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Abstract We consider linear multistage stochastic integer programs and study their func
tional and dynamic programming formulations as well as conditions for optimality and sta
bility of solutions. Furthermore, we study the application of the Rockafellar-Wets dualiza
tion approach as well as the structure and algorithmic potential of corresponding dual prob
lems. For discrete underlying probability distributions we discuss possible large scale mixed
integer linear programming formulations and three dual decomposition approaches, namely, 
scenario, component and nodal decomposition. 

INTRODUCTION 

Stochastic programming deals with the optimization of decision making under un
certainty over time. Typical objects of study are random optimization problems 
where outcomes of random data are unveiled over time, and the decisions to be opti
mized must not anticipate future outcomes (non-anticipativity). The latter provides 
a tight link to real-time optimization seen as the need for optimal "here-and-now" 
decision in an incomplete (or uncertain) data environment. Provided that probabilis
tic information on the uncertain data is available, operational models suitable for 
real-time optimization often may be formulated as multi-stage stochastic programs. 
Basic references for theory, algorithmics, and application of stochastic program
ming are the textbooks [7,24,34]. The edited volume [50] provides insight into 
recent research in the field. 

Indispensability of integer requirements is a basic modeling experience in prac
tical optimization. Like in other branches of mathematical optimization this has con
siderable consequences on structural properties and algorithm design in stochastic 
programming, too. The models best understood so far are (purely) linear stochastic 
programs. This is mainly due to the fact that the optimal value of a linear minimiza
tion problem is a convex function of the right-hand side and a concave function of 
the objective function vector. This enables application of the machinery of convex 
analysis in various contexts, such as duality, stability, and subgradientminimization. 
For an impression on these developments we refer to [12,14,36,49], with accent on 
theory, and to [5,42], with accent on computation. 

With integer requirements, the above convexity/concavity observation is not 
valid anymore, and the mentioned functions become discontinuous. Thus, compar
atively little is known on theory and algorithms for mixed-integer linear stochastic 
programs. A recent survey is provided in [26]. Impressions on developments in the-
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ory can be obtained from [2,43,46] and on algorithm design from [9, 11, 19,27,30, 
33,47], see also the Ph.D. thesises [8,32,48]. 

The present paper aims at a short introduction into some essential theoretical 
and algorithmic issues in multi-stage stochastic integer programming. Accent is 
placed on introducing approaches. Proofs are omitted, with references to the original 
sources instead. The main topics will be modeling, approximation, and algorithmics. 

2 MULTISTAGE STOCHASTIC INTEGER PROGRAMS 

2.1 Modeling 

We consider a finite horizon sequential decision process under uncertainty, in which 
a decision made at stage t is based only on information available at t (1 ::; t ::; 
T). We assume that the information is given by a discrete time stochastic process 
{E,dJ=l defined on some probability space (Q,F, P) and with E,t taking values 
in ~St • The information available at stage t consists of the random vector E,t := 
(E, 1 , ... , E,t), and the stochastic decision Xt at stage t varying in IRmt is assumed to 
depend only on E, t. The latter property is called nonanticipativity and is equivalent 
to the measurability of Xt with respect to the cy-algebra F t ~ F which is generated 
by E, t. Clearly, we have F t ~ Ft+ 1 for t = 1, ... , T - 1 and, with no loss of 
generality, we may assume that Fl = {0, Q}, i.e., E,1 and Xl are deterministic, and 
thatFT = F. 

More precisely, we consider a decision model where the objective is given by 
expected linear costs and the constraints consist of three groups: the measurability 
constraints on Xt> a linear constraint describing the relation between decisions at 
different stages, and constraints characterizing feasibility of the t-th stage decision 
Xt. The latter constraints consist of a linear inequality constraint and of the general 
constraint Xt E Xt where the (fixed) set Xt has the property that its convex hull 
conv(Xt) is polyhedral, allowing for mixed-integer decisions in all stages. Further
more, the data E,t at stage t may enter all corresponding cost coefficients, matrices 
and right-hand sides. This leads to the following stochastic decision model: 

T 

min{E[L Ct (E,t)Xtl : Xt is measurable with respect to F t , (1) 
t=l 

Xt EXt, BtfE,t)Xt ~ dtfE,t), P - a.s., t = 1, ... , T, (2) 
t 

L Aa(E,t)xT ~ 9t(E,t), P - a.s., t = 2, ... , T} (3) 
T=l 

Throughout, the following is imposed: The sets Xt are nonempty and closed. The 
matrices AtT (.), Bt (. ) as well as the coefficients Ct (. ) and the right-hand sides dt (. ), 
9t ( .) are affine linear functions of the corresponding component of E" for each'! = 
1, ... , t, t = 1, ... , T. In order to have the model (1)-(3) well defined, we need 
that the scalar products Ct (E,t )Xt are integrable. The latter property is implied by 
the integrability of lIE,tllllxtll and by the conditions E,t E Lqt (Q,Ft , P;IRSt ) and 
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Xt E LTt (0, Ft, P; jRmt ) where qt, Tt E [1,00] with _q1 + l = 1. Since it is 
t Tt 

desirable to impose only weak conditions on the data process E.. and since we assume 
later on that the set Xt is bounded, we may restrict our attention to decisions Xt E 
Loo (0, Ft, P; jRmt ) and to the first order moment condition E..t E L1 (0, F t , P; jRSt ) 
on the data at stage t for each t = 1, ... , T. Then the nonanticipativity constraint 
(1) may be expressed equivalently as 

Xt E Loo(O,F, p;jRmt) and Xt = E[xtIFtl. t = 1, ... , T, (4) 

by using the conditional expectation E[·IFt] with respect to the cr-algebra Ft. Con
dition (4) describes a linear subspace Nna of the space XJ=l Loo (0, F, P; jRmt ). 
This combination of functional and (P-a.s.) pointwise constraints in our model, i.e., 
the functional condition x E Nna and the P-a.s. constraints (2) and (3), forms 
the theoretical and algorithmic challenge of multistage stochastic programs. A spe
cial role is played by the two-stage case (i.e., T=2) where Nna takes the spe
cific form Nna = jRml X Loo (0, F, P; jRmz ). An additional complication of the 
model (1)-(3) is caused by the mixed-integer constraints hidden in the condition 
Xt EXt, t = 1, ... , T. 

