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 MATHEMATICS OF OPERATIONS RESEARCH

 Vol. 18, No. 3, August 1993
 Printed in U.S.A.

 STABILITY OF SOLUTIONS FOR STOCHASTIC
 PROGRAMS WITH COMPLETE RECOURSE

 WERNER ROMISCH AND RUDIGER SCHULTZ

 Quantitative continuity of optimal solution sets to convex stochastic programs with (linear)
 complete recourse and random right-hand sides is investigated when the underlying probabil-
 ity measure varies in a metric space. The central result asserts that, under a strong-convexity
 condition for the expected recourse in the unperturbed problem, optimal tenders behave
 Holder-continuous with respect to a Wasserstein metric. For linear stochastic programs this
 carries over to the Hausdorff distance of optimal solution sets. A general sufficient condition
 for the crucial strong-convexity assumption is given and verified for recourse problems with
 separable and nonseparable objectives.

 1. Introduction. This paper extends the stability analysis of [25] for solutions of
 certain two-stage stochastic programs. We deal with problems of the type

 (1.1) P(/) min{g(x) + Q(Ax): x E C}, where

 (1.2) Q( Ax) = Q(Ax, z)ty(dz),

 (1.3) Q(Ax, z) = min {qTy: Wy = z -Ax, y > 0}.
 y

 For the data in (1.1)-(1.3) we assume that g: Rm -_> R is a convex function, At is a
 (Borel) probability measure on Rs, A e L(lm, Rs), z e [R, C c Rm nonempty,
 closed, convex, q E Rn, W E L(Rm, Rs). Throughout, we have the following general
 assumptions:

 (Al) For each t E Rs, there exists y e [R (the nonnegative orthant of Rn) such
 that Wy = t.

 (A2) There exists u E R5 such that WTu < q.
 (A3) Jrszll\zll(dz) < +oo.
 Assumptions (A1)-(A3) imply that the function Q, given by (1.2) is defined on Rs,

 real-valued and convex (cf. [14], [31]). Two-stage problems of type (1.1) arise as
 deterministic equivalents of improperly posed convex programs

 (1.4) min{g(x): x E C, Ax = z},

 where the right-hand side z is random. Given a realization of z, a possible deviation
 z - Ax is compensated by additional costs Q(Ax, z), whose expectation is added to
 the objective of (1.4). Accordingly, Q,(-) in (1.2) is called expected recourse, and,
 since due to (Al) for each deviation z - Ax there exists a compensation y, the case
 is referred to as complete recourse. For further details on deterministic equivalents to
 optimization problems with random data, consult [14], [15] and [32].

 Received August 21, 1989; revised February 19, 1992.
 AMS 1980 subject classification. Primary 90C15, 90C31.
 IAOR 1973 subject classification. Main: Programming: Probabilistic. Cross References: Programming:
 Multiple Criteria.
 OR/MS Index 1978 subject classification. Primary: 663 Programming/Stochastic.
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 SOLUTIONS FOR STOCHASTIC PROGRAMS

 In the present paper, we derive quantitative continuity properties for the set-valued
 mapping ?i assigning to a measure ,u in the set Y(RS) of all (Borel) probability
 measures on fR the set f(/t) of global minimizers to P(,u) (cf. (1.1)). To this end, it is
 necessary to have a deeper insight into the structure of the expected-recourse
 functional in (1.2).
 Our investigations are motivated by recent developments in stochastic program-

 ming, such as
 * solution procedures for recourse problems that rely on approximating multivariate

 continuous distributions by simpler (e.g., discrete) ones [3], [11], [17], [32],
 * convergence properties for optimal solutions when the true distribution in (1.1) is

 replaced by parametric or nonparametric estimators [8], [9], [10], [18], [28], [30].
 A unified frame for the perturbations of the underlying measures in the above

 applications is given by the topology of weak convergence of probability measures on
 the space JS(1R) [2] including suitable metrizations [7]. The analysis in [16], [24] is
 based on this topologization of 9(Rs) and leads to continuity of the optimal value
 and upper semicontinuity of the mapping ?. For linear g and polyhedral C quantita-
 tive stability of P(,i) was studied in [25], [27] where quite general results on the
 Holder continuity of the optimal value and on the upper-semicontinuity of f were
 proved. In [25], Holder continuity of i was obtained for problems where Q, is locally
 a C2 function with certain separability structure (simple recourse) and where g had
 to fulfill some additional property.

