
The role of information

in multi-period risk measurement

G. Ch. Pflug and W. Römisch

Department of Statistics and Decision Support Systems,

University of Vienna, 1090 Vienna, Austria and IIASA Laxenburg,

Department of Mathematics, Humboldt-University Berlin,10099 Berlin, Germany

Abstract

Multi-period risk functionals assign a risk value to a discrete-time stochastic
process Y = (Y1, . . . , YT ). While convexity and monotonicity properties extend in
a natural way from the single-period case and several types of translation prop-
erties may be defined, the role of information becomes crucial in the multi-period
situation. In this paper, we define multi-period functionals in a generic way, such
that the available information (expressed as a filtration) enters explicitly the defini-
tion of the functional. This allows to study the information monotonicity property,
which comes as the counterpart of value monotonicity. We discuss several ways of
constructing concrete and computable functionals out of conditional risk mappings
and single-period risk functionals. Some of them appear as value functions of multi-
stage stochastic programs, where the filtration appears in the non-anticipativity
constraint. This approach leads in a natural way to information monotonicity. The
subclass of polyhedral multi-period risk functionals becomes important for their
employment in practical dynamic decision making and risk management. On the
other hand, several functionals described in literature are not information-monotone,
which limits their practical use.

Key words: Risk functional, acceptability functional, multi-period, conditional risk map-
ping, average value-at-risk, dual representation, information monotonicity

1 Introduction

Measuring and managing risk of economic decisions has become increasingly important in
practically all areas of economic activity, e.g., in finance, energy, transportation telecom-
munication, to mention a few. This has led to a systematic study of desirable properties
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of (statistical) functionals that allow to quantify risk. About ten years ago, the semi-
nal work by Artzner, Delbaen, Eber and Heath [1] devoted to an axiomatic theory of
(coherent) risk functionals has attracted considerable attention of researchers and practi-
tioners. It initiated a thorough discussion and (partial) extension of the axioms to convex
risk functionals (see [12, 15]) and led to the beginnings of a theory of risk measurement
(see, e.g., the monograph [13], the survey [14], the collection [40] and the original work
[19, 22, 17, 26, 32, 33]). In parallel to this static or single-period setting efforts were
made to extend the theory to a dynamic setting when time evolves and information gets
available. We refer to [2, 4, 5, 7, 16, 18, 25, 28, 29, 35, 41] addressing such an extension
at different levels of generality.

In this paper, we work with functionals A such that ρ := −A is a convex risk functional.
Such functionals A are also known as concave monetary utility functionals in literature.
We prefer the name acceptability functional (as, e.g., in [35]) in order to avoid any conflict
with classical utility functions (cf. [13]). Given a linear space Y of real random variables
contained in L1(Ω,F , P) with the partial ordering “≤ ” defined by Y ≤ Ỹ P-almost surely,
a functional A : Y → R is called acceptability functional if it is proper (i.e., A(Y ) < +∞
for all Y ∈ Y and A(Y ) > −∞ for some Y ∈ Y) and satisfies the following axioms for all
Y, Y ′ ∈ Y , c ∈ R, λ ∈ [0, 1]:

(A1) Translation-equivariance. A(Y + c) = A(Y ) + c,

(A2) Concavity. A(λY + (1 − λ)Y ′) ≥ λA(Y ) + (1 − λ)A(Y ′),

(A3) Monotonocity. Y ≤ Y ′ implies A(Y ) ≤ A(Y ′).
In this paper, we deal with unbounded random variables and use Y = Lp(Ω,F , P) = Lp(F)
(1 ≤ p < ∞) by employing its Banach space and Banach lattice properties. Dual represen-
tation results of acceptability functionals A are immediate consequences of the Fenchel-
Moreau theorem [31, Theorem 5] if A is upper semicontinuous. While in case p = ∞ a
functional A satisfying (A1)–(A3) is always finite and continuous, the situation is different
for 1 ≤ p < ∞ (cf. [27, Example 2.28]). Version-independent or law invariant acceptabil-
ity functionals A (i.e. those satisfying A(Y ) = A(Y ′), if the probability distributions of Y
and Y ′ coincide) are particularly important due to their specific properties and Kusuoka
representation (cf. [22, 17, 20]).
A basic role will be played by the average value-at-risk AV@R at level α ∈ (0, 1], which
we define as

AV@Rα(Y ) :=
1

α

∫ α

0

G−1
Y (u) du,

where G−1
Y (α) = inf{u ∈ R : GY (u) ≥ α} is the quantile and V@Rα(Y ) = −G−1

Y (α) the
value-at-risk at level α. GY denotes the distribution function of Y ∈ L1(F). AV@Rα

satisfies the conditions (A1)–(A3). Notice that AV@Rα is just the negative value of the
average value-at-risk as defined in [13].

When extending this single-period setting to a multi-period situation, the functional A
should be given on a linear space Y of (discrete time) stochastic processes Y = (Y1, . . . , YT )
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defined on some some probability space (Ω,F , P), but should also depend on the infor-
mation evolving over time given by a filtration F = (F0,F1, . . . ,FT ), where F0 = {∅, Ω},
FT = F and Yt is measurable with respect to Ft for every t = 1, . . . , T . Here Yt is inter-
preted as the value of a risky cash-flow at time t, which is already discounted to present
time by deterministic or stochastic discount. Typically Ft, the information obtainable at
time t, is (much) larger than the σ-field generated by (Y1, . . . , Yt). This becomes evident if
one considers final processes, i.e. processes of the form (0, . . . , 0, YT ). Here the generated
σ-field is trivial up to time T − 1, but the collected information may be much larger than
that. For this reason, we define acceptability functionals A on pairs (Y ; F) consisting of
a process Y and a filtration F, such that Y is adapted to F.

In the literature emphasis is put on several notions of time consistency for dynamic ac-
ceptability or risk functionals (see [2, 4, 6, 9, 21, 29, 41]). For the mainly suggested notion
it has been shown recently in [21] that the class of dynamic risk functionals satisfying law
invariance and time consistency shrinks to the entropic one (see also Example 4.7).

In this paper, we put the emphasis on information-consistency, which compares different
levels of available information, and extend the corresponding material presented in the
monograph [27]. The central role is played by the notion of information-monotonicity,
which is the property that F ⊆ F′ (meaning of course that Ft ⊆ F ′

t for all t), must imply
that A(Y ; F) ≤ A(Y ; F′). This requirement seems rather fundamental, yet it is violated
in many cases. A violation leads to the paradoxical situation that the same process Y
is acceptable for some information pattern, but not acceptable, if more information is
available. To put it the other way round: ignoring available information could make a
process acceptable.

We argue that an important setup for getting information-monotone and computable
acceptability functionals is by formulating a stochastic optimization program describing
some optimal risk management problem and defining the acceptability as the optimal
value under the given information constraint.

This remark is not the only relation to stochastic optimization. Managing the risk of
economic decisions is often based on suitable optimization models by incorporating ap-
propriate risk functionals into the objective function or the constraints. Then the optimal
solution corresponds to a decision with minimal or (properly) bounded risk. The incor-
poration of risk functionals into optimization models may require additional properties in
addition to convexity. Such properties may be caused by complexity and computational
requirements. For example, since risk functionals are nonlinear in most relevant cases,
the original structure and numerical tractability of the optimization models might get
lost after the incorporation of risk functionals. In this way, linear or mixed-integer linear
programs might become nonlinear or mixed-integer nonlinear. For example, such an effect
occurs if the entropic risk measure or alike is employed in mixed-integer linear programs.
These and related optimization issues are discussed in [10, 27, 32, 37] (see also Section
4.3).
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As for notation, we use the symbol Y1 ¢ F1 to indicate that the random variable Y is
measurable w.r.t. the σ-algebra F . We use also the same symbol Y ¢ F to indicate that
the stochastic process Y = (Y1, . . . , YT ) is adapted to the filtration F = (F1, . . . ,FT ).

