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Abstract We consider linear multistage stochastic integer programs and study their func-
tional and dynamic programming formulations as well as conditions for optimality and sta-
bility of solutions. Furthermore, we study the application of the Rockafellar-Wets dualiza-
tion approach as well as the structure and algorithmic potential of corresponding dual prob-
lems. For discrete underlying probability distributions we discuss possible large scale mixed-
integer linear programming formulations and three dual decomposition approaches, namely,
scenario, component and nodal decomposition.

1 INTRODUCTION

Stochastic programming deals with the optimization of decision making under un-
certainty over time. Typical objects of study are random optimization problems
where outcomes of random data are unveiled over time, and the decisions to be opti-
mized must not anticipate future outcomes (non-anticipativity). The latter provides
a tight link to real-time optimization seen as the need for optimal “here-and-now”
decision in an incomplete (or uncertain) data environment. Provided that probabilis-
tic information on the uncertain data is available, operational models suitable for
real-time optimization often may be formulated as multi-stage stochastic programs.
Basic references for theory, algorithmics, and application of stochastic program-
ming are the textbooks [7, 24, 34]. The edited volume [50] provides insight into
recent research in the field.

Indispensability of integer requirements is a basic modeling experience in prac-
tical optimization. Like in other branches of mathematical optimization this has con-
siderable consequences on structural properties and algorithm design in stochastic
programming, too. The models best understood so far are (purely) linear stochastic
programs. This is mainly due to the fact that the optimal value of a linear minimiza-
tion problem is a convex function of the right-hand side and a concave function of
the objective function vector. This enables application of the machinery of convex
analysis in various contexts, such as duality, stability, and subgradient minimization.
For an impression on these developments we refer to [12, 14, 36,49], with accent on
theory, and to [5,42], with accent on computation.

With integer requirements, the above convexity/concavity observation is not
valid anymore, and the mentioned functions become discontinuous. Thus, compar-
atively little is known on theory and algorithms for mixed-integer linear stochastic
programs. A recent survey is provided in [26]. Impressions on developments in the-
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ory can be obtained from [2,43,46] and on algorithm design from [9,11, 19,27, 30,
33,47], see also the Ph.D. thesises [8,32,48].

The present paper aims at a short introduction into some essential theoretical
and algorithmic issues in multi-stage stochastic integer programming. Accent is
placed on introducing approaches. Proofs are omitted, with references to the original
sources instead. The main topics will be modeling, approximation, and algorithmics.

2  MULTISTAGE STOCHASTIC INTEGER PROGRAMS

2.1 Modeling

‘We consider a finite horizon sequential decision process under uncertainty, in which
a decision made at stage t is based only on information available at t (1 < t <
T). We assume that the information is given by a discrete time stochastic process
{&+}{_, defined on some probability space (Q,F,P) and with &; taking values
in RSt The information available at stage t consists of the random vector &t :=
(&1,...,&t), and the stochastic decision x at stage t varying in R™t is assumed to
depend only on &*. The latter property is called nonanticipativity and is equivalent
to the measurability of x¢ with respect to the o-algebra Fy C F which is generated
by &t. Clearly, we have Fy C Fiyq fort = 1,...,T — 1 and, with no loss of
generality, we may assume that 77 = {, Q}, i.e., &; and x; are deterministic, and
that F1 = F.

More precisely, we consider a decision model where the objective is given by
expected linear costs and the constraints consist of three groups: the measurability
constraints on X¢, a linear constraint describing the relation between decisions at
different stages, and constraints characterizing feasibility of the t-th stage decision
x¢. The latter constraints consist of a linear inequality constraint and of the general
constraint x¢ € X where the (fixed) set Xy has the property that its convex hull
conv(Xy) is polyhedral, allowing for mixed-integer decisions in all stages. Further-
more, the data &; at stage t may enter all corresponding cost coefficients, matrices
and right-hand sides. This leads to the following stochastic decision model:

T

min{E[Z ct (&1)xt] @ x¢ is measurable with respect to F, 1)
t=1

Xt extth(at)xt Z dt(&t)»P—a~s'»t=])"'aT) (2)

t
3 Awclfdxr 2 gelE), P—as,t=2,...,T} @)

T=1

Throughout, the following is imposed: The sets X; are nonempty and closed. The
matrices A< (-), B¢(-) as well as the coefficients c¢(-) and the right-hand sides d¢(-),
g¢(-) are affine linear functions of the corresponding component of &, for each T =
1,...,t,t = 1,...,T. In order to have the model (1)—(3) well defined, we need
that the scalar products c¢(&¢)x: are integrable. The latter property is implied by
the integrability of ||&¢|||x¢|| and by the conditions & € Lq, (Q, F¢, P;R®t) and
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x¢ € Ly, (Q,Fi, P;R™) where gz, 1t € [1,00] with J- + ;- = 1. Since it is
desirable to impose only weak conditions on the data process & and since we assume
later on that the set X¢ is bounded, we may restrict our attention to decisions xy €

0 (Q, Fi, P; R™t ) and to the first order moment condition &y € L1(Q, Fy, P;RSt)
on the data at stage t for each t = 1,...,T. Then the nonanticipativity constraint

(1) may be expressed equivalently as
XtELoo(Q,]:,P;Rmt) and Xt=E[XtI.7:t],t=],...,T, (4)

by using the conditional expectation E[-|F;] with respect to the o-algebra F;. Con-
dition (4) describes a linear subspace Ny q of the space X]_;Lo(Q,F,P;R™).
This combination of functional and (P-a.s.) pointwise constraints in our model, i.e.,
the functional condition x € ANy, and the P-a.s. constraints (2) and (3), forms
the theoretical and algorithmic challenge of multistage stochastic programs. A spe-
cial role is played by the two-stage case (i.e., T=2) where N, takes the spe-
cific form Mpa = R™ X Lo (Q,F,P;R™2). An additional complication of the
model (1)—(3) is caused by the mixed-integer constraints hidden in the condition
Xt EXt,t:L...,T.