 Here, we are aiming at more general problems. The quantitative stability analysis

 in ?2 is based merely on (A1)-(A3). Under strong convexity of the functional QY in
 (1.2) which results in a growth condition for the objective of the unperturbed problem
 P(uLt), we show that optimal tenders (i.e., transformations of the optimal solution sets
 with respect to the matrix A arising in (1.1)-(1.3)) behave Holder-continuous with
 rate 1/2, when equipping .(RIFs) with a suitable Wasserstein metric [13], [22]. When
 specifying the function g and the constraint set C in P(iu) to a linear function and a
 nonempty polyhedron, respectively, this Holder estimate for optimal tenders is
 extended to the mapping i. Examples show that this extension is impossible for
 general convex C and that our rate of Holder continuity is best possible.

 Sufficient conditions for strong convexity of Q,, the central assumption for the
 Holder estimates in ?2, are presented in ?3. Provided that Q, has locally Lipschitzian
 gradient we derive a general sufficient condition and apply it to specific recourse
 models. The essential novelty in this respect is that we are able to treat also recourse
 models with nonseparable objective. Simple recourse models, the only ones for which,
 up to now, estimates on perturbed optimal solutions were available [25], are treated
 in the present paper with the objective to show how they fit into our general theory
 on strong convexity. At the end of the paper we discuss sufficient conditions on /, to
 guarantee for existence and local Lipschitz continuity of the gradient of Q,.

 2. Stability analysis. In this section we investigate stability of optimal solutions
 to the recourse problem (1.1) (under (A1)-(A3)) when the probability distribution t,
 is subjected to perturbations. To this end, we select a distance on a (properly chosen)
 subset of 9(IRs):

 Mp(s) :(v E i (f (s) s IZII(dz) < (p > 1),

 Wp(u, v) inf l\z - zlP77 (dz x dz).: 7 E D(,iv)J , sRsx
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 WERNER ROMISCH & RUDIGER SCHULTZ

 where D(pA, v) is the set of those measures in ~?(llS X RS) whose marginal distribu-

 tions are AL and v. W,(/-t, v) is the L,-Wasserstein metric [7], [13]. It is known that
 (MP(RWl), Wp) is a metric space [13] and that Wp(/ , ) -* 0 (n -* oC, E A9 Anc- MP(Rs))
 holds iff the sequence (1tt,) converges weakly to A1t (cf. [2]) and

 limff1Zf1n(dZ) = fIIzjIPAt(dz)

 (see [221). Let us denote G(x, v) := g(x) + Q,(Ax) for all x E R', v E -M,(Rs).
 Hence, problem (1.1) becomes

 (2.1) PQt) min{G(x,,It): x E C).

 For each v E M1(RWs) we denote

 p(v) := inf{G(x, v): x e C} and qj(v) := {x e C: G(x, v) = p(v)}.

 Our first stability result is a consequence of Berge's classical stability theory for
 parametric optimization problems.

 PRoPOsITIoN 2.1. Suppose (A1)-(A3) and assume that q{ttL) is nonempty, bounded.
 Then the set-valued mapping qif (from (M1(R s), W,) into R m) is (Berge) upper-semicon-
 tinuous at IL and there exist constants Lo0> 0 and So > 0 such that

 Qt 0 , I(A)u - qD(v)j LOWI( A, v),

 whenever v E M1(ls), W1(bt, v) < 50.

 PROOF. Let V c R' be a bounded open subset of R' such that q,(pA) C V. We
 introduce the notation

 (pv(v) :inf{G(x, v): x e C n clV),

 tlv(p) :IX E C n clV: G(x, v) = cpv(v))9

 for each v E M1(R1S) (cl means "closure"). Since G(-, v): REm -> RB is convex, qiv,(v) is
 nonempty for all v Ei M,(Rs).

 Now let v Ec MI(Rs), xo E fiOv(.L) = tfrQL) and x c 'fr,G'). Then we have the
 inequalities

 (PV(AL) _<G(x, A) ? (pv(v) +IG(x, ,t) - G(x, v)I,

 'pv(v) < G(x0, v) < ov0.L) +IG(xo, v) - G(x, L)i.