Our paper is organized as follows. In Section 2 we review conditional acceptability and
risk functionals, their dual representation and properties, and provide some examples.
In Section 3, we discuss axioms for multi-period acceptability and risk functionals and
provide dual representations. The final Section 4 is devoted to several approaches for
constructing multi-period acceptability functionals, namely, scalarization, separable con-
structions and composition. Furthermore, we discuss the polyhedrality of multi-period
risk functionals as important property for employing risk functionals in multi-period de-
cision making and risk management. Roughly speaking, polyhedral multi-period risk
functionals, although being nonlinear, maintain the linearity of optimization models by
introducing additional variables and linear constraints. They are information-monotone
and enjoy further favorable features for computations.

2 Conditional acceptability and risk mappings

Let F1 be any σ-field contained in F . Let Y1 = Lp(F1), p ∈ [1, +∞), hence Y1 ⊆ Y . All
(in)equalities between random variables in Y are intended to hold P-almost surely.

A mapping AF1
: Y → Y1 is called conditional acceptability mapping (with observable

information F1) if the following conditions are satisfied for all Y , Ỹ ∈ Y , Y1 ∈ Y1 and
λ ∈ [0, 1]:

(CA1) Predictable translation-equivariance. AF1
(Y + Y1) =

AF1
(Y ) + Y1,

(CA2) Concavity. AF1
(λY + (1 − λ)Ỹ ) ≥ λAF1

(Y ) + (1 − λ)AF1
(Ỹ ),

(CA3) Monotonicity. Y ≤ Ỹ implies AF1
(Y ) ≤ AF1

(Ỹ ).
We will also use the notation A(· |F1) instead of AF1

. The mapping ρ = ρF1
:= −AF1

is
called conditional risk mapping (with observable information F1).
A conditional acceptability mapping AF1

is called positively homogeneous if AF1
(λY ) =

λAF1
(Y ), ∀λ ≥ 0. It is called upper semicontinuous (u.s.c.) if the mapping Y 7→

E(AF1
(Y )1lB) from Y to R is upper semicontinuous for every B ∈ F1.

Conditions (CA1)–(CA3) are also required in [38], but often the stronger property is im-
posed, namely that the concavity equation holds for all F1 measurable λ (e.g. in [6, 9]).
We do not need this stronger condition here. However, we introduce information mono-
tonicity as another important property. To do so, assume that conditional acceptability
mappings AF ′ are defined for all sub σ-algebras F ′ of F .
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(CA0) Information-monotonicity. For all σ-fields F1 ⊆ F ′
1 ⊆ F

E[AF1
(Y )1lB] ≤ E[AF ′

1
(Y )1lB] for all B ∈ F1.

Condition (CA0) becomes important in Section 4. It can be reformulated equivalently
due to the following Remark.

Remark 2.1 Information monotonicity can also be rephrased as: F1 ⊆ F ′
1 implies that

A(Y |F1) ≤ E[A(Y |F ′
1)|F1] a.s.

and this condition is also known under the name of compound convexity (see [27], Defini-
tion 2.11 and Proposition 2.12). It is also equivalent to the property that for all filtrations
F = (F0, . . . ,FT ), the process A(Y |Ft) is a submartingale w.r.t. F.

Next we provide characterization, representation and existence results for conditional
acceptability mappings on Lp and discuss examples. We begin with a property that is
established for bounded random variables in [9] under a stronger concavity condition, and
also appears in [16]. The upper semicontinuity property is suitable to derive extensions
for the unbounded situation.

Proposition 2.2 Let AF1
: Y → Y1 be an u.s.c. conditional acceptability mapping. Then

one has
AF1

(Y 1lB) = AF1
(Y )1lB for all Y ∈ Y , B ∈ F1.

Proof. Suppose first that |Y | is bounded by K. Then −K1lB ≤ Y ≤ K1lB and the
monotonicity (CA3) together with (CA1) implies the assertion, since

−K1lB = AF1
(−K1lB) ≤ AF1

(Y ) ≤ AF1
(K1lB) = K1lB .

Let now YK = Y 1l|Y |≤K . Then YK → Y in Lp as K → ∞. Let C ∈ F1 be such that
C ∩ B = ∅. By upper semicontinuity we obtain

0 = lim sup
K→∞

E(AF1
(YK)1lC) ≤ E(AF1

(Y )1lC) (1)

and also
0 = lim sup

K→∞
E(AF1

(−YK)1lC) ≤ E(AF1
(−Y )1lC). (2)

The concavity (CA2) implies that

0 = E(AF1
(
1

2
Y +

1

2
Y )1lC) ≥

1

2
E(AF1

(Y )1lC) +
1

2
E(AF1

(−Y )1lC).

This, together with (1) and (2) implies that E(AF1
(Y )1lC) = 0 for every C ∈ F1 with

C ∩ B = ∅, i.e., AF1
(Y ) is zero outside B. 2
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Proposition 2.3 (Characterization) A mapping AF1
is an u.s.c. conditional accept-

ability mapping if and only if the functional

Y 7→ E(AF1
(Y )1lB) (3)

is a finite u.s.c. acceptability functional for every B ∈ F1, which satisfies the property

E(AF1
(Y + Y1)1lB) = E(AF1

(Y )1lB) + E(Y11lB) for all Y1 ∈ Lp(F1). (4)

Proof. The only if direction is clear due to Proposition 2.2. Assume that for all B ∈ F1

the functional (3) satisfies (A2), (A3) and the property (4). Let B ∈ F1, Y ∈ Y and
Y1 ∈ Y1. The latter property then means

0 = E[(AF1
(Y + Y1)1lB]−E(AF1

(Y )1lB)−E(Y11lB) = E[(AF1
(Y + Y1)−AF1

(Y )− Y1)1lB].

Since this holds for every B ∈ F1, the element AF1
(Y + Y1) − AF1

(Y ) − Y1 must itself
be a.s. zero, since it is F1 measurable. Hence, (CA1) is fulfilled. Further, let λ ∈ [0, 1],
Ỹ ∈ Y and B be the set on which

AF1
(λY + (1 − λ)Ỹ ) < λAF1

(Y ) + (1 − λ)AF1
(Ỹ )

holds. Then B belongs to F1. If P (B) > 0, then taking the expectation on B of this
relation leads to a contradiction. Thus, (CA2) is fulfilled. Finally, let Y ≤ Ỹ and let
B be the set where AF1

(Y ) > AF1
(Ỹ ). Again, taking the expectation on B leads to a

contradiction and the proof is complete. 2

The next representation result of u.s.c. conditional acceptability mappings is a slight
extension of [27, Theorem 2.51]. To state it, we use the notion of the infimum in Banach
lattices. Since the Lp-spaces (1 ≤ p ≤ ∞) are order complete Banach lattices, every
nonempty collection G of Lp-functions, which is bounded from below has an infimum
(see, e.g., [39]). Some authors call this infimum the essential infimum. The infimum is a
measurable function Y = inf{Y : Y ∈ G} such that (i) Y ≤ Y a.s. for all Y ∈ Y and (ii)
if Z ≤ Y a.s. for all Y ∈ Y , then Z ≤ Y a.s. The infimum Y may also be characterized
in a different way: Let G be the collection of all minima of finitely many functions from
G. Then inf{Y : Y ∈ G} is the uniquely determined measurable function Y such that for
all measurable B

E(Y 1lB) = inf{E(Y 1lB) : Y ∈ G}.

