ω)
)
: ut

i(ω)p
min
i � pt

i � ut
i(ω)p

max
i , i = 1, . . . , I,

dt (ω) − θ �
I∑

i=1

pt
i �

I∑
i=1

ut
i(ω)p

max
i − rt (ω)

}
.

Such optimal value functions may be evaluated by efficient algorithms (see, e.g., [4,5,22]
for the case of (piecewise) linear and quadratic costs). Now, the economic dispatch
problem (26)–(31) can be reformulated as

min
(s,w)

{
E

T∑
t=1

φt,.

(
J∑

j=1

(
stj − wt

j

))
: (28), (29)

}
. (32)

This reformulation allows to study how the objective function varies when altering the
operation of the hydro units. If the functions φt,ω were differentiable, the linearization
of the model (32) takes the form

J∑
j=1

min
(sj ,wj )

E

T∑
t=1

dφt,.
dθ

(
J∑

j=1

(
stj − wt

j

))(
stj − wt

j

)
, (33)

which is very similar to (15). Hence, successive linearizations combined with the de-
scent technique described in Section 3.3 could be used to solve (32). This suggests
replacing each piecewise linear function φt,ω by a differentiable function that is obtained
from φt,ω by smoothing its kinks with quadratic functions on small intervals that are re-
duced progressively. This descent method was implemented, tested and compared with
CPLEX 4.0. Test runs of our code ECDISP were performed for the VEAG system with
25 thermal units and 7 pumped hydro storage plants. Table 2 contains results for a test
example with one load scenario and 192 time periods, which is equivalent to an LP with
14200 columns, 17856 rows, and 46256 non-zeros. The table shows computing times
of CPLEX 4.0 on a SPARCstation IPX (4/50) with 64 MB main memory and 40 MHz,
which have to be compared with the ECDISP computing time of 50.95 seconds. Since

Table 2
Computing times [s] for different CPLEX-functions and options.

CPLEX-function Pricing strategy primal/dual
−1 0 1 2 3 4

Simplex/primal 1232.4 1188.4 1918.1 2664.1 2440.7 1696.9
Simplex/dual 1086.1 946.2 1103.4 1466.5 1083.8
baropt 94.78
hybbaropt/primal 114.7 114.3 114.3 486.5 114.4 114.3
hybbaropt/dual 115.0 114.6 693.0 1424.8 114.8
hybnetopt/primal 957.6 910.3 1298.0 2252.8 1960.9 1162.6
hybnetopt/dual 1393.8 1253.7 1412.0 1833.9 1392.3
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Table 3
Comparison of ECDISP with CPLEX.

Scen’s Nodes Columns Rows Non-zeros ECDISP[s] CPLEX[s] Adv’

3 336 24840 31248 80944 18.69 97.61 5.22
5 462 34148 42966 111294 29.48 162.47 5.51
7 588 43456 54684 141644 47.93 206.00 4.30
9 687 50766 63891 165487 43.09 305.43 7.09

11 792 58520 73656 190776 67.17 500.30 7.45
13 930 68716 86490 224018 86.73 461.54 5.32
15 1035 76470 96255 249307 98.04 569.18 5.81
17 1036 76528 96348 249532 117.42 620.65 5.29
19 1120 82728 104160 269760 91.63 1720.33 18.7
21 1232 91000 114576 296736 131.94 243.27 1.84
22 1260 93064 117180 303476 128.18 794.93 6.20

Figure 6. Number of steps versus number of scenarios.

the barrier method performs significantly better than the simplex method, and even bet-
ter than the network simplex method, further comparisons were made with the barrier
method only. Table 3 contains results for test problems with T = 192 and up to 22 sce-
narios. CPLEX 4.0 ran out of memory for problems with a higher number of scenarios.
The advantage of using ECDISP ranges from 1.8 up to 18.7, and in average ECDISP is
5–6 times faster. Figures 6 and 7 show that the number of steps and the computing times
of ECDISP grow almost linearly with respect to the number of scenarios.

4. Numerical results

The stochastic Lagrangian relaxation algorithm was implemented in C++ except for the
proximal bundle method, for which the FORTRAN-package NOA 3.0 [20] was used
as a callable library. For testing the implementation, a test bunch of load scenario trees
was generated as follows. Starting from a reference load scenario obtained from real-life



268 NOWAK AND RÖMISCH

Figure 7. Computing times [s] versus number of scenarios.

Table 4
Influence of modified costs and of NOA opt.tol. on the gap and running times.