 This implies for each v e MI(RWs) the estimate

 I (p(CL)- PV(V) I sup IQ,(A4x) - Q(Ax)I.
 x Ef cnc V
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 SOLUTIONS FOR STOCHASTIC PROGRAMS

 (A1),(A2) imply that the marginal function (of the second stage) h(v) = inf{qTy:
 Wy = v, y > 0} (v E RS) is real-valued, piecewise linear and convex (cf. [29]). Conse-
 quently, h is globally Lipschitzian with some constant Lh > 0. Fixing some 7r E
 D(L, v) we continue:

 \IV(J) - vP(v) I < sup f h(z -Ax)it~(dz) - f h(z -Ax)v(dz)
 xECrncl V s s

 sup f lh(z -Ax) - h(z -Ax)Lr(dz x dz)
 xeCfnclV SXRS

 <Lhf liz - ill7(dz x dZ).
 sxRs

 Since r7 E D(L, v) was chosen arbitrarily, this implies

 kIfv() - v(v) I < LhW( , v.

 Continuity of G(', t) and the property

 IG(x, A) - G(x,v)I < LhW(,Lv)

 for all x E C n cl V and all v E M(IRs) imply that fiv is (Berge) upper-semicontinu-
 ous at ,t (cf. Theorem 4.2.1 in [1]). Hence, there exists 80 > 0 such that fv(v) c V
 whenever W1(tL, v) < S6. Due to the convexity this implies f(v) = ifv(v) and ;p(v) =
 (pv(v) for each v E M1(Rs), Wi(/x, v) < K0. [

 Of course, the above upper-semicontinuity of Ir also follows from more general
 qualitative stability results in [16], [24]. Here, we have recalled it to ask for quantita-
 tive properties along this line, which will lead us to the main stability results of the
 present paper. Our first theorem shows that the set-valued mapping Aq(-') (which
 assigns to each element of Mi(Rs) the set of optimal tenders) behaves Holder-con-
 tinuous.

 Before stating the theorem let us recall that a function Q: Rs - R is called strongly
 convex on a convex set V c R5 if there exists K > 0 such that

 Q(Az + (1 - A)i) < AQ(z) + (1 - A)Q(z) - KA(1 - A)lIz - 2112,

 for all z, z E [Rs, A E [0, 1] (11 11 denoting the Euclidean norm on IR).

 THEOREM 2.2. Suppose (A1)-(A3) and assume that i(Ax) is nonempty, bounded.
 Let Q, be strongly convex on an open convex set U, containing Ai(,t). Then the set
 Ai(l,) is a singleton (say Aq(/,) = {Ax,} for some x*, E f(ut)) and there exist
 constants L > 0 and 8 > 0 such that f(v) + 0 and

 sup IIAx - AxII < LW1(/, v)1/2
 x E (v)

 whenever v E M1(Rls), Wl(/u, v) < 8.

 PROOF. Since AJ(/p) is compact, there exists p > 0 such that

 U := z E RS: d(z, Aq(t)) < e} c U.
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 WERNER ROMISCH & RUDIGER SCHULTZ

 We define

 V:= (x E Rm: d(x, q(/x)) < QelAll-1}, where

 d(x,M) = inf{llx - yll: y E M};

 then A(V) c U.
 Proposition 2.1 implies that there exist positive constants Lo and 60 such that

 0 qi(v) c V and |1p(/) - p(v)l < LoWl(Qt, v) whenever v E Mi(lRs), W1(Li, v) < S0.
 Let x , E i(Li). Then we obtain for each x E C n V,

 G(x ,, ) < G (x + x),)

 (< g + (x)) + g(x) + Q Ax + 2Ax*

 1 1 K 2_A 112, G< +G(x) + G(x ) - 411Ax-AxII2,

 and thus

 K 2
 G(x, ,) > G(x ,,) + llAx -Ax I2.

 In the above estimate we used that V is convex and Q, is strongly convex on A(V).
 A first consequence of the last estimate is that AJ(/4) is a singleton. Now, put 8 = t0
 and let v e Mi([Rs) such that Wl(/X, v) < S. Then we have for each x c +(v),

 IIAx -Ax 112 < (G(x, ,) - G(x,,))

 (<- ( - (u) I +IG(x,(1) - (G(x, v))

 < 2(LoW,l(/, ) +| Q,(A) - Q(Ax)).

 The second term on the right-hand side can be estimated by repeating the argument
 in the proof of Proposition 2.1. This completes the proof. o
 The following example shows that the exponent 2 on the right-hand side in the
 assertion of Theorem 2.2 is optimal.