2.2 Multistage Models, Dynamic Programming and Optimality 

We adopt the setting of the previous section and assume that Xt is compact and 
E..t ELl (0, F, P; jRSt ) for t = 1, ... , T. For each w E 0 we define the subset 
Y(w) of X:= xJ=ljRmt by 

Y( w) := {y EX: Yt E Xt, Bt (E..t (w ))Yt ~ dtl E..tl w)), t = 1, ... , T, (5) 
t 

LAt-r(E..t(w))Y-r ~ gtlE..tlw)), t=2, ... ,T} 
-r=1 

and the extended real-valued function <p 

<P(Yl, ... , YT, w) := {f1 Ct(E..tlw ))Yt , (Y1, ... , YT) E Y(w), 

+00 , otherwise 
(6) 

from X x 0 to (-00, +00]. With these notations, the model (1)-(3) is equivalent to 
the optimization problem 

min{E[<p(Xl, ... , XT, w)] : Xt is measurable w.r.t. F t , t = 1, ... , T}. (7) 

The real-valued function (y, w) H L.~=1 ctlE..t(w))Yt is continuous in Y for each 
w E 0 and measurable in w for each Y E X, and the set-valued mapping Y from 
o to X is closed-valued and measurable (cf. Theorem 14.36 in [40]). Hence, the 
function <P is l3(X) ® F-measurable (cf. Example 14.32 in [40]). Furthermore, the 
following estimate is valid for each Y E x J= 1 Xt and w E 0: 

T 

1<P(Y1, ... ,YT,W)1 ~ LllctlE..t(w))11 sup IIYtl1 
t=l 1JtEXt 

(8) 
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Hence, E[<P(X1 , ... ,XT, w)l is finite for each decision x = (Xl, ... ,XT) such that 
x( w) E Y( w) for P-almost all w E Q. As in [16], we construct recursively two 
sequences of functions by putting lh + 1 := <p and 

<Pt (1:1 1 , ... , 1:It, w) := P[1\>t+ ,(1:11, ... ,1:It,· )IFt](w), (9) 

1\>t (1:1 1, ... ,1:It-1 , w) := inf <Pt(1:I 1, ... ,1:It-" 1:1, w), (10) 
11 

for t = T, ... ,1, and for each w E Q and 1:1'1' EXT' '( = 1, ... ,T. Here, P[·IFt1 
denotes the regular conditional expectation with respect to Ft. 

We recall that the regular conditional expectation is a version of the conditional 
expectation (i.e., P[·IFt1 = E[·IFt1, P-a.s.) having the property that the mapping 
(z, w) H cI>(z, w) := P['¥(z,· )IFt](w) from Zt x Q to (00, +oo]is 8(2t) ® F t -
measurable if'¥ is 8(2t) ® F-measurable. Here, Zt denotes a closed subset of 
a Euclidean space. The regular conditional expectation exists if'¥ is 8(2) ® F
measurable and uniformly integrable, i.e., there exists a (real) random variable (, 
with finite first moment such that I'¥(z, w)1 ~ (,( w) for z E Zt and w E Q (see 
[15]). Due to condition (8), relation (9) is well defined for t = T and leads to a 
8(2) ® FT-measurable function CPT, where Z := xJ=lXt. It is shown in [16] 
that the relations (9) and (10) are well defined for all t = T, ... , 1. Furthermore, 
the following optimality criterion and existence result for (7) or, equivalently, for 
(1)-(3) are valid. 

Theorem 1. Let the general assumptions be satisfied and assume that there exists 
afeasible solution of( 1)-(3). Then {xdJ=l is a solution of( 1)-(3) iff 

<Ptfxt(w),w) =Wt(Xt - 1 (w),w), P-a.s., t = 1, ... ,T. (11) 

Moreover, there exists a solution x 1 of the first-stage optimization problem 

min{<p,(xll = E[1\>2(X1,wll : Xl EX" B1(E,1)X1 ~ d,(E,ll}, (12) 

and, given F'1'-measurable functions X'1' for '( = 1, ... , t - 1, there exists an F t -
measurable function Xt such that <Pt(Xt(w), w) = 1\>tfxt - 1 (w), w), P - a.s. 

The theorem is a special case of the more general results (Theorems 1 and 2) in [16]. 
Theorem 1 implies the existence of a solution to (1)-(3) and justifies the solution 
approach (11) which is usually called dynamic programming approach. Due to mea
surable selection arguments (cf. Chapter 14 in [40]), a feasible solution of (1)-(3) 
exists if the model (1)-(3) has relatively complete recourse, i.e., if Y( w) # 0 P-a.s. 