Theorem 2.4 (Representation) Let AF1
: Y → Y1 be an u.s.c. conditional acceptabil-

ity mapping. Then the representation

E(AF1
(Y )1lB) = inf {E(Y Z 1lB) − E(θF1

(Z)1lB) : Z ≥ 0, E(Z|F1) = 1, Z ∈ Z(F1)}

or, equivalently,

AF1
(Y ) = inf {E(Y Z|F1) − θF1

(Z) : Z ≥ 0, E(Z|F1) = 1, Z ∈ Z(F1)}

is valid for every pair (Y,B) ∈ Y × F1, where Z(F1) is a closed convex subset of Lq(F),
θF1

a concave mapping from Lq(F) to Lq(F1) and q ∈ (1, +∞] is such that 1
p

+ 1
q

= 1.
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Proof. Let B ∈ F1 and the functional AB on Y be defined by AB(Y ) := E(AF1
(Y )1lB).

Since AB is an u.s.c. acceptability functional according to Proposition 2.3, it satisfies
(A2) and, thus the representation

AB(Y ) = inf
{

E(Y Z) −A+
B(Z) : Z ∈ Lq(F)

}

A+
B(Z) = inf {E(Y Z) −AB(Y ) : Y ∈ Lp(F)}

holds due to the Fenchel-Moreau theorem and A+
B is proper, u.s.c. and concave. Since

AB is finite on Y , it is continuous on Y (see, e.g., [3, Proposition 2.111]). Hence, the set
(of supergradients of AB at Y )

SB(Y ) := arg min
{

E(Y Z) −A+
B(Z) : Z ∈ Lq(F)

}

is nonempty, closed and convex for every Y ∈ Y (e.g., [3, Proposition 2.126]) and it holds
that

AB(Y ) = E(Y Z) −A+
B(Z) for all Z ∈ SB(Y ).

Since AB(Y ) = AB(Y 1lB), the conjugate A+
B satisfies

A+
B(Z) = inf{E(Z Y 1lB) + E(Z Y 1lBc) −AB(Y 1lB) : Y ∈ Lp(F1)}.

One sees that A+
B(Z) = −∞, if E(|Z|1lBc) > 0, where Bc is the complement of B. Thus

A+
B(Z) = inf{E(Z Y 1lB) −AB(Y 1lB) : Y ∈ Lp(F1)}

= A+
B(Z1lB).

Let now (Bi), 1 ≤ i < ∞ be a pairwise disjoint sequence of sets in F1. Then

A+
∪iBi

(Z) = inf{E(Z Y 1l∪iBi
) −AB(Y 1l∪iBi

) : Y ∈ Lp(F1)}

= inf{
∑

i

E(Z Y 1lBi
) −

∑

i

ABi
(Y 1lBi

) : Y ∈ Lp(F1)}

=
∑

i

inf{E(Z Y 1lBi
) −ABi

(Y 1lBi
) : Y ∈ Lp(F1)} =

∑

i

A+
Bi

(Z).

Let Z = Z(F1) = {Z : A+
B(Z) > −∞ for all B with P (B) > 0} and let, for fixed Z ∈ Z,

µZ(B) = A+
B(Z). µZ is a σ-additive signed measure on F1 dominated by P. By the

Radon-Nikodym Theorem there is a F1-measurable function denoted by θF1
(Z) such that

A+
B(Z) = E(θF1

(Z)1lB) for all B ∈ F1. More precisely, θF1
is a mapping from Lq(F) to

Lq(F1) and its concavity follows from that of A+
B. The fact that for Z ∈ Z, Z ≥ 0 a.s.

and E(Z|F1) = 1 a.s. follows as in [27, Theorem 2.30]. 2

Theorem 2.5 (Existence) Let Z be a closed convex subset of Lq(F) where q ∈ (1, +∞]
is such that 1

p
+ 1

q
= 1. Let Z 7→ θF1

(Z) be a mapping from Lq(F) to Lq(F1). Then the
equations

E(AF1
(Y )1lB) = inf{E(Y Z 1lB) − E(θF1

(Z)1lB) : Z ≥ 0, E(Z|F1) = 1, Z ∈ Z} (B ∈ F1)
(5)

define an upper semicontinuous conditional acceptability mapping AF1
: Lp(F) → Lp(F1)

if the infima in (5) are finite for every Y ∈ Y and B ∈ F1.
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Proof. Let B ∈ F1. We show that the functional Y 7→ AB(Y ) := E(AF1
(Y )1lB) given by

(5) satisfies concavity (A2), monotonicity (A3), property (4) and upper semicontinuity on
Y . For each Y ∈ Y , we have according to (5)

AB(Y ) = E(AF1
(Y )1lB) ≤ E(Y Z 1lB) − E(θF1

(Z)1lB)

for every feasible Z ∈ Z such that Z ≥ 0 and E(Z|F1) = 1. If Y ≤ Ỹ and if (Yn) is a
sequence converging to Y in Y , we obtain

E(AF1
(Y )1lB) ≤ E(Ỹ Z 1lB) − E(θF1

(Z)1lB)

lim
n→∞

sup E(AF1
(Yn)1lB) ≤ E(Y Z 1lB) − E(θF1

(Z)1lB)

for every Z ∈ Z with Z ≥ 0. This implies

E(AF1
(Y )1lB) ≤ E(AF1

(Ỹ )1lB)

lim
n→∞

sup E(AF1
(Yn)1lB) ≤ E(AF1

(Y )1lB).

Hence, (A3) and upper semicontinuity are shown. Now, let Y, Ỹ ∈ Y , λ ∈ [0, 1]. Then we
have

λAB(Y ) + (1 − λ)AB(Ỹ ) ≤ λE(Y Z 1lB) + (1 − λ)λE(Ỹ Z 1lB) − E(θF1
(Z)1lB)

= E[(λY + (1 − λ)Ỹ )Z 1lB] − E(θF1
(Z)1lB)

for every feasible Z ∈ Z. This implies (A2). Finally, we obtain for Y (1) ∈ Y1 and any
feasible Z ∈ Z

E(AF1
(Y + Y (1))1lB) ≤ E((Y + Y (1))Z 1lB) − E(θF1

(Z)1lB)

= E(Y Z 1lB) + E(Y (1)E(Z|F1)1lB) − E(θF1
(Z)1lB)

= E(Y Z 1lB) − E(θF1
(Z)1lB) + E(Y (1)1lB)

and, hence, property (4) by taking the infimum with respect to Z. The assertion now
follows from Proposition 2.3. 2

Similar as for convex functions on linear normed spaces, (cone-) convex (or concave)
mappings enjoy continuity properties (see the survey [24]). In particular, the following
result holds for conditional acceptability mappings (see [24, Theorem 4]).

Proposition 2.6 (Continuity) A conditional acceptability mapping A : Y → Y1 is
continuous if it is locally bounded at some element of Y.

Example 2.7 (Conditional average value-at-risk)
For Y ∈ L1, AV@Rα(Y |F1) is given on L1(F) by the relation

E(AV@Rα(Y |F1)1lB) = inf

{

E(Y Z 1lB) : 0 ≤ Z ≤
1

α
, E(Z|F1) = 1

}

(B ∈ F1). (6)
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or, equivalently, by

AV@Rα(Y |F1) = inf

{

E(Y Z|F1) : 0 ≤ Z ≤
1

α
, E(Z|F1) = 1

}

.

Proposition 2.8 The conditional average value-at-risk AV@Rα(· |F1) is a.s. well de-
fined. It is a conditional acceptability mapping which is a continuous mapping from L1(F)
to L1(F1). There is a version of this mapping such that α 7→ AV@Rα(Y |F1) is monoton-
ically increasing a.s. for α ∈ (0, 1].