 EXAMPLE 2.3. Let

 Q(Ax, z) = min{y++ y: y y-= z -Ax, y+> 0, y > 0}

 and put A = 1 (hence x e R). Consider (1.1) with g 0, C == R and ,u as the
 uniform distribution on [- 1, 2]. For n e N let /Ln E Mjl(R) be given by its distribu-
 tion function F,n ((En) is a sequence in (0, ?) tending to 0):

 0, t< 2

 +t + t [- 2,en) U [En, 2)
 Fxn(t) t:= , nt n [-- E),

 1, t >~ ~.
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 SOLUTIONS FOR STOCHASTIC PROGRAMS

 Then it holds that fr(At) = ({0, qiQ.,)= [-E, ,J] (n E N) and, hence,
 SUPxEI,(=1()X - 01 = En.

 On the other hand, we have (ef. e.g., [22, p. 6531)

 -,(p( fIF,(t) -F,( t) Idt tf Itdt-e,. f
 00 en

 For the special case that g is linear and C is polyhedral, we even have Hdlder
 stability of optimal sets. This is stated in our next result which extends Theorem 4.4 in
 [251.

 THEOREM 2.4. Let, in addition to the assumptions of Theorem 2.2, G have the
 shape

 G(x, v) := rcx +- QI,(Ax) (c E P RM)

 and C be polyhedral. Then there exist constants L* > 0 and 3* > 0 such that

 dH(q'(A) I qf M) -< L~ WI(AL V) 1/2

 whenever v E M1(AWS), W1(pL, v) <&'V. (Here dH is the Hausdorff distance on subsets of
 RM.)

 PROOF. We consider A e L(Rm, Rs+ '1) A;T = (AT, c), and define /Z:= iM AT.
 Let P denote the orthogonal projection from Rm onto Y. Then there holds for each
 x E Rm. v E & M1(lkRs), G(x, v) = G(Px, v). This implies

 P(qf(v)) = argmin{cTy + Q,(Ay): y E P(C)} =:

 and, hence,

 P(v)= U C(y),

 where

 C(y) {x E C: x - y E C 6Y = {x E C: x - y e ker A}

 {x e C: Ax =Ay}.

 T'herefore

 dH(qI(1L),0fr(v)) sup dH(C(y), C(1)).
 E;E qjr (V)

 By Hoffman's Theorem [23, p. 760], there exists L > 0 such that

 dH(C(y),C(M)) ?LitHA y - A91

 for all y, - e Rm with C(y) =A 0 and C(Mr) 0 0.
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 WERNER ROMISCH & RUJDIGER SCHULTZ

 Let L > 0 and 8> 0 be chosen such that

 sup lAx - x AII j LW1(4t, v)1/2
 X GE 41(g),

 xFeli/(v)

 whenever W1Q.t, v) <85 (according to Theorem 2.2). Let v E MI(R1s) with W1(,At, ') <85,
 x E qi1.t) and k e 4'T(v). Then we have

 IcTx - cT-I =IOp(j) - Q!L(Ax) - cp(v) + Qj(Ai)I

 < I ((Lx - (p(v) I + I Q(Ai) - QgA I)J +IQ(Ai) - QjAx)

 < LhW,l(A, V) + LhW,l(A, v) + LAIIAi -AxII.

 Here, the first estimate in the last row follows from Proposition 2.1 and the second

 estimate is obtained as in the proof of Proposition 2.1. The constant- L, > 0 is a
 Lipschitz modulus for Q.(-) with respect to a suitable compact set K c RsS which
 contains all the points Ax for i E if (v), -v E M1OFRs), WX(g, v) <8. By strong convex-
 ity of Q,f() and Theorem 2.2, such a set K indeed exists.

 Put 8* := 8 and let v E- M1(R1s) such that W1(At, v) <85*. The above estimates now
 yield

 dH( Lr(,LL)h() sup IIXy - L2i~ii=L sup Ii-%11
 y E I- ?a (AL), x e qCI(A),
 E = l41 (P) fC E - i(v)

 <L sup (IIAx- AllI + cTx - cTJI
 xE-f (lt),

 <22LLhW,(/t,v)+L(l+L/)) sup IIAx-AxFII
 X E=_ q/ (A)

 I Ei ft(v)

 L*W,( /_L, V)112

 where L* 2LLh'1/2 + LL(1 + L). u
 The next example demonstrates that the assertion of Theorem 2.4 becomes wrong

 when the constraint set C is no longer polyhedral.
 EXAMPLE 2.5. Modify Example 2.3 by putting A e L(lR&2 lR1), A := (1,0) (hence

 x E 112) and C:= {x E ffR2: -x1 + (x2)2 < 0} and leaving the remainder unchanged.
 Then ,(LA) = (01, and the points (Er, ek/2) belong to Of(Ltn) for each n e N. There-
 fore, dH(If(p~), ifrQt,,)) 1 E,7; on the other hand, Wj(rt, ,a,) = E2