2.3 Structure and Stability 

We adopt the setting of the previous sections, denote by P(2) the set of all Borel 
probability measures on some closed subset 2 of IRs with s = [.;=1 St, which is 
chosen such that it contains the support of E,. By J.l. E P(2) we denote the probability 
distribution of E,. We consider the probability space (2, 8 (2), J.l.) as the underlying 
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probability space (fl, F, P) in Section 1, and define a function f from Xl x :=: to 
the extended real numbers i: by f(Xl, l.) := tVZ(Xl, l.), where tVz is defined by 
(9) and (10). Then the first-stage optimization problem (12) can be rewritten in the 
following form: 

min{J f(Xl, l.)ll(dl.) : Xl E Xl. Bl (l.l )Xl ~ dl (l.,)} (13) 

The techniques exploited in [16] and used in the previous section imply that the 
integrand f is B(X 1) ® B(2)-measurable. The recursions (9) and (10) together with 
the Fatou Lemma for (conditional) expectations as well as lower semicontinuity 
properties of infima in parametric minimization (e.g., Theorem 1.17 of [40]) imply 
lower semicontinuity of f with respect to X 1 and of the objective function Xl H 

J::: f(Xl , l.)l1( dl.). If the multistage model (1)-(3) has relatively complete recourse, 
it holds that If(Xl, l.)1 :::; K(l + maXt=l ....• T IIl.tlll for each feasible Xl, each l. E 
2 and some constant K > O. Hence, the integrand has a uniform and integrable 
upper bound, and the objective function is finite at all feasible Xl. By Lebesgue's 
theorem, the objective function is continuous at some feasible Xl if Il({l. E 2 : 
f ( ., l.) is not continuous at X d) = O. Such discontinuity sets of the integrand f have 
been studied in [43] for the two-stage situation with fixed recourse matrix Azz and 
recourse costs Cz. 

When developing approximation schemes and algorithmic approaches for solv
ing the model (1)-(3), the behaviour of its optimal value val(ll) and of the set Sol(ll) 
of first-stage solutions to (1 )-(3) is important when perturbing or approximating the 
underlying distribution 11. We say that the model (1)-(3) is stable ifval(·) and SolO 
satisfy certain continuity properties at 11 with respect to some suitable convergence 
of probability measures. Here, we follow the presentation in [35] and consider the 
distance 

df(Il,'V) := suP{1 J f(xl, l.)(Il-'V)(dl.)1 : Xl EX,} (14) 

of probability measures 11 and 'V belonging to the set Pl (2) := {'V E P(2) : 
J::: IIl.lI'V(dl.) < co}. Then it holds for any perturbation 'V of the original underlying 
probability distribution 11 that 

Ival(ll) - val ('V )1 :::; ddll, 'V) 

0!- Sol('V) ~ Sol(ll) + 'JI(df(Il,'VllBm1 

(15) 

(16) 

where Bml denotes the closed unit ball in IRm1 and'JI is some monotonically in
creasing function on ll4 with 'JI(O) = 0, which is related to the growth behaviour 
of the objective function near the set Sol(ll) (see [35]). While (15) represents a Lip
schitz type estimate for the optimal value at 11, the relation (16) says that the sets 
of first-stage solutions behave upper semicontinuously at 11 with respect to df. In 
general, the distance df is rather involved and difficult to handle. Hence, it is of con
siderable interest to derive estimates of df in terms of simpler probability metrics 
and to expose relations to the classical concept of weak convergence of probability 
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measures. For two-stage models with fixed recourse matrix and costs, such results 
are obtained in [44] and [35]. We also refer to relevant stability studies in [2,18,49]. 
Altogether, such stability results justify the approximation of the underlying distri
bution J.l. by simpler measures and provide techniques for designing approximation 
schemes. Next, we show that approximations by discrete measures having finitely 
many atoms or scenarios play a prominent role since they lead to specially struc
tured large-scale mixed-integer linear programs. 

2.4 Scenario Based Models 

We assume throughout this section that n is finite, i.e., n = {WS}~=l' :F is the 
power set of nand P({ws}) = Ps, s = 1, ... ,5. We denote by E,; := E,t(ws) the 
value of the data scenario s at stage t and by x; the value of the decision scenario s 
at t for s = 1, ... , 5, t = 1, ... , T. Since n is finite, there exists a finite subset Ct 
of the a-algebra :Ft , for each t = 1, ... , T, such that Ct is a partition of n and that 
the smallest a-algebra containing Ct is just :Ft. Then the conditional expectation 
w.r.t. F t in the nonanticipativity condition (4) takes the form 

E[xtl:Ftl = L p(lC) J Xt(w)P(dw)Xc 
CEEt C 

S S 

= L ( L Ps)-l ( L Psx~)Xc (17) 
CEEt 5=1 5=1 

wsEe wsEe 

where Xc denotes the characteristic function of the set C E £t. Hence, the nonan
ticipativity condition (4) is equivalent to the following equality constraints 

s s 
xf = L. ( L Ps)-l L Psx~, a= 1, ... ,5, t= 1, ... ,T. (18) 

CeEt 5=1 5=1 
waEC wsEe wsEe 

Clearly, for t = 1 we have C1 = {n} and, hence, condition (18) is equivalent to the 

equations xf = L~=l Psx~, a = 1, ... ,5, i.e, to x~ = ... = xt. 
Hence, the multistage stochastic program (1)-(3) takes the following form which 

will be called its scenario formulation: 

S T 

min { L L PsctlE,~)x~ : x satisfies the constraints (18), (19) 
s=lt=l 
x~ E Xt , Bt (E,~ )x~ ~ dtl E,~)' s = 1, ... , 5, t = 1, ... , T, 

t 

LAt'["(E,nx~ ~ gdE,~), s = 1, ... ,5, t=2, ... ,T} 
'["=1 

Since F t ~ Ft+ 1, every element of ct+ 1 can be represented as the union of certain 
elements of Ct. Furthermore, formula (17) shows that the number of elements in 
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f t coincides with the number of realizations of E., and x at period t, respectively. 
Hence, representing the relations between the elements of f t and fa 1 for t = 
1 , ... , T - 1, leads to a tree having the same structure as the sets of scenarios of E., 
and x, respectively. Therefore, such a tree is called scenario tree. It is based on a 
finite set N ~ N of nodes. Figure 1 shows an example of a scenario tree where the 
tk denote the branching points of the tree. 