2.2 Multistage Models, Dynamic Programming and Optimality

We adopt the setting of the previous section and assume that X; is compact and
& € LI(Q,F, P ;RSt) fort = 1,...,T.Foreach w € Q we define the subset
Y(w) of X := x]_;R™ by

V(w):={y € X:y¢ € Xy, Be(&Ee(w))ye > de(&(w)), t=1,...,T, (5)
t
D AwclEc)yr 2 gelEe(w)), t=2,...,T}
and the extended real-valued function @

T
Y ce(&c(w)ye, (Yr,...,Y7) € Y(w),
£=1 ©6)

400 , otherwise

eyr,...,yT, W)=

from X x Q to (—oo, +00). With these notations, the model (1)—(3) is equivalent to
the optimization problem

min{E[@(x1,...,%xT, w)] : Xt is measurable w.r.t. Ft, t=1,...,T}. (7)

The real-valued function (y, w) — ZtT=1 ct(&t{w))yy is continuous in y for each
w € Q and measurable in w for eachy € X, and the set-valued mapping Y from
0 to X is closed-valued and measurable (cf. Theorem 14.36 in [40]). Hence, the
function @ is B(X') & F-measurable (cf. Example 14.32 in [40]). Furthermore, the
following estimate is valid for eachy € x{_,X¢ and w € Q:

lo(yr, ..., T, w I<lect Edlw)ll sup fyel ®
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Hence, E[@(x1,...,xT, w)] is finite for each decision x = (x1,...,%T) such that
x(w) € Y(w) for P-almost all w € Q. As in [16], we construct recursively two
sequences of functions by putting P11 := @ and

ot(y1,. . Y, w) = E e 1 (yr, ..., ye, I F) (w), )]
wt(y‘ Yoo )yt—1)w) = lrylf(Pt(U1 yee oy Yt—1 )y)w)) (10)

fort =T,...,1, and foreach w € Q andy. € X, v = 1,...,T. Here, E7[[|F]
denotes the regular conditional expectation with respect to F;.

We recall that the regular conditional expectation is a version of the conditional
expectation (i.e., E'[|F] = E[:|F¢], P-a.s.) having the property that the mapping
(z,w) = Oz, w) := ET[¥(z, )| Ft](w) from Z; x Q to (00, +00] is B(Z¢) Q) Fi-
measurable if ¥ is B(Z}) () F-measurable. Here, Z; denotes a closed subset of
a Euclidean space. The regular conditional expectation exists if ¥ is B(Z) @ F-
measurable and uniformly integrable, i.e., there exists a (real) random variable (
with finite first moment such that [¥(z, w)| < {(w) forz € Z; and w € Q (see
[15]). Due to condition (8), relation (9) is well defined for t = T and leads to a
B(Z2) @ Fr-measurable function ¢, where Z := xL]Xt. It is shown in [16]
that the relations (9) and (10) are well defined for all t = T, ..., 1. Furthermore,
the following optimality criterion and existence result for (7) or, equivalently, for
(1)—(3) are valid.

Theorem 1. Let the general assumptions be satisfied and assume that there exists
a feasible solution of (1)—~(3). Then {it}L] is a solution of (1)—(3) iff

(Pt(it(w). w) = ll)t(‘)_‘t—1 ((U), (U), P— a.s., t= ]r e rT' (11)
Moreover, there exists a solution X1 of the first-stage optimization problem

min{@7(x1) = Efp2(x1,w)] : x13 € Xy, B1(&1)x1 > d1 (1)}, (12)

and, given F.-measurable functions X for v = 1,...,t — 1, there exists an F;-
measurable function % such that @(X*(w), w) = P (x* ' (w), w), P —a.s.

The theorem is a special case of the more general results (Theorems 1 and 2) in [16].
Theorem 1 implies the existence of a solution to (1)—(3) and justifies the solution
approach (11) which is usually called dynamic programming approach. Due to mea-
surable selection arguments (cf. Chapter 14 in [40]), a feasible solution of (1)-(3)
exists if the model (1)—(3) has relatively complete recourse, i.e., if Y(w) # @ P-a.s.