Proof. By Theorem 3.3, the conditional AV@R is a.s. well defined since the infima in
(6) are finite due to the estimate

|E(AV@Rα(Y |F1)1lB)| ≤
1

α
E(|Y |1lB) ≤

1

α
E(|Y |) (7)

for every B ∈ F1 and Y ∈ Y . The estimate (7) also implies that AV@Rα(0 |F1) = 0.
Since

|AV@Rα(Y |F1)|=AV@Rα(Y |F1)1lAV@Rα(Y |F1)≥0
+ (−AV@Rα(Y |F1))1lAV@Rα(Y |F1)<0

,

we obtain

E(|AV@Rα(Y |F1)|) ≤
2

α
E(|Y |)

and, thus, AV@Rα(· |F1) is locally bounded at 0. Proposition 2.6 implies its continuity.
Now, let α < β and let B = {ω|AV@Rα(Y |F1)(ω) > AV@Rβ(Y |F1)(ω)}. Suppose that
P (B) > 0. Then

0 < E([AV@Rα(Y |F1) − AV@Rβ(Y |F1)]1lB)

= inf{E(Y Z) : 0 ≤ Z ≤
1

α
1lB, E(Z|F1) = 1lB}

− inf{E(Y Z) : 0 ≤ Z ≤
1

β
1lB, E(Z|F1) = 1lB} ≤ 0,

which is a contradiction. By choosing a version for all rational α, which is monotonic in α
a.s. and extending it by monotonicity to all real α’s one may assume w.l.o.g. that almost
surely

α 7→ AV@Rα(Y |F1)

is monotonically increasing. 2

By considering the trivial σ-algebra F0 = (∅, Ω) one may specialize every conditional
acceptability mapping to an ordinary acceptability measure. Conversely, one may lift
version-independent acceptability functionals to conditional acceptability mappings. The
assumption that the acceptability measure is version-independent is crucial, since the
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conditional mappings are based on the conditional distributions. A ”lifting” method for
version-independent positively homogeneous acceptability functionals is as follows:

These functionals have a Kusuoka representation

A(Y ) = inf

{
∫ 1

0

AV@Rα(Y ) dM(α) : M ∈ M0

}

where M0 is a countable set of probabilities on [0,1]. Its conditional version is

A(Y |F1) = inf

{
∫ 1

0

AV@Rα(Y |F1) dM(α) : M ∈ M0

}

(8)

Notice that A(Y |F1) is F1 measurable, since M0 is countable and α 7→ AV@Rα(Y |F1)
can be chosen to be monotonic a.s. according to Proposition 2.8.

Next we present a collection of useful conditional acceptability functionals, which may
serve as the building blocks for multi-period functionals. A general reference to these
examples is [27, Section 2.5]. By specialization to the trivial σ-algebra F0, one gets some
”classical” risk and acceptability measures. Since properties (CA1)-(CA3) are well known
to be satisfied, we study only property (CA0) here.

Example 2.9 (Conditional acceptability functionals)
Let h be a convex, nonnegative function satisfying h(0) = 0 and let h∗(v) = sup{uv−h(u) :
u ∈ R} be its conjugate.

(a) A(Y |F1) = E(Y |F1) − E[h(Y − E(Y |F1))]|F1)
This functional has a dual form defined by

A(Y |F1) = inf{E(Y Z|F1) − inf{E[h∗(Z − a)|F1] : a ¢ F1} : E(Z|F1) = 1}.

Since for B ∈ F1

E[A(Y |F1)1lB] = inf{E(Y Z 1lB) − inf{E[h∗(Z − a)1lB] : a ¢ F1} : E(Z|F1) = 1}

one sees that (CA0) is fulfilled.

(b) A(Y |F1) = E(Y |F1) − inf{E[h(Y − a)|F1] : a ¢ F1}
This functional has a dual form defined by

A(Y |F1) = inf{E(Y Z|F1) + E(h∗(1 − Z)|F1) : E(Z|F1) = 1}.

Property (CA0) follows from

E[A(Y |F1)1lB] = E(Y 1lB) − inf{E[h(Y − a)1lB) : a ¢ F1}.
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(c) A(Y |F1) = E(Y |F1) − Mh(Y − E(Y |F1)|F1)
where Mh is the conditional generalized Minkowski gauge defined by

Mh(Y |F1) = inf{a ≥ 0 : E[h(
Y

a
)|F1] ≤ h(1) : a ¢ F1}.

The functional has a dual form defined by

A(Y |F1) = inf{E(Y Z|F1) : E(Z|F1) = 1, inf
a
{D∗

h∗(Z − a)|F1} ≤ 1, a ¢ F1},

where
−D∗

h∗(Z|F1) = inf{−E(Z V |F1) : E[h(V )|F1] ≤ h(1).

By

E[A(Y |F1)1lB] = inf{E(Y Z 1lB) : E(Z|F1) = 1, inf
a
{D∗

h∗(Z − a)|F1} ≤ 1, a ¢ F1},

one sees that (CA0) is fulfilled.

(d) Let H be a monotonic concave function (thus, a.e. differentiable) satisfying H(0) =
0, H(1) = 1. The pertaining conditional distortion functional is defined as

A(Y |F1) = −

∫ 0

∞

H[P{Y ≤ u|F1}] du −

∫ ∞

0

1 − H[P{Y ≤ u|F1}] du

It has a dual form defined by

A(Y |F1) = inf{E(Y Z|F1) : E(φ(Z)|F1) ≤

∫

φ(H ′(u)) du, φ convex , φ(0) = 0}

where H ′ = dH
du

. By

E(A(Y |F1)1lB) = inf{E(Y Z1lB) : E(φ(Z)|F1) ≤

∫

φ(H ′(u))du, φ convex , φ(0) = 0}

one sees that (CA0) is fulfilled. By specializing H to H(u) = min(u/α, 1), one sees
that the conditional AV@R defined in (6) is information monotone.

3 Information and multi-period risk measurement

Let Y = (Y1, . . . , YT ) be a (discounted) cash-flow process on some probability space
(Ω,F , P) and let F = (F0, . . . ,FT ) denote a filtration modeling the available information
over time, where F0 = {∅, Ω}, FT = F , Ft ⊆ Ft+1 ⊆ F , and Yt is Ft measurable for
every t = 1, . . . , T . Let Y ⊆ ×T

t=1L1(Ω,F , P) be a linear normed space containing RT of
cash-flow processes Y = (Y1, . . . , YT ), which are adapted to F.

11



Next we consider functionals that map the elements Y ∈ Y and filtrations F (such that
Y ¢ F) to the extended real line R. Furthermore, a nonempty set W = W(F) ⊆ Y is
considered that contains available financial instruments and (possibly) depends on the
filtration, and a functional π : W → R that determines the price of elements of W . The
latter general concept is suggested in [18].

Definition 3.1 A multi-period functional A with values A(Y ; F) is called multi-period
acceptability functional, if it is proper (i.e., for every filtration F it holds A(Y ; F) < +∞
for all Y ∈ Y and A(Y ) > −∞ for some Y ∈ Y) and satisfies the following properties

(MA1) Translation-equivariance with respect to (W , π). If Y ∈ Y
and W ∈ W, then

A(Y + W ; F) = A(Y ; F) + π(W ). (9)

(MA2) Concavity. The mapping Y 7→ A(Y ; F) is concave on Y for every
filtration F.

(MA3) Monotonicity. If Y, Ỹ ∈ Y and Yt ≤ Ỹt holds a.s. for t =
1, . . . , T , then

A(Y ; F) ≤ A(Ỹ ; F).

The functionals on Y given by

ρ(Y ; F) := −A(Y ; F) and D(Y ; F) :=
T

∑

t=1

E(Yt) −A(Y ; F)

are called multi-period risk capital and multi-period deviation risk functionals. Instead
of A(Y ; F) we also use the notations A(Y1, . . . , YT ;F0, . . . ,FT ) or simply A(Y ) if the
information aspect is not in the foreground at the moment.

As in the previous section, we may define the additional property of information mono-
tonicity.