1 tl t2 tK T 

Figure 1. Example of a (binary) scenario tree 

The root node n = 1 stands for period t = 1. Every other node n has a unique 
predecessor node n_ and a transition probability 7fn/n_ > 0, which is the proba
bility of n being the successor of n_. The probability 7fn of each node n is given 
recursively by 7fl = 1, 7fn = 7fn/n_ 7fn_ , n > 1. We denote by N + (n) the set of 
successors to node n, by path(n) the path from the root to node n and by t(n) its 
length, i.e., t(n) := card(path(n)). Nt denotes the set {n EN: t(n) = t}, and it 
holds LnENt 7fn = 1 for each period t. Nodes n withN+(n) = 0 are called leaves; 
they constitute the terminal set NT. A scenario corresponds to a path from the root 
node to a leaf. Clearly, it holds that card (NT ) = Sand {7tn }nENT = {Ps}~=l. Con
versely, given these scenario probabilities, the remaining node and transition proba
bilities are generated recursively by 7fn := Ln+EN+(n) 7fn +, 7fn+/n := 7fn +/7fn 

for n+ E N + (n). We use the following notation for the sequence of predecessors 
of any node n E N: no := n, n-l := n_ if n > 1, n_(K+l) := (n_ K)- if 
t(K) > 1. Note that t(n_ K) = t(n) - K for K = 1, ... , t(n) - 1. Furthermore, we 
denote by {E., n }nENt the realizations of E.,t and by {x n }nENt the realizations of Xt. 
After these preparations the scenario tree formulation of the multistage stochastic 
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program reads: 

min{ L 7tn Ct(n)(E,n)xn : xn E Xt(nJ, Bt(n) (E,n)xn ;::: dt(n) (E,n), (20) 
nEN 
t(n)-l 

L At(nl,t(n)_K(E,n)Xn _ K ;::: gt(n)(E,n), n EN} 
K=O 

Both formulations of the multistage stochastic program will be used for the descrip
tion of decomposition approaches. We recall that the nonanticipativity condition 
appears explicitly in the scenario formulation (19), but disappears in the scenario 
tree formulation (20) because it is incorporated into the tree construction. Since it 
holds that INI := card(N) < < T5, the dimensions of both model formulations are 

quite different. More precisely, the model (19) contains (L~=l mt)5 decision vari

ables and L ~= 1 (mt + kt + r t) 5 linear constraints, whereas the model (20) contains 
LnEN mt(n) decisions and LnEN(kt(n) +rt(n)) linear constraints. Here, kt and 
rt denote the dimensions of d t (.) and gt (. ), respectively, for t = 1, ... , T. 

2.5 Dualization and the Convex Case 

We assume E, E x J= 1 Loo (a, F, P; IRSt ) and consider the multistage stochastic inte
ger program of Section 1 as an abstract (infinite) optimization problem in the Banach 
space xJ=l Loo (a, F, P; IRmt ), i.e., in the form 

T 

min{E [L ctfE,t)xtl : x E XJ=lloo(O,F, P;lRmt), x E N na , (21) 
t=l 
Xt E Xt. BtfE,t)xt ;::: dt(E,t), P - a.s., t = 1, ... , T, (22) 

t 

L At"(E,t)x,, ;::: gt(E,t), P - a.s., t = 2, ... , T}. (23) 
,,=1 

Let F(·) denote the objective function, i.e., F(x) := E[L~=l Ct (E,t)xtl. 

Our aim is to introduce a Lagrangian associated with the essential groups of 
constraints of problem (21)-(23), namely, the (functional) nonanticipativity con
straint x E N na , the kt coupling constraints BtfE,t)xt ;::: dtlE,t) and rt dy
namic constraints (23). We make use of the concepts and results of [38] and in
troduce the following sets 1\.1 := {A1 E xJ=lll (a, F, P; IRmt) : E[AltiFtl = 
0, P - a.s., t = 1, ... , T}, I\.z := {AZ E xJ=lll (a, F, P; IRkt) : AZ ;::: 0, P - a.s.} 
and 1\.3 := {A3 E XJ=lll(O,F,P;IRTt) : A3 ;::: 0, P-a.s.}ofLagrangemul
tipliers. The sets I\.z and 1\.3 are convex cones and 1\.1 is a linear space which is 
complementary to the nonanticipativity subspace N na with respect to the dual pair

ing (-,.) of II and loo, i.e., it holds (A1, x) := E[L~=l Altxtl = 0 for all A1 E 1\.1 
and x E N na. 
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The Lagrangian is defined to be the function 

T 

l(x, A) := E[L. { cd £'t )Xt - A1tXt + A2t (dt (£'t) - Bt (£'t )Xt)} (24) 
t=l 

T t 

+ L. A3d 9t (£'t) - L. At't" (£'t )x't" )] 
t=2 't"=1 

from x~=lloo(n, F, P; IRmt) x A to IR, where A:= Xf=lAi. The dualfunction 0 
from A to IR is defined by 

O(A):= inf{l(x,A): x E x~=lloo(n,F, p;Rmt), (25) 

Xt EXt, P - a.s., t = 1, ... , T}, 

and the dual problem associated with (21)-(23) is 

max{O(A) : A E A}. (26) 

We assume again that the sets Xt , t = 1, ... , T, are compact. Then the Lagrangian 
l and the dual function 0 are well-defined, 0 is concave and the weak duality 
estimate 

OrA) ~ F(x) for all A E A and all x satisfying (21)-(23). (27) 

is valid. In the following, we say that the model (21)-(23) is strictly feasible if there 
exist x E Nna and £ > 0 such that 

Xt + EB mt ~ conv(Xt ), Bd£'t)xt ~ dd£'t) + E, P - a.s., t = 1, ... , T, 
t 

L At't"(t,dx't" 2: 9t([,t) + e, P - a.s., t = 2, ... , T, 
't"=1 

where Bm denotes the closed unit ball in IRm. Then we conclude from Theorem 1 
and from Theorem 3 of [39] that the following holds. 