Nr. Modified cost functions Original cost functions

opt.tol.: 10−3 opt.tol.: 10−4 opt.tol.: 10−3 opt.tol.: 10−4

gap (%) time (s) gap (%) time (s) gap (%) time (s) gap (%) time (s)

1 0.18 34.08 0.10 89.84 0.67 31.32 0.56 86.24
2 0.25 47.82 0.12 109.92 0.60 42.67 0.61 100.07
3 0.43 44.81 0.26 111.75 0.44 35.10 0.25 102.61
4 0.34 53.86 0.14 119.84 0.94 47.40 0.96 115.55
5 0.20 78.42 0.11 157.31 0.98 73.76 0.93 151.64
6 0.39 39.52 0.11 88.35 0.66 37.42 0.54 79.88

data, S−1 random branching points were selected successively to produce a scenario tree
with S identical scenarios. Then a discretized Brownian motion was added to each node
of the tree. Finally, randomly selected probabilities were assigned to each scenario. The
random construction of the trees leads to different trees and different numbers of nodes
(even for fixed S) for each test run. Test runs were performed for the hydro-thermal
power generation system of VEAG comprising 25 thermal units and 7 pumped storage
plants on an HP 9000 (780/J280) Compute-Server with 180 MHz frequency and 768
MByte main memory under HP-UX 10.20. For test runs with 10 scenarios Table 4 shows
the influence of modifying the start-up costs and of changing the optimality tolerance of
the proximal bundle method on the gap and computing times. It shows that a (slight)
modification of start-up costs of former identical units leads to smaller gaps. Here, the
gap refers to the relative difference

1

D(λ∗)

(
T∑
t=1

I∑
i=1

[
Ci

(
pt
i , u

t
i

)+ Sti (ui)
]− D(λ∗)

)
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of the cost of the scheduling decision (u, p, s,w) and the optimal value of the dual prob-
lem. Moreover, improving optimality tolerances leads to smaller gaps paid by increased
computing times.

Figure 8 provides the final output of the algorithm and contains, in particular, the
nearly optimal first-stage solution for the total thermal and hydro generation (i.e., for the
periods t = 1, . . . , 24). Table 5 shows how the computing time grows with increasing
numbers of scenarios and nodes. Since the complexity of the model is higher compared
to the stochastic programs in Sections 3.3 and 3.5, the variance of the computing time is
greater than the variances expressed in Figures 4 and 7. The reason is that the iteration
numbers in the bundle method, in the method for searching a reserve feasible solution
and in the economic dispatch solver depend on the input data in a very involved way.

Figure 8. Approximate solution.

Table 5
Computing times and gaps (NOA 3.0: opt.tol. = 10−3, NGRAD = 50).

Scenarios Nodes time (s)/gap (%) Nodes time (s)/gap (%)

10 781 31.2/0.274 1043 52.93/0.138
10 1232 50.36/0.201 975 54.21/0.723
20 1982 89.13/0.149 1627 93.62/0.101
20 1651 67.94/0.367 1805 84.73/0.066
30 2643 139.71/0.528 2643 138.61/0.528
30 2548 147.51/0.849 2515 162.14/0.175
50 4530 475.29/0.175 4060 274.43/0.096
50 4041 312.86/0.099 4457 288.03/0.430

100 9230 1183.25/0.108 9224 1072.18/0.131
100 7727 929.68/0.087 8867 1234.12/0.304
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Another observation is that the gap seems to be (almost) independent of the number of
scenarios.

5. Conclusions

We have elaborated a mixed-integer multi-stage stochastic programming model for
power scheduling in a hydro-thermal generation system under uncertainty on the elec-
trical load. Due to the huge size of the model, an application of state-of-the-art mixed-
integer LP solvers is prevented. Therefore, we have developed a novel approach based on
stochastic Lagrangian relaxation of coupling constraints. It consists of proximal bundle
iterations for solving a stochastic dual followed by a Lagrangian heuristics to determine
a nearly optimal primal first-stage solution. The stochastic dual decomposes into sto-
chastic thermal and hydro subproblems, which are solved by specific fast algorithms.
Our computational experience indicates that the stochastic Lagrangian relaxation algo-
rithm is able to produce good approximate first-stage solutions for medium-size realistic
power systems and 20 (100) load scenarios within less than 2 (20) minutes on a mod-
ern HP-workstation. It also indicates that the algorithm bears potential for solving more
complex real-life power scheduling models under uncertainty in reasonable time.
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