(MA0) Information monotonicity. If Y ∈ Y and Ft ⊆ F ′
t, for t =

0, . . . , T , then

A(Y ;F0, . . . ,FT ) ≤ A(Y ;F ′
0, . . . ,F

′
T ). (10)

Condition (MA0) means that additional information (in terms of filtrations) enlarges the
acceptability and reduces the risk, respectively. While the conditions (MA2) and (MA3)
are straightforward extensions of the single-period axioms, and, hence, are generally ac-
cepted, the equivariance-condition (MA1) appears relatively general. Later we focus on
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linear subspaces W of Y and on linear continuous price functionals π in which case (MA1)
implies that A(· ; F) is affine on W . Often the functional A(· ; F) is positively homogeneous
on Y for all F (i.e., it holds A(λY ; F) = λA(Y ; F) for all λ ≥ 0 and Y ∈ Y).
Examples of W are ×T

t=1Lp(Ω,Ft−1, P), for some p ∈ [1, +∞), RT and R × {0}T−1. A

linear continuous functional π has the general form π(W ) =
∑T

t=1 E(Z∗
t Wt) with some Z∗

belonging to the topological dual of W . In many cases we use the standard choice of π,
namely, π(W ) =

∑T
t=1 E(Wt).

Since we are interested in unbounded discrete-time processes, we consider the linear
normed space Y = ×T

t=1Lp(Ω,F , P) for some p ∈ [1, +∞) and its topological dual
Z = ×T

t=1Lq(Ω,F , P) with 1
p

+ 1
q

= 1. The corresponding dual pairing (on Z × Y) is

〈Z, Y 〉 =
∑T

t=1 E(ZtYt).

If A = A(· ; F) is a multi-period acceptability functional with filtration F and (nonempty)
domain dom(A) := {Y ∈ Y : A(Y ) > −∞}, its conjugate A+ : Z → R of obtained from
the Legendre-Fenchel transform is given by

A+(Z; F) := inf
Y ∈Y

{〈Z, Y 〉 − A(Y ; F)} . (11)

Note that A+ = A+(· ; F) is again proper and concave. The Fenchel-Moreau theorem
implies

A(Y ; F) = inf
Z∈Z

{

〈Z, Y 〉 − A+(Z; F)
}

(12)

if A(· ; F) is upper semicontinuous. If, in addition, A(· ; F) is positively homogeneous,
then A+ = JS , where S = S(F) is a closed convex subset of Z possibly depending on F

and J is the concave indicator function

JS(Z) =

{

0 if Z ∈ S
−∞ otherwise.

(13)

i.e. it holds S = S(F) := domA+(· ; F) and

A(Y ; F) = inf
Z∈S(F)

〈Z, Y 〉.

Remark 3.2

Notice that A(Y ; F) is information monotone (MA0), if and only if its conjugate A+(Y ; F)
is information antitone, i.e. fulfills (10) with reversed inequality sign. This can be seen
from the relations (11) and (12).

Theorem 3.3 Let A be an upper semicontinuous multi-period acceptability functional
with linear W = W(F) and π. Then the representation

A(Y ; F) = inf
Z∈Z

{〈Z, Y 〉 − θ(Z; F) |π(·) = 〈Z, · 〉 on W(F), Zt ≥ 0, t = 1, . . . , T} (14)
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is valid for θ(· ; F) = A+(· ; F) and every Y ∈ Y. Moreover, A satisfies (MA0) if W(F)
increases with F.
Conversely, if A can be represented in the form (14) for some proper and information
antitone functional θ(· ; F) : Z → R and for some subspace W(F) increasing with F, then
A is an upper semicontinuous multi-period acceptability functional satisfying (MA0).

Proof. We show that the properties (MA1), (MA2) and (MA3) imply the representation
(14) of A by verifying that for any Z violating some of the constraints in (14) we have
A+(Z) = −∞ in (12).
If for Z ∈ Z the constraint Zt ≥ 0 is violated for some t ∈ {1, . . . , T}, there exists Ȳ such
that Ȳτ ≥ 0 for τ = 1, . . . , T and 〈Z, Ȳ 〉 =

∑T
τ=1 E(ȲτZτ ) < 0. Consider the elements

Y s := Y + sȲ for s ≥ 0. Then Yτ ≤ Y s
τ for τ = 1, . . . , T and, thus, A(Y s) ≥ A(Y ) for

each s ≥ 0 due to (MA3). Hence, we obtain

A+(Z) ≤ inf
s≥0

{〈Z, Y s〉 − A(Y s)} ≤ inf
s≥0

{〈Z, Y 〉 − A(Y ) + s〈Z, Ȳ 〉} = −∞.

Now, let the first constraint in (14) be violated for some Z ∈ Z, i.e., there exists W̄ ∈ W
such that π(W̄ ) > 〈Z, W̄ 〉 holds. Then we obtain

A+(Z) ≤ inf
s≥0

{〈Z, sW̄ 〉 − A(sW̄ )} = inf
s≥0

{s(〈Z, W̄ 〉 − π(W̄ ))} = −∞.

Conversely, suppose that the representation (14) holds for the functional A : Y → R,
where θ(· ; F) : Z → R is some proper functional. Hence, A is given as the infimum of
continuous affine functions and, thus, is proper, concave and upper semicontinuous. It
remains to verify conditions (MA0), (MA1) and (MA3).
Let Y, Ỹ ∈ Y with Yt ≤ Ỹt, t = 1, . . . , T , and Z ∈ Z be feasible (i.e., in particular, Zt ≥ 0
for every t = 1, . . . , T ). Then we have

〈Z, Ỹ 〉 − 〈Z, Y 〉 =
T

∑

t=1

E(Zt(Ỹt − Yt)) ≥ 0

and hence (14) implies A(Y ) ≤ A(Ỹ ) and, thus, condition (MA3).
Now, let Y ∈ Y , W ∈ W and ε > 0. We define

Iε :=

{

ε + A(Y + W ) , A(Y + W ) > −∞,
−1

ε
, otherwise.

Then there exists Z̄ such that Z̄t ≥ 0, π(·) = 〈Z̄, ·〉 on W and Iε ≥ 〈Z̄, Y + W 〉 −A+(Z̄),
thus,

Iε ≥ 〈Z̄, Y 〉 + 〈Z̄,W 〉 − θ(Z̄; F) = 〈Z̄, Y 〉 − θ(Z̄; F) + π(W ) ≥ π(W ) + A(Y ).

Since ε was arbitrary, we obtain A(Y + W ) ≥ π(W ) + A(Y ). By changing the role
of Y and Y + W the converse inequality can be shown and, hence, condition (MA1) is
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satisfied. Condition (MA0) follows immediately from the properties of θ(· ; F) and W(F)
with respect to F and the proof is complete. 2

Note that any functional A(· ; F) from Y to R satisfying (MA2) and (MA3) is continuous
on the interior of its domain domA = {Y ∈ Y |A(Y ) > −∞} [37, Proposition 3.1].
Hence, any multi-period acceptability functional being finite on Y is continuous on Y
and, thus, admits the dual representation (14).

Notice that in case π(W ) =
∑T

t=1 E(Wt) the condition π(·) = 〈Z, ·〉 on W = W(F) is
equivalent to

• E(Zt|Ft−τ ) = 1 for every 1 ≤ t ≤ T if W = ×T
t=1Lp(Ω,Ft−τ , P)

• E(Zt) = 1 for every t = 1, . . . , τ if W = Rτ × {0}T−τ

for some τ ∈ {1, . . . , T} and by using the convention F−t = F0 = {∅, Ω} for every
t ∈ {1, . . . , T}.

4 Construction of multi-period risk functionals

The aim of this section is to present several principles for constructing multi-period ac-
ceptability functionals including a number of examples.