Theorem 2. Assume that the general assumptions are satisfied, that the sets Xt , t = 
1, ... , T, are convex compact and that the model (21)-(23) has relatively complete 
recourse and is strictly feasible. Then there exist optimal solutions X to (26) and x 
to (21)-(23), and it holds O(X) = F(x). 

Since the sets Xt , t = 1, ... , T, fail to be convex, such a duality result is not avail
able in our setting and, due to (27), we are faced with a duality gap 

OG := F(x) - sup OrA) ~ o. (28) 
AE/\ 

This inequality is strict, in general. On the other hand, in case of a discrete under
lying probability distribution, the theory of Lagrangian relaxation in mixed-integer 
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linear programming (cf., e.g., Chapter 11.3.6 of [31]) implies that the optimal value 
of (26) is greater than or equal to the optimal value of the linear programming re
laxation to (19) or (20). In other words, the lower bound obtained by dualizing 
constraints is never worse the bound obtained by relaxing the integer requirements. 

So far we have associated Lagrange multipliers with nonanticipativity, coupling 
as well as dynamic constraints. Of course, it is also of interest to consider restricted 
Lagrangians and restricted duals by associating multipliers with one or with two 
of these three groups of constraints, only. For such restricted dualization schemes, 
duality results for the convex case that are similar to Theorem 2 may be derived 
as well (see [37] for dualizing the nonanticipativity constraints and [38] for other 
inequality constraints). It is worth recalling that the duality gap increases when du
alizing additional constraints (see Section 3.1 in [29]). Since small duality gaps are 
of algorithmic interest, we take a closer look at dualization schemes where either 
nonanticipativity or coupling or dynamic constraints are associated with Lagrange 
multipliers. We denote the corresponding dual functions from Ai to lR by Oi for 
i = 1,2,3 and start with dualizing nonanticipativity constraints, i.e., 

T 

01(;\.,) :=inf{E[L(Ct(E,t)Xt-AltXt)] : xE xi=1loo(fl,F,P;Rmt), 
t=1 

Xt EXt, BdE,t)xt ;::: dt(E,t), P - a.s., t = 1, ... , T, 
t 

L AtT(E,t)XT 2: 9dE,t), P - a.s., t = 2, ... , T} 
T=1 

T 

= E[inf{L (cdE,tlxt - Altxtl : Xt EXt, Bt(E,tlxt ;::: ddE,tl, 
t=1 

t 

t = 1, ... , T, L AtT(E,tlxT ;::: 9t(E,t), t = 2, ... , T}l, 
T=1 

where the infimum and expectation may be interchanged since the minimization 
problem only contains P-a.s. pointwise constraints (see e.g., Theorem 14.60 of [40]). 
Hence, the multistage stochastic program defining 0 1 decomposes into pathwise 
minimization problems. This effect becomes more transparent if the underlying 
probability distribution of E, is discrete, i.e., if fl = {W1, . .. , ws}. Adopting the 
notation of Section 2.4, the dual function takes the form 

S T 

01 (All := L Ps inf{L[ct(E,~)x~ - A~tx~l : x~ EXt, (29) 
s=1 t=1 
Bt (E,~ )x~ ;::: dt (Q)' t = 1, ... , T, 

t 

L AtT(E,nx~ ;::: 9t(E,~), t = 2, ... , T}, 
T=1 
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where A1 E A1 has the scenarios {A~tg=l with probabilities Ps for 5 = 1, ... , $ 
and A 1 is given by the linear subspace 

s S 

A1 = {A1 : E[AltiFtl = L. ( L. Psl-1 L. PSA~tXC = 0, t = 1, ... , T} 
CEet ,=1 ,=1 

UJsEC wsEC 

s 
= {A1: L. PSA~t = 0, C E £t, t = 1, ... ,T} 

5=1 
wsEC 

(30) 

of the Euclidean space of dimension O=~=l kt + L~=2 rtl$. Since £1 = {O} and 
ET = {{W1}, ... , {ws}}, the conditions for t = 1 and t = T in (30) are equivalent 

to L~=l PsA~ 1 = ° and Ah = 0, 5 = 1, ... , $, respectively. We note that the 
constraint A1 E A1 means that each A1 -=I ° is anticipative, i.e., Alt is not F t -
measurable for some t (see also the example in [22]). Sometimes, one might find 
it more convenient that the dual function is defined and maximized on the whole 
space, i.e, without regard to the subspace constraint AlE A 1. This can be done be 
replacing Alt in the right-hand side of (29) by Alt - E[AltiFtl for t = 1, ... , T. 
Then the subspace constraint for the multiplier is automatically satisfied and the 
dual maximization problem is unconstrained. 