2.3 Structure and Stability

We adopt the setting of the previous sections, denote by P(Z) the set of all Borel
probability measures on some closed subset = of R® with s = Z,I:] S¢, which is
chosen such that it contains the support of . By p € P(Z) we denote the probability
distribution of £. We consider the probability space (=, B(Z), ) as the underlying
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probability space (Q,F,P) in Section 1, and define a function f from X; X = to
the extended real numbers R by f(x1,&) = P2(x1,&), where ¥, is defined by
(9) and (10). Then the first-stage optimization problem (12) can be rewritten in the
following form:

min{Jf(m,&)u(d&) %1 € X1, Ba(E1)x1 > da(E1)) (13)

m

The techniques exploited in [16] and used in the previous section imply that the
integrand f is B(X1) Q) B(Z)-measurable. The recursions (9) and (10) together with
the Fatou Lemma for (conditional) expectations as well as lower semicontinuity
properties of infima in parametric minimization (e.g., Theorem 1.17 of [40]) imply
lower semicontinuity of f with respect to x1 and of the objective function x1 +—
J'_ (x1, &)p(dE). If the multistage model (1)—(3) has relatively complete recourse,
it holds that If(x1,&)] < K(1 4+ max¢=1,..7||&|]) for each feasible x;, each & €
= and some constant K > 0. Hence, the integrand has a uniform and integrable
upper bound, and the objective function is finite at all feasible 1. By Lebesgue’s
theorem, the objective function is continuous at some feasible X; if u({§ € =
f(-, &) is not continuous at X1}) = 0. Such discontinuity sets of the integrand f have
been studied in [43] for the two-stage situation with fixed recourse matrix A, and
recourse costs C3.

When developing approximation schemes and algorithmic approaches for solv-
ing the model (1)~(3), the behaviour of its optimal value val(u) and of the set Sol(i)
of first-stage solutions to (1)-(3) is important when perturbing or approximating the
underlying distribution . We say that the model (1)—(3) is stable if val(-) and Sol(-)
satisfy certain continuity properties at . with respect to some suitable convergence
of probability measures. Here, we follow the presentation in [35] and consider the
distance

de(v) = sup{ljf(m,a)(u—v)(da)l  x1 € X1} (14)

of probability measures p and v belonging to the set P1(Z) := {v € P(I) :
J=|I&llv(d&) < oo}. Then it holds for any perturbation v of the original underlying
probability distribution p that

Ival(p) — val(v)| < df(u,v) 15)
0 # Sol(v) C Sol(u) + ¥(ds(k,v))Bm (16)

where B, denotes the closed unit ball in R™' and ¥ is some monotonically in-
creasing function on Ry with ¥(0) = 0, which is related to the growth behaviour
of the objective function near the set Sol(i) (see [35]). While (15) represents a Lip-
schitz type estimate for the optimal value at , the relation (16) says that the sets
of first-stage solutions behave upper semicontinuously at w with respect to d¢. In
general, the distance d is rather involved and difficult to handle. Hence, it is of con-
siderable interest to derive estimates of d¢ in terms of simpler probability metrics
and to expose relations to the classical concept of weak convergence of probability
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measures. For two-stage models with fixed recourse matrix and costs, such results
are obtained in [44] and [35]. We also refer to relevant stability studies in [2,18,49].
Altogether, such stability results justify the approximation of the underlying distri-
bution w by simpler measures and provide techniques for designing approximation
schemes. Next, we show that approximations by discrete measures having finitely
many atoms or scenarios play a prominent role since they lead to specially struc-
tured large-scale mixed-integer linear programs.

2.4 Scenario Based Models

We assume throughout this section that Q) is finite, i.e., Q = {w;}S_;, F is the
power set of Q and P({ws}) = ps, s = 1,...,S. We denote by & := & (ws) the
value of the data scenario s at stage t and by x; the value of the decision scenario s
attfors=1,...,5,t=1,...,T.Since Q is finite, there exists a finite subset £
of the o-algebra F, foreacht = 1,..., T, such that & is a partition of Q) and that
the smallest o-algebra containing & is just F;. Then the conditional expectation

w.r.t. F; in the nonanticipativity condition (4) takes the form

L th(w)P(dw)xC

Elx¢|Fel = Z m
C

Ceé&:

S S
=D (D p)( ) pexixc 17)

Ceé&y s=1
ws€C ws€C

where X c denotes the characteristic function of the set C € £;. Hence, the nonan-
ticipativity condition (4) is equivalent to the following equality constraints

S S
xP= > (D p)' ) pexf,o=1,..,St=1..T (18
s=1

Cegy  s=1
wg€C ws€eC ws€C
Clearly, for t = 1 we have £ = {Q} and, hence, condition (18) is equivalent to the
equations x§ = 2321 psx§, 0=1,...,S,ie,tox] =--- =x§.
Hence, the multistage stochastic program (1)—(3) takes the following form which
will be called its scenario formulation:

s T
min { Z Z psce(&3)x§ : x satisfies the constraints (18), (19)
s=1t=1

x; € Xe, Be(&8)x§ > de(&5),s=1,...,8, t=1,...,T,
t

ZAtT(E-i)X'?r > gt(&i)) S :])--')S) t:Z,,T}

T=1

Since Fy C Fi1, every element of 41 can be represented as the union of certain
elements of &;. Furthermore, formula (17) shows that the number of elements in



Multistage Stochastic Integer Programs 587

&t coincides with the number of realizations of & and x at period t, respectively.
Hence, representing the relations between the elements of £ and £4+q for t =
1,..., T — 1, leads to a tree having the same structure as the sets of scenarios of ¢
and x, respectively. Therefore, such a tree is called scenario tree. It is based on a
finite set AV C N of nodes. Figure 1 shows an example of a scenario tree where the
ty denote the branching points of the tree.