4.1 Scalarized and separable constructions

The first approach consists in constructing multi-period acceptability functionals by uti-
lizing single-period functionals and conditional acceptability mappings, respectively.

(a) Separable multi-period acceptability functionals:

A(Y ; F) :=
T

∑

t=1

At(Yt),

where At : Yt → R is a single-period acceptability functional for every t = 1, . . . , T .
Then A is a multi-period acceptability functional with W = RT and the standard
choice of π. If each At is version independent, A does only depend on the marginal
distributions P Y −1

t . Note that A satisfies (MA0) in a trivial way, since it does not
depend explicitly on F.
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(b) Scalarization:
A(Y ; F) := A0(s(Y ))

where A0 : Lp(F) → R is a single-period acceptability functional and s : Y →
Lp(Ω,F , P) a mapping satisfying concavity and monotonicity (see also [11]). Such
functionals A have the properties (MA0), (MA2) and (MA3), but do not explic-
itly depend on F either. Furthermore, the subspace W in (MA1) depends on the
properties of s. For example, we have

(b1) A(Y ) = AV@Rα(
∑T

t=1 Yt) with s(Y ) =
∑T

t=1 Yt and W = RT .

(b2) A(Y ) = AV@Rα(mint=1,...,T

∑t
τ=1 Yτ ) with s(Y ) = mint=1,...,T

∑t
τ=1 Yτ

and W = R × {0}T−1. This multi-period acceptability functional is
suggested in [4].

(c) Separable expected conditional (SEC) multi-period acceptability functionals:

A(Y ; F) :=
T

∑

t=1

E(At(Yt|Ft−1)) (15)

where At(· |Ft−1), t = 1, . . . , T , are conditional acceptability mappings (see Section
2). Such multi-period functionals A satisfy (MA0)–(MA3).

Remark 4.1

If At(· |Ft−1) is given by

E[At(Y |Ft−1)1lB] = inf{E(Y Z 1lB) − E[A+
t (Z|Ft−1)1lB] : Z ≥ 0, E(Z|Ft−1) = 1,

Z ∈ Zt(Ft−1)},

then the SEC functional A(Y ; F) :=
∑T

t=1 E(At(Yt|Ft−1)) has the dual representation

A(Y ; F) = inf
{

T
∑

t=1

E(Yt Zt) −
T

∑

t=1

E(A+
t (Zt|Ft−1) : Zt ≥ 0, E(Zt|Ft−1) = 1,

Zt ∈ Zt(Ft−1), t = 1, . . . , T
}

Notice that this implies that the conjugate of A(·; F) is also SEC. SEC functionals are
information-monotone, if the functionals At appearing in (15) exhibit the information-
monotonicity property (CA0).

Example 4.2 (Multi-period average value-at-risk)
An example for a SEC functional is the multi-period average value-at-risk [28]

mAV@Rα(Y ; F) :=
T

∑

t=1

E(AV@Rα(Yt|Ft−1))

= inf

{

T
∑

t=1

E(YtZt) : 0 ≤ Zt ≤
1

α
, E(Zt|Ft−1) = 1, t = 1, . . . , T

}

.(16)
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An alternate representation of mAV@Rα is

mAV@Rα(Y ; F)

= sup

{

E
(

T
∑

t=1

[Yt − xt−1]− +
1 − α

α
[Yt − xt−1]+

)

: xt ¢ Ft, t = 0, . . . , T − 1

}

. (17)

Here [ ]+ resp. [ ]− denote the positive and negative part respectively. The nonanticipativity
constraint xt ¢ Ft reveals again that mAV@Rα is information monotone.

4.2 Composition of conditional acceptability mappings

Let conditional acceptability mappings At := At(· |Ft), t = 0, . . . , T − 1, from YT to Yt

be given. Following [38, Section 7] we introduce a multi-period functional A on Y by a
nested composition and a family (A(t))t=1,...,T of single-period functionals A(t) : YT → R

by (direct) compositions of the At−1, t = 1, . . . , T , namely,

A(Y ; F) := A0(Y1 + · · · + AT−2(YT−1 + AT−1(YT )) · · · ) (18)

A(t)(YT ) := A0 ◦ A1 ◦ · · · ◦ At−1(YT )

for every Y ∈ Y and YT ∈ YT . As argued in [38, Section 7], the functional A satisfies
(MA1) with W = RT , (MA2) and (MA3), and every A(t) is a (single-period) acceptability
functional. Moreover, it holds

A(Y ; F) = A(T )
(

∑T

t=1
Yt

)

= A0 ◦ A1 ◦ · · · ◦ AT−1

(

∑T

t=1
Yt

)

. (19)

The functionals A and A(t), t = 1, . . . , T , are positively homogeneous if all At are posi-
tively homogeneous.

Example 4.3 (Nested average value-at-risk)
We consider the conditional average value-at-risk (of level α ∈ (0, 1]) as conditional

acceptability mapping
At := AV@Rα(· |Ft)

for every t = 0, . . . , T − 1. Then the multi-period functional

nAV@Rα(Y ; F) = AV@Rα(· |F0) ◦ · · · ◦ AV@Rα(· |FT−1)
(

∑T

t=1
Yt

)

satisfies (MA1) with W = RT , (MA2), (MA3) and is positively homogeneous. It has
been introduced in [6] and will be called nested average value-at-risk because of its nested
composition structure.
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Proposition 4.4 Suppose that, for every t = 1, . . . , T , the conditional acceptability map-
ping AFt

maps Lp(F) to Lp(Ft) and is given by the representation

E[AFt
(Y )1lB] = inf{E(Y Z 1lB) − E[θFt

(Z)1lB] : Z ≥ 0, E(Z|Ft) = 1, Z ∈ Zt(Ft)}

for every pair (Y,B) ∈ Y ×Ft according to Theorem 2.4, where θFt
is a concave mapping

from Lq(F) to Lq(Ft) with 1
p

+ 1
q

= 1. Suppose further that there is a constant K such

that for all Z ∈ Zt(Ft)
E(Zq|Ft−1) ≤ Kq a.s. (20)

(if p = 1, this has to be read that Z ≤ K a.s.) and

E(|AFt
(Z)||Ft−1) ≤ K a.s. (21)

Then the nested acceptability functional A(Y ; F) = A(T )(Y1 + · · · + YT ) has the represen-
tation

A(Y ; F) = inf
{

E

[

T
∑

t=1

Yt MT

]

−
T

∑

t=1

E[θFt
(Zt)Mt−1] : E(Zt|Ft) = 1, Zt ≥ 0, Zt ∈ Zt(Ft)

}

(22)
where Mt =

∏t
s=1 Zs, M0 = 1 and (Mt) is a nonnegative martingale w.r.t. the filtration

F with E(Mt) = 1 and E(M q
t ) < ∞.

Proof. The proof is based on induction. It suffices to prove it for T = 2. Consider the
two conditional mappings AF2

and AF1
defined by

E[AF1
(Y )1lB1

] = inf{E(Y Z1 1lB1
) − E[θF1

(Z1)1lB1
] : Z1 ≥ 0, E(Z1|F1) = 1, Z1 ∈ Z1(F1)}

for every B1 ∈ F1 and

E[AF2
(Y )1lB2

] = inf{E(Y Z2 1lB2
) − E[θF2

(Z2)1lB2
] : Z2 ≥ 0, E(Z2|F2) = 1, Z2 ∈ Z2(F2)}

for every B2 ∈ F2 according to Section 2, where θF1
and θF2

are concave mappings. Our
first goal is to show that for X ∈ Lq(F2) it holds that

E[AF2
(Y )X] = inf{E(Y Z2 X) − E[θF2

(Z2)X] : Z2 ≥ 0, E(Z2|F2) = 1, Z2 ∈ Z2(F2)}. (23)

Assume first that X is of the form X =
∑I

i=1 αi1lCi
for pairwise disjoint Ci’s, Ci ∈ F2.