Next we consider dualizations of certain inequality constraints by some mul
tiplier, but leave the nonanticipativity constraint untouched. In contrast to the an
ticipativity of multipliers in the previous case, the multipliers may now be chosen 
nonanticipative, i.e., as elements of x [= III (0, F t , Pl. This is due to the linear sep
arability properties of (21)-(23) (Theorem 7 of [38]). In particular, when dualizing 
the coupling constraints, the restricted dual function 

T 

D2(A2l := inf{E[.L, (cdE.t)Xt + A2ddt(E.t) - BtlE.t)xtll] : x E Nna , (31) 
t=l 

t 

Xt EXt, L At-r(E.tlx-r ~ 9t(E.t), P - a.s., t = 2, ... , T}, 
-r=1 

has to be maximized on the convex cone A2 := {A2 E x [= III (0, F t , P; JRk t ) 

A2t ~ 0, P - a.s., t = 1, ... ,T}. Dualizing the dynamic constraints leads to maxi
mizing the restricted dual 

T T t 

D3(A3l:= inf{E[L. ctlE.tlxt + L. A3tl9t(E.tl - L. At-r(E.tlx-rll (32) 
t=l t=2 -r=1 

X E Nna , Xt E Xt, Bt(E.tlxt ~ dt(E.t), P - a.5., t = 1, ... , T}. 

subject to the convex cone A3 := {A3 E X[=lll (0, F t , P; JRTt 1 : A3t ~ 0, P -
a.s., t = 1, ... ,T}. Clearly, both optimization problems on the right-hand sides of 
(31) and (32), respectively, are stochastic integer programs. While the program in 
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(31) exhibits the typical multistage structure, the specific feature of the program in 
(32) is the lack of a dynamic constraint. In Sections 3.2 and 3.3 we gain further infor
mation on these programs in case of a discrete underlying probability distribution, 
i.e., when the data, decisions and multipliers form scenario trees. 

3 DECOMPOSITION METHODS 

Due to the enormous size of scenario based models in multi-stage stochastic pro
gramming, decomposition is the method of choice when it comes to numerical 
solution. This is further enhanced by special structures met, both in the scenario 
formulation (19) and in the scenario tree formulation (20) of multi-stage stochastic 
programs. If integer requirements are missing in (21) - (23), powerful convexity and 
duality results (cf. Theorem 2) are the basis of efficient decomposition methods. 
These methods can be subdivided into primal and dual ones. 

Primal decomposition methods employ the scenario tree formulation (20). Start
ing from the root node, primal proposals are passed down the tree where they are 
used to compute so called feasibility and optimality cuts that are passed upward 
to be included into convex optimization problems whose solutions lead to updated 
primal proposals that are again passed down the tree, and so on. This procedure 
(nested decomposition) is enhanced by regularization and cut deletion. Its mathe
matical backbone is convexity, in particular ideas from the area of bundle-trust and 
proximal point methods. 

Dual decomposition circles around duality results such as Theorem 2. The ap
proaches discussed in Section 2.5 then all benefit from a zero duality gap. Particu
lar attention has been paid to dualizing nonanticipativity in the framework of aug
mented Lagrangians and related proximal point algorithms (progressive hedging, 
cf. [39]). The survey papers [5,42] provide further insights into both primal and 
dual decomposition of multi-stage stochastic linear programs. 

With integer requirements in (21)-(23) the mentioned powerful convexity and 
duality results are lost. Approaches to decomposition, that have proven efficient for 
purely linear models, have to be rethought from their very beginnings. 

The impact of integrality on primal decomposition is twofold: Feasibility and 
optimality cuts can no longer be obtained as linear functionals but as merely sub
additive functionals instead. Primal proposals can no longer be obtained via con
vex programs but via merely lower semicontinuous (discontinuous) nonconvex pro
grams instead. For algorithmic realization this leads to obstacles impossible to over
come with existing methods, [8,11]. Two-stage models have been tackled with lim
ited success by solving the mentioned lower semicontinuous programs via enumera
tion [45] or branch-and-bound [1] and exploiting problem similarities in the second 
stage. 

The impact of integrality on dual decomposition has already been mentioned in 
Section 2.5: Theorem 2 is no longer valid, and we face a non-zero duality gap (28). 
Although progressive hedging then is no longer formally justified, quite satisfactory 
results have been observed empirically for specific applications, [30,47]. 
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In what follows, we will return to the dualization schemes introduced in Sec
tion 2.5 in case that the underlying probability distribution is discrete. We will dis
cuss the solution of the corresponding dual maximization problems 

max{OdAd : Ai E Ad (i = 1,2,3) 

by subgradient type methods and examine the decoupling potential of the different 
dualizations. Under the conditions imposed in Section 2.5 the dual functions Oi are 
finite, concave and polyhedral. They have the form 

OdAd = inf{F(x) + (Ai, Gdx))}, 
x 

(33) 

where F is the objective function, Gi is some affine linear function from Loo to 
Loo , and (.,.) denotes the dual pairing of Ll and Loo. Hence, GdxdAd) is a sub
gradient of Oi if Xi (Ai) is a solution to the minimization problem (33) defining 
Oi. Furthermore, the solution sets of the dual problems are nonempty since their 
objectives are polyhedral and their suprema finite. Therefore, subgradient bundle 
methods may be used for solving the duals, [23,25,28]. Let us consider the proxi
mal bundle method [17,23,25] in some more detail. Starting from an arbitrary point 
AJ = ~l E Ai, this method generates a sequence {At}kEN in Ai converging to , -
some solution of the dual problem, and trial points Af for evaluating the solutions 
xf = Xi (~f) of (33), the subgradients Gi (xf) of Oi and its linearizations 

Of(·):= OdAf) + (- -~f,Gdxf)) ~ 0d·). 

Iteration k uses the polyhedral model Did·) := mintENk O~(.) with k E Nk C 
{1 , ... , k} for finding the nexttrial point ~f+ 1 as a solution of the quadratic subprob
lem 

1 k 2 
max{OidA) - ZUklA - Ai I : A E Ad, (34) 

where the proximity weight Uk > 0 and the penalty term 1 . 12 := (.,.) should 
keep ~f+ 1 close to the prox-center At. An ascent step to Af+ 1 = ~f+ 1 occurs if 
Od~f+ 1) ~ OdAn + KOk, where K E (0,1) is a fixed Armijo-like parameter and 
Ok := Oik(~f+ 1) - DdAf) ~ 0 is the predicted ascent (if Ok = 0 then Af is a 
solution and the method may stop). Otherwise, a null step Af+ 1 = Af improves the 
next model Oi, k+ 1 with the new linearization 0 f+ 1. The choices of the weights 
Uk and of the index set N k+ 1 are dicussed in [17,25] (see also Section 3.4 of [19]). 
The quadratic subproblem (34) is essentially influenced by the dual pairing (.,.). 