1 ty ts tx T

Figure 1. Example of a (binary) scenario tree

The root node n = 1 stands for period t = 1. Every other node n has a unique
predecessor node n_ and a transition probability 7, /> O, which is the proba-
bility of n being the successor of n_. The probability 7, of each node n is given
recursively by 717 = 1, 7tn, = T, /n_Tin_, 1 > 1. We denote by N (n) the set of
successors to node n, by path(n) the path from the root to node n and by t(n) its
length, i.e., t(n) := card(path(n)). N denotes the set {(n € N : t(n) = t}, and it
holds }_ . »;, 'n = 1 for each period t. Nodes n with Ny (n) = 0 are called leaves;
they constitute the terminal set V7. A scenario corresponds to a path from the root
node to a leaf. Clearly, it holds that card(N7) = S and {Ttn }nenr = {ps}5_;. Con-
versely, given these scenario probabilities, the remaining node and transition proba-
bilities are generated recursively by 71, := ZM ENy(n) g Ty /n 2= Tiny, /T
for ny € NM;(n). We use the following notation for the sequence of predecessors
of any noden € N:ng :=n,n_q :==n_ifn > 1, n_(41) == (n_i)- if
t(k) > 1. Note that t(n_.) = t(n) — k fork = 1,...,t(n) — 1. Furthermore, we
denote by {£€™}nen, the realizations of &; and by {x"}nens, the realizations of x:.
After these preparations the scenario tree formulation of the multistage stochastic
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program reads:

min { Z ﬂnct(n)(fvn)xn ix" e Xt(n) Bt(n)(an)xn > dt(n)(an)» (20)
neN
t(n)-1

D Aumtm—x(EMX 2 gy (E™), n € N}
k=0

Both formulations of the multistage stochastic program will be used for the descrip-
tion of decomposition approaches. We recall that the nonanticipativity condition
appears explicitly in the scenario formulation (19), but disappears in the scenario
tree formulation (20) because it is incorporated into the tree construction. Since it
holds that |[NV] := card(N') << TS, the dimensions of both model formulations are
quite different. More precisely, the model (19) contains (Z;;] m¢)S decision vari-
ables and ZtT:1 (my + k¢ +71¢)S linear constraints, whereas the model (20) contains
2 nen My(n) decisionsand 3 1 (K¢(n) +Tt(n)) linear constraints. Here, k¢ and
¢ denote the dimensions of d¢(-) and g¢(-), respectively,fort =1,...,T.

2.5 Dualization and the Convex Case
We assume £ € X tT=1 Lo (Q, F, P;R®t ) and consider the multistage stochastic inte-

ger program of Section 1 as an abstract (infinite) optimization problem in the Banach
space x,I:] Lo (Q, F,P;R™t), i.e., in the form

T
min{E [Z ce(Ee)xel @ X € X{_1Loo(Q, F,P;R™), x € Nna,  (21)

t=1

xt € X¢, Be(&t)xe > di(&¢), P—as, t=1,...,T, (22)
t

D Awl(&)xe 2 0e(E), P—ass, t=2,...,T} (23)

T=1

Let F(-) denote the objective function, i.e., F(x) := E[ZL] ce(&t)xel.

Our aim is to introduce a Lagrangian associated with the essential groups of
constraints of problem (21)—(23), namely, the (functional) nonanticipativity con-
straint X € MNnq, the k¢ coupling constraints Be(&¢)x: > di(&¢) and 7y dy-
namic constraints (23). We make use of the concepts and results of [38] and in-
troduce the following sets Aj := {Ay € x[_;L1(Q,F,P;R™) : EA1|F] =
0,P—as,t=1,...,THLA ={\ € xtT=]L1(Q,.7-',P;]Rk‘) :A22>20,P—as}
and Az .= {A3 € xtT:1L1 (Q,F,P;R™) : A3 > 0, P — as.} of Lagrange mul-
tipliers. The sets A, and A3 are convex cones and A; is a linear space which is
complementary to the nonanticipativity subspace N, with respect to the dual pair-
ing (-,-) of Ly and Ly, i.e., it holds (A1,x) := E[Y_1_, A1ex] =0 forall A; € A,
and x € Mnq.
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The Lagrangian is defined to be the function

.
L(x,A) :=E[)_ {ce(Ee)xe — Mexe +Aze(de(Ee) — Be(Ee)xe)} (24

t=1

T t
+ 3 Aselge(&) = ) Avc(Ee)xc]]
T=1

t=2

from xtT=1 Lo (Q,F,P;R™ ) x Ato R, where A := xi3=1 A;. The dual function D
from A to R is defined by

D(A) :=inf{L(x,A) : x € XI=1I_°°(Q,.7:, P;R™t), (25)
Xt € Xt, P—a.s., t=],...,T},

and the dual problem associated with (21)—(23) is
max{D(A) : A € AL (26)

We assume again that the sets X, t = 1,...,T, are compact. Then the Lagrangian
L and the dual function D are well-defined, D is concave and the weak duality
estimate

D(A) < F(x) forall A € A and all x satisfying (21)—(23). 27

is valid. In the following, we say that the model (21)—(23) is strictly feasible if there
exist 8 € Nnq and € > O such that

%t + €Bm, Cconv(Xy), Be(&e)Re > de(&e) + €, P—as, t=1,...,T,
t
Z At’r(at)g'l’ Z gt(at) + €, P— a.s., t= 2) e )Ta

T=1

where By, denotes the closed unit ball in R™. Then we conclude from Theorem 1
and from Theorem 3 of [39] that the following holds.