Then the minimization problem in (23) is separable and it follows that

E[AF2
(Y )X] =

I
∑

i=1

αiE[AF2
(Y )1lCi

] =

=
I

∑

i=1

αi inf
{

E(Y Z2 1lCi
) − E[θF2

(Z2)1lCi
] : Z2 ≥ 0, E(Z2|F2) = 1, Z2 ∈ Z2(F2)

}

= inf
{

I
∑

i=1

αiE(Y Z2 1lCi
) −

∑

i

αiE[θF2
(Z2)1lCi

] : Z2 ≥ 0, E(Z2|F2) = 1, Z2 ∈ Z2(F2)
}

= inf{E(Y Z2 X) − E[θF2
(Z2)X] : Z2 ≥ 0, E(Z2|F2) = 1, Z2 ∈ Z2(F2)}. (24)
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The objective function E(Y Z2 X) − E[θF2
(Z2)X] in (24) is Lipschitz in X, since by (20)

and (21)

|E(Y Z2 X) − E[θF2
(Z2)X] − E(Y Z2 X ′) − E[θF2

(Z2)X
′]|

≤ ‖Y ‖pE
(1/q[|X − X ′|qE(|Z2|

q|F1] + E[|X − X ′||E(AF2
||F1)]

≤ ‖Y ‖pK‖X − X ′‖q + K‖X − X ′‖q.

Since the functions of the form
∑I

i=1 αi1lCi
are dense in Lq(F2), the validity of (24) can

be extended to X ∈ Lq(F2), i.e. (23) is proved.

Now we compose the two functionals to get for B1 ∈ F1

E[AF1
(AF2

(Y ))1lB1
]

= inf{E(AF2
(Y ) Z1 1lB1

) − E[θF1
(Z1)1lB1

] : Z1 ≥ 0, E(Z1|F1) = 1, Z1 ∈ Z1(F1)}

= inf{inf{E(Y Z2 Z1 1lB1
) − E[θF2

(Z2)Z1 1lB1
] : Z2 ≥ 0, E(Z2|F2) = 1, Z2 ∈ Z2(F2)}

−E[θF1
(Z1)1lB1

] : Z1 ≥ 0, E(Z1|F1) = 1, Z1 ∈ Z1(F1)}

= inf
{

E(Y Z2 Z1 1lB1
) −

2
∑

t=1

E[θFt
(Zt)

t−1
∏

s=1

Zs 1lB1
] : Zt ≥ 0, E(Zt|Ft) = 1,

Zt ∈ Zt(Ft), t = 1, 2
}

Here we have used (23) for X = Z11lB1
. By setting B1 = Ω and by induction, one gets

the assertion of the proposition. Notice that the outermost functional in the composed
sequence is always a nonconditional one. 2

Remark 4.5

The martingale (Mt) can be seen as a sequence of probability densities Mt = dQt

dP
and the

expectations E(· Mt) are expectations EQt
(·) under Qt.

Example 4.6 (Nested average value-at-risk (continued))
The nested average value-at-risk nAV@R has the following dual representation:

nAV@Rα(Y ; F) = inf
{

E

[

T
∑

t=1

YtMT

]

: 0 ≤ Mt ≤
1

α
Mt−1, E(Mt|Ft−1) = Mt−1,

t = 1, . . . , T,M0 = 1
}

.

Hence, nAV@R is given by a linear stochastic optimization problem containing functional
constraints and, thus does not belong to the class of polyhedral functionals discussed below.
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Figure 1: The final process Y and the filtration F = (F0 ⊆ F1 ⊆ F2)

Example 4.7 (Nested entropic acceptability functional)
The nested entropic acceptability functional is

A0 ◦ A1 ◦ · · · ◦ AT−1(Y )

with At(Y ) = − 1
γ

log E[exp(−γY )|Ft] for Y ∈ Y. The entropic risk functional was in-

troduced in [12] and further studied in [13, 9]. The representation of At according to
Theorem 2.4 is

At(Y |F1) = inf

{

E(Y Z|Ft) +
1

γ
E(Z log Z|Ft) : E(Z|Ft) = 1, Z ≥ 0

}

,

where 0 log 0 is defined as 0. By Proposition 4.4, the nested entropic acceptability func-
tional has the representation

A(Y ; F) = inf
{

E

[

T
∑

t=1

Yt

T
∏

s=1

Zs

]

+
1

γ

T
∑

t=1

E[E(Zt log Zt|Ft)
t−1
∏

s=1

Zs] : E(Zt|Ft) = 1, Zt ≥ 0
}

= inf
{

E

[

T
∑

t=1

Yt

T
∏

s=1

Zs

]

+
1

γ
E[

T
∏

s=1

Zs(log
T

∏

s=1

Zs)] : E(Zt|Ft) = 1, Zt ≥ 0
}

= inf
{

E

[

T
∑

t=1

YtM
]

+
1

γ
E[M log M ] : E(M) = 1,M ≥ 0

}

Here we have set M =
∏T

s=1 Zs. Notice that for any filtration F, the density process
Zt can be regained by Zt = E(M |Ft)/E(M |Ft−1). Since the representation can be writ-
ten in a form, which does not depend on the filtration, the nested entropic functional is
information-monotone in a trivial way. This fact can even simpler be seen from the primal
form, since it is readily seen from the definition that

A0 ◦ A1 ◦ · · · ◦ AT−1

(

T
∑

t=1

Yt

)

= A0

(

T
∑

t=1

Yt

)

.
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Figure 2: The same final process Y and the finer filtration F′ = (F0 ⊆ F ′
1 ⊆ F2)

Example 4.8 (Nested average value-at-risk (continued))
It was shown in [6] that the nested average value-at-risk is the natural time-consistent

extension of the single-period AV@R. However, it turns out that this functional is not
information-monotone. Consider Figure 1 and Figure 2. Both models describe the same
final process Y . However, the filtration F′ in Fig. 2 is finer than the filtration F in Fig. 1.
Calculating the nested AV@R for α = 0.1, we get AV@R0.1(AV@R0.1(Y |F1)) = 0.9, while
AV@R0.1(AV@R0.1(Y |F ′

1)) = 0. Thus the process in Fig. 1 seems to be more acceptable,
although the information is less.

Notice that also the composed functional Y 7→ AV@R0.1(E(Y |F1)) is not information
monotone either. One has AV@R0.1(E(Y |F1)) = 2.88, while AV@R0.1(E(Y |F ′

1)) = 1.8.

In contrast, the composed functional Y 7→ E[AV@R0.1(Y |F1)] is information monotone,
since the conditional AV@R fulfills (CA0), which was shown earlier.

Let us now study in detail information monotonicity of compositions. To this end, consider
an unconditional acceptability functional A1 and a conditional one A2(·|F1) and form the
composition

Ā(Y ;F1) = A1(A2(Y |F1)).

Let A+
1 be the conjugate of A1 and θF1

= A+
2 (· |F1) be chosen as in the representation

according to Theorem 2.4. According to Proposition 4.4 the composed functional has the
representation

Ā(Y ;F1) = inf{E(Y Z) − CF1
(Z)},

where
CF1

(Z) = sup{A+
1 (Z1) + E[A+

2 (Z2|F1)Z1] : Z1 · Z2 = Z,Z1 ¢ F1}. (25)

Notice that Ā(Y ;F1) is information monotone if and only if CF1
(Z) is information anti-

tone. If the supremum in (25) is attained for Z1 = 1, then the information monotonicity
of A2 implies the information monotonicity of the composition Ā.
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Example 4.9

If A1 = E, then A+
1 = J{Z=1}, where J was introduced in (13). Therefore, trivially, the

supremum in (25) is attained for Z1 = 1 and the information monotonicity of A2 implies
that of E[A2(Y |F1)].