The latter reads (Ai. y) = L~=1 Ps L~=1 Aftyt and (Ai, y) = LnEN 7tnAfy n 
for the scenario and the node formulations, respectively. 

3.1 Scenario Decomposition 

Scenario decomposition rests on the dualization of nonanticipativity constraints if 
the probability distribution of l, is discrete. This leads to the dual maximization 
problem 

max{01 (A,) : A1 E A,} (35) 
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where 01 and Al are defined as in (29), (30) of Section 2.5. Since the computation 
of 01 decomposes into solving pathwise minimization problems, function values 
and sub gradients of 01 are obtained by solving the single-scenario problems 

T 

min{L{Ct(E,~)x~ - Altx:J: x~ EXt, 
t=l 

Bt(E,~)x~ ~ ddE,~)' t = 1, ... , T, 
t 

L At-c(E,~)x~ ~ gt(E,~), t = 2, ... , T} 
-c=1 

for all s = 1, ... ,5. 
Indeed, if XS , s = 1, ... ,5, denote optimal solutions to these problems, then 

5 T 

01 (Al) = L Ps(L{Ct(E,~)x~ - Altxm, 
5=1 t=l 

and G 1 (x) = X is a subgradient of 01 at A 1, where x has the scenarios x S , s = 
1, ... ,5. Compared with the scenario formulation (19) of the multi-stage stochastic 

program (1 )-(3), which is a mixed-integer linear program in dimension 5· r. J= 1 mt, 
the above single-scenario problems are 5 mixed-integer linear programs each of 
dimension r.J=l mt. only. In view of (28), solving (35) provides a lower bound to 
the optimal value of the multi-stage stochastic integer program (19). 

If the single-scenario solutions xl' ... ,x~ for the optimal Al in (35) fulfilled 
the nonanticipativity constraints then x would be optimal to (19). In general, how
ever, one faces a non-zero duality gap (28). Therefore the lower bounding has to be 
accompanied by upper bounding procedures resting on the generation of "promis
ing" feasible solutions. This can be accomplished by primal heuristics starting from 
the results of the dual optimization, i.e., from single-scenario solutions xl' ... , x~ 
corresponding to optimal or nearly optimal A 1 . 

An algorithmic realization of scenario decomposition for the case T = 2, i.e., 
for two-stage stochastic integer programs, has been proposed in [8-10]. The nonan
ticipativity constraints then read xf = r.~=1 Psxl , C1 = 1, ... ,5. In [8-10], the 
equivalent representation x~ = ... = x~ is employed, and the scenario formulation 
(19) is set up with (18) replaced by x~ = ... = x~. Then, the usual Lagrangian re
laxation of mixed-integer linear programming is performed with respect to the con
straints x~ = ... = x~. In particular, this leads to a non-probabilistic Lagrangian, 
in contrast to the probabilistic Lagrangian (24) introduced in Section 2.5. As a con
sequence, the Lagrangian dual of [8-10] is unconstrained and lives in dimension 
(5 - 1) . ml. In the setting of Section 2.5, cf. (30), we obtain a dual in dimension 

5· ml constrained by r.~=1 PsAll = 0, i.e., essentially an unconstrained program 
in dimension (5 - 1) . m 1 as well. 

In [8-10], the scheme of lower and upper bounding outlined above is further 
enhanced by embedding into a branch-and-bound algorithm in the spirit of global 
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optimization. As stated in (13), the stochastic program can be rewritten as a noncon
vex global optimization problem. In the branching part of the algorithm, the feasible 
region of (13) is subdivided. On each member of the subdivision, the bounding part 
employs dualization of nonanticipativity for the lower and a primal heuristic for the 
upper bounds. For further details on scenario decomposition for two-stage stochastic 
integer programs we refer to [21]. 

Only little is known about algorithmic realizations of scenario decomposition for 
multi-stage stochastic integer programs with T > 2. First experiences on extending 
the approach of [8-10] will be reported in [4]. 

3.2 Component Decomposition 

Dualization of component coupling constraints results in the dual maximization 
problem 

max{OZ(AZ) : AZ E A.z}, 

where Oz and I\z are defined in Section 2.5. We assume that the underlying prob
ability distribution of the data process E, is discrete and, hence, given in form of a 
scenario tree {E,n}nEN, where N denotes the finite set of nodes. The notation of 
Section 2.4 is used, and we denote by x = {x n }nEN the decision scenario tree and 
by AZ = {Az}nEN the multiplier scenario tree. Then the dual function (31) may be 
rewritten in the following form (see also (20)): 