Theorem 2. Assume that the general assumptions are satisfied, that the sets X¢, t =
1,...,T, are convex compact and that the model (21)—~(23) has relafively complete
recourse and is strictly feasible. Then there exist optimal solutions A to (26) and X

to (21)—~(23), and it holds D(A) = F(x).

Since the sets X¢, t = 1,...,T, fail to be convex, such a duality result is not avail-
able in our setting and, due to (27), we are faced with a duality gap

DG :=F(x) — sup D(A) > 0. (28)
AEA

This inequality is strict, in general. On the other hand, in case of a discrete under-
lying probability distribution, the theory of Lagrangian relaxation in mixed-integer
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linear programming (cf., e.g., Chapter I1.3.6 of [31]) implies that the optimal value
of (26) is greater than or equal to the optimal value of the linear programming re-
laxation to (19) or (20). In other words, the lower bound obtained by dualizing
constraints is never worse the bound obtained by relaxing the integer requirements.

So far we have associated Lagrange multipliers with nonanticipativity, coupling
as well as dynamic constraints. Of course, it is also of interest to consider restricted
Lagrangians and restricted duals by associating multipliers with one or with two
of these three groups of constraints, only. For such restricted dualization schemes,
duality results for the convex case that are similar to Theorem 2 may be derived
as well (see [37] for dualizing the nonanticipativity constraints and [38] for other
inequality constraints). It is worth recalling that the duality gap increases when du-
alizing additional constraints (see Section 3.1 in [29]). Since small duality gaps are
of algorithmic interest, we take a closer look at dualization schemes where either
nonanticipativity or coupling or dynamic constraints are associated with Lagrange
multipliers. We denote the corresponding dual functions from A; to R by D; for
i =1, 2, 3 and start with dualizing nonanticipativity constraints, i.e.,

T
D1 (A1) = inf{E Z ce(Ee)xe —Aexe)] @ x € X{_;Leo(Q, F,P;R™),
Xt € Xt) Bt(at)xt .>_ dt(E-t)) P— a.s., t= ])' . )T)

Y Ac(E)xc > ge(&r), P—as, t=2,...,T}

T=1

.
= E[inf{Z(ct(E.t)xt —AeXe) © X € Xg, Be(&e)xe > de(&e),
t=1

t
t=1,...,T, ) AwlEe)xc 2 0e(Ee), t=2,..., T},

T=1

where the infimum and expectation may be interchanged since the minimization
problem only contains P-a.s. pointwise constraints (see e.g., Theorem 14.60 of [40]).
Hence, the multistage stochastic program defining Dy decomposes into pathwise
minimization problems. This effect becomes more transparent if the underlying
probability distribution of & is discrete, i.e., if Q = {ws,...,ws}. Adopting the
notation of Section 2.4, the dual function takes the form

S T
M)i=Y peinfl) [ee(E5)x§ —Afpx§] @ x§ € X, (29)

Bt(&i)xi Z dt(ai)) t= ])' v )T)

t
ZAtT(E,:)X'St Z gt(éi)) t :2)- .. )T})

T=1
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where A7 € A4 has the scenarios {Aj t} _ with probabilities ps fors = 1,...,S
and A is given by the linear subspace

Av={M:EMedF] = ) ( Z_ ps)”! Z PsAjexc =0,t=1,...,T}

Ces wsse]c wsec
S
={A1: ) P =0,Ce&,t=1,...,T} (30)
s=1
ws€C

of the Euclidean space of dimension (ZtT:1 k¢ + ZLZ 1¢)S. Since &1 = {Q} and
&1 = {{w1},...,{ws}}, the conditions for t = 1 and t = T in (30) are equivalent
to Z§=1 PsAj; = 0and A5y = 0, s = 1,...,S, respectively. We note that the
constraint Ay € Ay means that each Ay # 0 is anticipative, i.e., A1 is not Fi-
measurable for some t (see also the example in [22]). Sometimes, one might find
it more convenient that the dual function is defined and maximized on the whole
space, i.e, without regard to the subspace constraint A1 € Aj. This can be done be
replacing A1t in the right-hand side of (29) by A1t — EA1|F] fort = 1,...,T.
Then the subspace constraint for the multiplier is automatically satisfied and the
dual maximization problem is unconstrained.