Example 4.10

Let A1 and A2 be entropic functionals with the same γ. By

A+
1 (Z1) = −

1

γ
E[Z1 log Z1] + J{E(Z1)=1,Z1≥0}

A+
1 (Z2|F1) = −

1

γ
E[Z2 log Z2|F1] + J{E(Z1|F1)=1,Z1>0}

one readily sees that the supremum in (25) is reached for Z1 = 1 and

CF1
(Z) = −

1

γ
E(Z log Z) + J{E(Z)=1}.

Since CF1
(Z) is independent of F1 and therefore information antitone in a trivial way, we

see again that the nested entropic functional is information monotone, which was already
seen in Example 4.7.

The next proposition shows that these examples are in a way the only ones one can think
of.

Proposition 4.11 Let w.l.o.g. A+
1 (1) = 0. Suppose that there is a Z in the supergradient

set of the composition Ā (i.e. there is some Y such that Ā(Y ) = E(Y · Z)− CF1
(Z)), for

which CF1
(Z) > E[A+

2 (Z|F1)]. Then the composition Ā is not information monotone.

Proof. For the trivial σ-algebra F0 we have that CF0
(Z) = E[A+

2 (Z|F1)]. Therefore

Ā(Y ;F1) = E(Y · Z) − CF1
(Z) < E(Y · Z) − CF0

(Z) = Ā(Y ;F0).

This demonstrates that the composition Ā cannot be information monotone. 2

4.3 Multi-period polyhedral risk functionals

As mentioned in Section 1, the basic motivation of polyhedral risk functionals consists
in maintaining linearity structures even though they are nonlinear functionals. Having
this motivation in mind and recalling the representation of AV@R, it is a natural idea
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to introduce acceptability functionals as optimal values of certain linear stochastic opti-
mization problems. Extending the concept in [10] a functional A is called multi-period
polyhedral if it is given by

A(Y ; F) = sup







E

[

T
∑

t=0

〈ct, vt〉

]

∣

∣

∣

∣

∣

∣

vt ∈ Lp(F ; Rkt), vt ∈ Vt, vt = E(vt|Ft),
t

∑

τ=0

Bt,τvt−τ = rt(Yt), t = 0, ..., T







(26)

for any income cash-flow process Y = (Y1, . . . , YT ) in ×T
t=1Lp(Ω,F , P) (p ≥ 1) and filtra-

tion F = (F0, . . . ,FT ). The definition includes fixed polyhedral cones Vt in some Euclidean
spaces Rkt (e.g., I1 × . . . × Ikt

with Ik belonging to {R, [0, +∞), (−∞, 0], {0}} for every
k = 1, . . . , kt) with scalar product 〈·, ·〉, fixed matrices Bt,τ , τ = 0, . . . , t, and vectors
ct ∈ Rkt , and affine mappings rt from R to Rdt , t = 0, . . . , T , with constant r0. Note that
functionals A given by (26) always satisfy information monotonicity (MA0) and concavity
(MA2). The parameters may be chosen such that A also satisfies monotonicity (MA3)
and translation-equivariance (MA1) with respect to some pair (W , π).

Note that multi-period polyhedral functionals are flexible tools. In particular, the repre-
sentation (26) of the functional

Y 7→ γA(Y ; F) +
T

∑

t=1

µtE [Yt]

with a multi-period polyhedral functional A and real numbers γ and µt, t = 1, . . . , T ,
can be fully reduced to the representation of A by modifying only the parameters ct

(t = 0, . . . , T ) of A. Next we state a continuity and dual representation result that
extends [27, Theorem 3.38] and may be proved similarly.

Proposition 4.12 Let A be a multi-period polyhedral functional and assume (i) Bt,0Vt =
Rdt, t = 0, . . . , T , and (ii) there exists ū ∈ ×T

t=0R
dt such that

ct −
T

∑

τ=t

B⊤
τ,τ−tūτ ∈ V ∗

t (t = 0, . . . , T ),

where the sets V ∗
t are the polar cones to Vt, i.e., V ∗

t = {v∗
t ∈ Rkt : 〈v∗

t , vt〉 ≤ 0,∀vt ∈ Vt}.
Then A is finite, concave and continuous on ×T

t=1Lp(Ft) with p ∈ [1, +∞) and admits the
representation

A(Y ; F) = inf

{

E

[

T
∑

t=0

((R⊤
t zt) Yt + r̂⊤t zt)

]

∣

∣

∣

∣

zt ∈ Lq(F ; Rdt), t = 0, . . . , T

ct −
∑T

τ=t B
⊤
τ,τ−tE(zτ |Ft) ∈ V ∗

t

}

, (27)

where q ∈ (1,∞] is such that 1
p

+ 1
q

= 1 and rt has the representation rt(Y ) = RtY + r̂t

with Rt, r̂t ∈ Rdt, t = 0, . . . , T , R0 = 0.
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Considering R⊤
t zt as dual variable Zt ∈ Lq(F), t = 1, . . . , T , the representation (27)

may be compared with the general dual representation (14) to derive conditions on the
parameters of (26) such that conditions (MA1) and (MA3) are satisfied and, hence, A
represents a multi-period acceptability functional. We refer to Example 4.13 for special
choices of the parameters (see also [27, Section 3.3.5] for examples with Rt = dt = 1,
r̂t = 0).

The major advantage of multi-period polyhedral acceptability functionals A consists in
their inherent linearity structure. To see this let {ξt}

T
t=1 be a stochastic input process

entering the coefficients of a linear (multi-stage) stochastic optimization model with de-
cisions xt (at time t) measurable with respect to the σ-field Ft generated by (ξ0, . . . , ξt).
If the stochastic revenue at time t is given by Yt = 〈bt(ξt), xt〉, a minimum risk decision is
determined by maximizing A(Y0, Y1, . . . , YT ; F) subject to the constraints of the original
optimization model. Taking into account the structure (26) of A, the maximization prob-
lem of A(Y1, . . . , YT ; F) may be reformulated as a linear stochastic optimization model
with respect to the variable (v, x) where v stems from (26).
Another advantage of multi-period polyhedral functionals consists in the possibility of
using convex analysis methods for deriving continuity properties, directional derivatives
and superdifferentials.

Example 4.13 (a) Multi-period average value-at-risk mAV@R: Comparing the defini-
tion (17) with the definition of polyhedral functionals, one sees that the mAV@R
is of the form (26) by setting kt = 3, dt = 1, r̂t = 0, Vt = R × R2

+, t = 0, . . . , T ,
c0 = (1, 0, 0), ct = (1, 0,− 1

α
), t = 1, . . . , T − 1, cT = (0, 0,− 1

α
), Bt,0 = (0, 1,−1),

Bt,1 = (1, 0, 0), t = 0, . . . , T , Rt = 1, t = 1, . . . , T .

(b) We consider the multi-period acceptability functional A on Y = ×T
t=1L1(F) given by

(see Section 4.1)

A(Y ; F) := AV@Rα

(

min
t=1,...,T

Yt

)

= max
{

a −
1

α
E

([

min
t=1,...,T

Yt − a
]−)

: a ∈ R

}

= max
{

a −
1

α
E

(

max
t=1...,T

{0, a − Yt}
)

: a ∈ R

}

= max
{

a −
1

α
E (vT ) : vt = E(vt|Ft), a − Yt ≤ vt, vt−1 ≤ vt,

t = 1, . . . , T, v0 ∈ R+, a ∈ R

}

for any α ∈ (0, 1]. Hence, A is polyhedral.

Some computational experience for financial and electricity portfolio management models
involving the multi-period polyhedral functionals in Example 4.13 is reported in [27,
Chapters 5 and 6] and [11].
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