OZ(AZ):= inf{ L. 7tn{Ct(n) (E,n)xn + Az(dt(n)(E,n) - Bt(n) (E,n)xnn : (36) 
nEN 

t(n)-l 

xn E Xt(n), L. At(nJ,t(n)_K(E,n)Xn_ K ~ gt(n) (E,n), n E N} 
K=O 

where AZ E I\z = {{AZ }nEN : AZ ~ 0, n EN}. In order to demonstrate the 
component decoupling potential hidden in Oz, we assume that Xt has the specific 
structure Xt = x :;:1 Xti , where the Xti are closed subsets of lR, that mt = m, 
kt = k and rt = mr for t = 1, ... , T and some r E N, and that the matrices At't(·) 
are block-diagonal with m blocks a~'t(·) E IRT for i = 1, ... , m. In particular, 
this condition means that the constraints in (36) are expressible as componentwise 
constraints. We denote by c~ (.) the i-th component of Ct (.), by g~ (.) E IRT the i-th 
component vector of gtl·), and by b~ (.) the i-th column of the matrix Bt (.). With 
xi denoting the i-th component of x n, we obtain by exchanging summation w.r.t. 
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nandi 

m 

02(A2) = inf{ L. TCn{L.[C~(n) (l,n) - A2"b~(n) (l,n)]xf + A2"dt (n) (l,nn : 
nEN i=l 

t(n)-l 

xf E X~(n)' L. a~(n).t(n)_I«l,n)x~-· ~ g~(n)(l,n), 
1<=0 

i = 1, ... , m, n E N} 
m 

= L. 02dA2) + L TCn A2"dt (n)(l,n) 
i=l nEN 

where the functions 02io i = 1, ... , m, from A2 to lR. are defined by 

02dA2) = inf{ L TCn[C~(n) (l,n) - A2"b~(n) (l,n)]xf : xf E X~(n)' (37) 
nEN 
t(n)-l 

L. a~(n).t(n)_I«l,n)x~-· ~ g~(n)(l,n), n E N}. 
1<=0 

By specifying (33) we obtain that G2(X) = {dt(n) (l,n) - L:'l b~(n) (l,n )Xf}nEN 

is a subgradient of 02 at A2, where Xi = {Xf}nEN is a solution of (37). The dual 
function (36), which is defined by a multistage stochastic integer program of di
mension mlN'l, decomposes into m functions each given by a multistage stochastic 
integer program of dimension IN'I. Since the dimension of the dual problem is klN'l, 
the computational potential of this dualization approach takes effect in situations, 
where the number k of coupling constraints to be dualized is much smaller than the 
decision dimension m (i.e., k < < m) and where the m subproblems (37) of dimen
sion IN'I can be solved much faster than the original multistage model of dimension 
mlN'l. The latter could appear, for example, if complex mixed-integer models de
compose into pure integer and pure linear programs. 

Component decomposition has been applied successfully under the label La
grangian relaxation of coupling constraints to solving hydro-thermal power man
agement models under data uncertainty. Lagrangian relaxation has a long tradition 
for solving (deterministic) unit commitment problems of power systems operation. 
Recently, this technique has been extended to stochastic power management models, 
where the stochasticity enters the model, for example, via the electric load, stream
flows to hydro units, and electricity prices. When letting the production decisions of 
individual power units play the role of components, the above dualization scheme 
leads to a decomposition into single (thermal or hydro) power unit models. Such 
approaches for determining lower bounds have been proposed and implemented 
in [3,13,19,33,41]. In [19,20,32] encouraging numerical results and computing 
times have been reported for both solving the dual and determining a nearly optimal 
primal solution by a Lagrangian based heuristic. 
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3.3 Nodal Decomposition 

Finally, we return to the dualization of the dynamic constraints of (21) - (23) in 
case of a discrete underlying probability distribution and show that the dual function 
exhibits a nodewise decoupling structure. We let 03 and A3 be defined as in Section 
2.5 and consider the corresponding dual problem 

max{03(A3) : A3 E A3}. 

Let {E, n }nEN be the scenario tree representing the data process E" N the finite set of 
nodes, {7tn}nEN the node probabilities, and {x n }nEN and {A3 }nEN the correspond
ing scenario trees of the decision and of the multiplier process, respectively. Using 
the notation of Section 2.4, the dual function 03 takes the following scenario tree 
representation 

03(A3) = inf{c,(E,')x' + L 7tn [Ct(n) (E,n)xn + A3(9t(n)(E,n) (38) 
nEN\{1} 
t(n)-' 

- L At(n)'t(n)_K(E,n)Xn -_)] 
K=O 

xn E Xt(n» Bt(n) (E,n)xn 2: dt(n) (E,n), n EN}, 

where A3 E A3 = {{A3}nEN : A3 2: 0, n EN}. Since the minimization problem 
in (38) contains only node constraints for the decision tree, we rearrange its objective 
function with respect to the decision nodes and obtain 

03(A3) = inf{ L 7tn (Ct(n) (E,n) - L 7tiA~At(i),t(n)(E,i))xn 
nEN iETr(n) 

+ L. 7TnA39t(n)(E,n): 
nEN\{1} 

xn E Xt(n), Bt(n) (t,n)xn 2: dt(n) (E,n), n EN}, 

where Tr( 1) := N \ {1}, and Tr( n) for n > 1 denotes the set of all nodes belonging 
to the subtree with root node n, i.e., Tr(n) := UnTENT{path(nT) : n E path(nT)}\ 
path ( n_). Now, we may interchange summation and minimization and arrive at the 
node decomposed formulation 

03(A3) = L 03n(A3) + L 7tnA39t(n) (E,n) (39) 
nEN nEN\{,} 

of 0 3, where the functions 03n, n E N, are defined on A3 and given by 

03n(A3):= inf{(7tn ct(n) (E,n) - L. 7tiA~At(i),t(n)(E,i))xn: (40) 
iETr(n) 

xn E Xt(n), Bt(n) (E,n)xn 2: dt(n) (E,n)}. 



598 W. Romisch and R. Schultz 

Hence, the representation (39) of D3 provides a decomposition of the original 

mixed-integer program of dimension LnEN mt(n) into INI subproblems (40) of 

dimension mt(n) for n E N. Formulas for computing subgradients of D3 may be 

derived similarly to the previous section. Computational experience of such nodal 

decomposition schemes for determining lower bounds of multistage stochastic inte

ger programs is not available yet. 
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