Next we consider dualizations of certain inequality constraints by some mul-
tiplier, but leave the nonanticipativity constraint untouched. In contrast to the an-
ticipativity of multipliers in the previous case, the multipliers may now be chosen
nonanticipative, i.e., as elements of >< _1L1(Q, F¢, P). This is due to the linear sep-
arability properties of (21)-(23) (Theorem 7 of [38]). In particular, when dualizing
the coupling constraints, the restricted dual function

-
D> = inf{E Z ce(&e)xe + A2e(de(&) — Be(&t)xe))] - x € Nnay (€28
t=1

t
Xt € Xt) Z At’t(a’t)x’r _>_ gt(‘t-t)y P— a.s., t= 2) e vT}r

T=1

has to be maximized on the convex cone Az := {Ay € x]_,L1(Q, F¢,P;R¥t) :
Azt >0, P—as., t =1,..., T} Dualizing the dynamic constraints leads to maxi-
mizing the restricted dual

Ds(As) := inf{E th Ee)xe +szt ge(Ee) — ZAH Exdl s (32)

t=1 t=2
X € Nna, Xt € X, Be(&¢)xe > dt(at]» —as,t=1,...,TL

subject to the convex cone Az = {A;3 € x[_ L1(Q, F,P;R™t) : A3y >0, P —
,t =1,...,T}. Clearly, both optlmlzatlon problems on the right-hand sides of
(31) and (32), respectively, are stochastic integer programs. While the program in
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(31) exhibits the typical multistage structure, the specific feature of the program in
(32) is the lack of a dynamic constraint. In Sections 3.2 and 3.3 we gain further infor-
mation on these programs in case of a discrete underlying probability distribution,
i.e., when the data, decisions and multipliers form scenario trees.

3 DECOMPOSITION METHODS

Due to the enormous size of scenario based models in multi-stage stochastic pro-
gramming, decomposition is the method of choice when it comes to numerical
solution. This is further enhanced by special structures met, both in the scenario
formulation (19) and in the scenario tree formulation (20) of multi-stage stochastic
programs. If integer requirements are missing in (21) - (23), powerful convexity and
duality results (cf. Theorem 2) are the basis of efficient decomposition methods.
These methods can be subdivided into primal and dual ones.

Primal decomposition methods employ the scenario tree formulation (20). Start-
ing from the root node, primal proposals are passed down the tree where they are
used to compute so called feasibility and optimality cuts that are passed upward
to be included into convex optimization problems whose solutions lead to updated
primal proposals that are again passed down the tree, and so on. This procedure
(nested decomposition) is enhanced by regularization and cut deletion. Its mathe-
matical backbone is convexity, in particular ideas from the area of bundle-trust and
proximal point methods.

Dual decomposition circles around duality results such as Theorem 2. The ap-
proaches discussed in Section 2.5 then all benefit from a zero duality gap. Particu-
lar attention has been paid to dualizing nonanticipativity in the framework of aug-
mented Lagrangians and related proximal point algorithms (progressive hedging,
cf. [39]). The survey papers [5, 42] provide further insights into both primal and
dual decomposition of multi-stage stochastic linear programs.

With integer requirements in (21)—(23) the mentioned powerful convexity and
duality results are lost. Approaches to decomposition, that have proven efficient for
purely linear models, have to be rethought from their very beginnings.

The impact of integrality on primal decomposition is twofold: Feasibility and
optimality cuts can no longer be obtained as linear functionals but as merely sub-
additive functionals instead. Primal proposals can no longer be obtained via con-
vex programs but via merely lower semicontinuous (discontinuous) nonconvex pro-
grams instead. For algorithmic realization this leads to obstacles impossible to over-
come with existing methods, [8, 11]. Two-stage models have been tackled with lim-
ited success by solving the mentioned lower semicontinuous programs via enumera-
tion [45] or branch-and-bound [1] and exploiting problem similarities in the second
stage.

The impact of integrality on dual decomposition has already been mentioned in
Section 2.5: Theorem 2 is no longer valid, and we face a non-zero duality gap (28).
Although progressive hedging then is no longer formally justified, quite satisfactory
results have been observed empirically for specific applications, [30,47].
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In what follows, we will return to the dualization schemes introduced in Sec-
tion 2.5 in case that the underlying probability distribution is discrete. We will dis-
cuss the solution of the corresponding dual maximization problems

max{Di(?\i) M E /\{} (1 = ],2,3)

by subgradient type methods and examine the decoupling potential of the different
dualizations. Under the conditions imposed in Section 2.5 the dual functions D; are
finite, concave and polyhedral. They have the form

Di(A) = igf{F(X) + Ay, Gi(x))}, (33)

where F is the objective function, G; is some affine linear function from Ly, to
Leo, and (-, -) denotes the dual pairing of Ly and L. Hence, Gi(x;(A{)) is a sub-
gradient of D; if x;(A;) is a solution to the minimization problem (33) defining
D;. Furthermore, the solution sets of the dual problems are nonempty since their
objectives are polyhedral and their suprema finite. Therefore, subgradient bundle
methods may be used for solving the duals, [23,25,28]. Let us consider the proxi-
mal bundle method [17,23,25] in some more detail. Starting from an arbitrary point
Al = Al € A, this method generates a sequence {A¥}ren in A; converging to
some solution of the dual problem, and trial points A for evaluating the solutions
x¥ = x; (AK) of (33), the subgradients G (x¥) of D; and its linearizations

D¥(+) = Di(Af) + ¢ — A, Gi(x)) 2 Di().

Iteration k uses the polyhedral model Dix (-) := min;enx D}(-) with k€ Nk C

{1,...,k}for finding the next trial point A" as a solution of the quadratic subprob-
lem :

max{Dix(A) — zukl?\ —APiae A, (34)
where the proximity weight ux > 0 and the penalty term | - |* := (-,-) should

keep AX*T close to the prox-center A¥. An ascent step to A¥+! = A+ occurs if
Di(AK*T) > D;(AK) + k8y, where k € (0,1) is a fixed Armijo-like parameter and
8k = Di(A¥") — Di(AK) > 0 is the predicted ascent (if 5x = O then AF is a
solution and the method may stop). Otherwise, a null step 7\1‘“ = Ak improves the
next model Dy k41 with the new linearization Df“. The choices of the weights
uy and of the index set N¥*1 are dicussed in [17,25] (see also Section 3.4 of [19]).
The quadratic subproblem (34) is essentially influenced by the dual pairing (-, -).
The latter reads (A, y) = Zf=1 Ps ZI=1 Afyt and (A, ) = 3 cn TATY™
for the scenario and the node formulations, respectively.

3.1 Scenario Decomposition

Scenario decomposition rests on the dualization of nonanticipativity constraints if
the probability distribution of £ is discrete. This leads to the dual maximization

problem
max{D1(A1) : Ay € Aq} (35)
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where D and A are defined as in (29), (30) of Section 2.5. Since the computation
of Dy decomposes into solving pathwise minimization problems, function values
and subgradients of D are obtained by solving the single-scenario problems

.
min{)_{ce(E5)x —Ajex3) 1 x§ € Xe,
t=1
Bt(&:)xi 2 dt(&i)) t= ]’ v )T’

t
D AwlExs > 0e(E]), t=2,...,T}

=1
foralls =1,...,S.
Indeed, if %%,s = 1,..., S, denote optimal solutions to these problems, then
s T
Di(A1) = ) ps(D_{ce(E5)%] — Afexi)),
s=1 t=1

and G1(X) = X is a subgradient of Dy at Ay, where X has the scenarios X*, s =
1,...,S. Compared with the scenario formulation (19) of the multi-stage stochastic
program (1)—(3), which is a mixed-integer linear program in dimension S-Z,I:] my,
the above single-scenario problems are S mixed-integer linear programs each of
dimension ZI:, my, only. In view of (28), solving (35) provides a lower bound to
the optimal value of the multi-stage stochastic integer program (19).

If the single-scenario solutions X3, ...,%5 for the optimal Aq in (35) fulfilled
the nonanticipativity constraints then X would be optimal to (19). In general, how-
ever, one faces a non-zero duality gap (28). Therefore the lower bounding has to be
accompanied by upper bounding procedures resting on the generation of “promis-
ing” feasible solutions. This can be accomplished by primal heuristics starting from
the results of the dual optimization, i.e., from single-scenario solutions X3, ..., X%
corresponding to optimal or nearly optimal A.

An algorithmic realization of scenario decomposition for the case T = 2, i.e.,
for two-stage stochastic integer programs, has been proposed in [8—10]. The nonan-
ticipativity constraints then read x{ = Z§=1 psxj, 0 = 1,...,S. In [8-10], the
equivalent representation x] = - -- = x§ is employed, and the scenario formulation
(19) is set up with (18) replaced by x] = --- = x3. Then, the usual Lagrangian re-
laxation of mixed-integer linear programming is performed with respect to the con-
straints x] = --- = x§. In particular, this leads to a non-probabilistic Lagrangian,
in contrast to the probabilistic Lagrangian (24) introduced in Section 2.5. As a con-
sequence, the Lagrangian dual of [8-10] is unconstrained and lives in dimension
(S — 1) - my. In the setting of Section 2.5, cf. (30), we obtain a dual in dimension
S - my constrained by Z§=1 PsAj; =0, i.e., essentially an unconstrained program
in dimension (S — 1) - my as well.

In [8-10], the scheme of lower and upper bounding outlined above is further
enhanced by embedding into a branch-and-bound algorithm in the spirit of global
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optimization. As stated in (13), the stochastic program can be rewritten as a noncon-
vex global optimization problem. In the branching part of the algorithm, the feasible
region of (13) is subdivided. On each member of the subdivision, the bounding part
employs dualization of nonanticipativity for the lower and a primal heuristic for the
upper bounds. For further details on scenario decomposition for two-stage stochastic
integer programs we refer to [21].

Only little is known about algorithmic realizations of scenario decomposition for
multi-stage stochastic integer programs with T > 2. First experiences on extending
the approach of [8§—10] will be reported in [4].

3.2 Component Decomposition

Dualization of component coupling constraints results in the dual maximization
problem

max{D2(A2) : A2 € Az},

where D, and A; are defined in Section 2.5. We assume that the underlying prob-
ability distribution of the data process & is discrete and, hence, given in form of a
scenario tree {£™}near, where A denotes the finite set of nodes. The notation of
Section 2.4 is used, and we denote by x = {x"},,en the decision scenario tree and
by A2 = {AZ}nen the multiplier scenario tree. Then the dual function (31) may be
rewritten in the following form (see also (20)):

D2(Az) :=inf{ ) mn{Ce(n) (EMX™ + A3 (den) (E™) = Byn) (E™)X™)} 1 (36)
nexN
t(n)-1
x™ € Xt(n)s Agin)t(m)—x(EMXT% > gem)(EM),n € N}
0

K=

where A; € Az = {Allnen @ A} > 0, n € N}. In order to demonstrate the
component decoupling potential hidden in D3, we assume that X, has the specific
structure Xy = X% X¢i, where the Xy are closed subsets of R, that m¢ = m,
ki =kandry =mrfort=1,...,T and some r € N, and that the matrices A (-)
are block-diagonal with m blocks ai.(-) € R" fori = 1,...,m. In particular,
this condition means that the constraints in (36) are expressible as componentwise
constraints. We denote by ci(-) the i-th component of c¢(-), by gi(-) € R" the i-th
component vector of g¢(-), and by bi(-) the i-th column of the matrix B(-). With
x* denoting the i-th component of x™, we obtain by exchanging summation w.r.t.
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nandi

2) = inf{ Z ﬂn{Z[Ci(n)(&n — 3By (EMIXT + AT de(ny (EM)} :

neN i=1
t(n)-1
A EXiny D O eim—e ENET 2 Gy (E7),
k=0

i=1,...,m,neN}

= Z Dai(A2) + Z TnAZ dg(n) (E7)

neN
where the functions D2;,1 =1, ..., m, from A; to R are defined by
DZ'L AZ lnf{ Z 7'(11 Ct(TL) E, ) t(n (E,“)] 'i. X € Xt(l’l) (37)
neN
t(n)-—1

D it EMET 2 gy (EM), N E N,
k=0

By specifying (33) we obtain that G2 (%) = {d¢(n)(E™) — Y {21 b t(n J(EMX e
is a subgradient of D at A, where X; = {X['}nen is a solution of (37). The dual
function (36), which is defined by a multistage stochastic integer program of di-
mension m|A\/], decomposes into m functions each given by a multistage stochastic
integer program of dimension |/|. Since the dimension of the dual problem is k|\/],
the computational potential of this dualization approach takes effect in situations,
where the number k of coupling constraints to be dualized is much smaller than the
decision dimension m (i.e., k << m) and where the m subproblems (37) of dimen-
sion | V| can be solved much faster than the original multistage model of dimension
m|N|. The latter could appear, for example, if complex mixed-integer models de-
compose into pure integer and pure linear programs.

Component decomposition has been applied successfully under the label La-
grangian relaxation of coupling constraints to solving hydro-thermal power man-
agement models under data uncertainty. Lagrangian relaxation has a long tradition
for solving (deterministic) unit commitment problems of power systems operation.
Recently, this technique has been extended to stochastic power management models,
where the stochasticity enters the model, for example, via the electric load, stream-
flows to hydro units, and electricity prices. When letting the production decisions of
individual power units play the role of components, the above dualization scheme
leads to a decomposition into single (thermal or hydro) power unit models. Such
approaches for determining lower bounds have been proposed and implemented
in [3, 13,19, 33,41]. In [19, 20, 32] encouraging numerical results and computing
times have been reported for both solving the dual and determining a nearly optimal
primal solution by a Lagrangian based heuristic.
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3.3 Nodal Decomposition

Finally, we return to the dualization of the dynamic constraints of (21) - (23) in
case of a discrete underlying probability distribution and show that the dual function
exhibits a nodewise decoupling structure. We let D3 and A3 be defined as in Section
2.5 and consider the corresponding dual problem

max{D3(A3) : A3z € Az}

Let {£™}nen be the scenario tree representing the data process &, A the finite set of
nodes, {7ty lnen the node probabilities, and {x™ }nen and {A} }nea the correspond-
ing scenario trees of the decision and of the multiplier process, respectively. Using
the notation of Section 2.4, the dual function D3 takes the following scenario tree
representation

Ds(As) =infler (X" + ) maleym) (EMX™ + AT (gem) (EY) (38)
neNM\{1}
t(n)-1

= Y Ayt —x(EMXE)
k=0
x™ € X¢(n)s Ben) (EMX™ > dy(n) (E™), n € N},

where A3 € Az = {{ATlhen : A} > 0, n € N}. Since the minimization problem
in (38) contains only node constraints for the decision tree, we rearrange its objective
function with respect to the decision nodes and obtain

D3(A3) =inf{ ) mnlcem)(E™) — Y meA§Ag(eem) (EDX™
neN (ETr(n)

+ ) TATgym(EM)
neN\(1}
x™ € Xg(n)s Bem) (EMX™ > dyny(E™), n € N},

where Tr(1) := M\ {1}, and Tr{n) for n > 1 denotes the set of all nodes belonging
to the subtree with root node 1, i.e., Tr(n) := Un, ea{path(ny) : n € path(ny)}\
path(n_). Now, we may interchange summation and minimization and arrive at the
node decomposed formulation

D3(A3) = Y Dsn(A3)+ D MATgen)(E™) (39)
neN neM\{1}

of D3, where the functions D3, n € N, are defined on A3 and given by

D3n(A3) = inf{(mincem) (E™) = Y eA§A¢(e),eim) (ED)X™ (40)
LETI(Nn)

x™ € Xt(n)’ Bt(n)(an)xn > dt(n)(an)}-
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Hence, the representation (39) of D3 provides a decomposition of the original
mixed-integer program of dimension }_ .\ M¢(n) into |V} subproblems (40) of
dimension My () for n € N. Formulas for computing subgradients of D3 may be
derived similarly to the previous section. Computational experience of such nodal
decomposition schemes for determining lower bounds of multistage stochastic inte-
ger programs is not available yet.
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