 REMARK 2.6. In [25] quantitative stability of recourse models was investigated
 with respect to the bounded Lipschitz metric f (see [7] for the definition of 1), which
 metrizes the topology of weak convergence. Between 1 and the Wasserstein metric
 W1, we have the following interrelation: There exists a constant C > 0 such that

 3(jt, v) ~C<W(WCtt, v) < C(l + m+ t) + m,(v))13(pt, )' I"'/p

 for all A_t, ' E MP(Rl8) and each p > 1 (mpQi) denotes (?II1zIIP,-dz))'7P). Here, the
 first inequality is a consequence of the Kantorovich-Rubinstein Theorem and the
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 SOLUTIONS FOR STOCHASTIC PROGRAMS

 second one can be proved using Theorem 2.1 in [27]. The L2-Wasserstein metric is of
 special interest since for W2(Au, v) there exist explicit formulae when ,u and v belong
 to certain classes of probability measures (cf. e.g., [12], [13], [22]). In [12], an explicit
 formula for W2(/L, v) containing only expectations and covariance matrices of AL and v
 has been established for a family of elliptically contoured distributions. Especially,
 the formula holds when Au and v are Gaussian measures on RW. In view of Wl(/., v) <
 W2(p.,v), therefore, from Theorems 2.2 and 2.4 stability properties for optimal
 solutions to recourse problems with finite-dimensional distribution parameters result
 when Au and v belong to the above-mentioned classes of measures.
 When applying Theorems 2.2 and 2.4 to specific instances of (1.1), it is decisive to

 resort to general and verifiable sufficient conditions for the strong convexity of the

 expected recourse function Q,. For the case that Q. has locally Lipschitzian
 gradient, such conditions are developed in the following section (Theorems 3.1 and
 3.4). Roughly speaking they consist of an interplay between algebraical and analytical
 properties of W, q (cf. (1.3)) and the probability distribution Au, respectively.

 3. Strong convexity and C"'1 properties. When studying strong convexity of Qf
 we may neglect the functional dependence of Q, on the measure p., and only
 properties of Q, as a function of Ax (cf. (1.2)) are interesting. Hence, we simplify our
 notation by writing Q(x) instead of Q,(Ax), with the consequence that now x is a
 variable in RW (instead of Rm). Thus, we are here interested in the strong convexity of
 the functional Q which is given by

 Q(x) = L Q(x,z),(dz) and

 Q(x, z) = min{qTy: Wy = z -x, y > 0}.

 In addition to our general assumptions (A1)-(A3) let us impose:
 (A4) The probability measure /. E .(Rs) is absolutely continuous with respect to

 the Lebesgue measure on Rs.
 Then, Q is continuously differentiable on Rs, and the gradient VQ(x) has the form

 (cf. [14], [31]):

 (3.1) VQ(x) = Edifi(x), x E R
 i=1

 where for i = 1,..., ,

 di (Bi l)TqBi'

 fi(x) = ({Z E RS: Bi- l > Bi-lx}),

 Bi E L(Rs, Rs) are nonsingular matrices consisting of columns of W which occur as
 components of optimal basis solutions in the course of the computation of Q(x, z).
 An essential point for further considerations is the property

 U {t E RS: BlIt > 0} = Rs,
 i=1
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 WERNER ROMISCH & RUDIGER SCHULTZ

 and qB, E Rs are the vectors formed by those components of q that correspond to
 the columns of W which form Bi.

 Without loss of generality we assume that the basis matrices Bi (i = 1,..., 1) are
 selected in such a way that the above covering of Rs is minimal, i.e., the sets {t E [W:
 Bit > 0, Bj1t > 0} are for all pairs (i,j) with i, j {1,...,l}, i j subsets of
 hyperplanes in Rs. By (A4) we then have

 i(tz E RS: Bi-1z > B. 'x} n {z e Ias: B1zJ- > Bjlx}) = 0

 for all i # j and all x E SRs. Hence

 (3.2) Efi(x)= 1 for all x E IR.
 i=1

 Obviously, fi(x) (i = 1, ... 1, x E gSR) may be written as

 fi(X) = A(X + ),

 where i c IRS (i = 1,..., 1) is a simplicial cone (i.e., the conical hull of s linearly
 independent vectors in Rs) and x + ~ is understood as the Minkowski sum.

 We assume

 (A5) For any simplicial cone JXc Is, the function x - L(x + JY) is locally
 Lipschitzian on R5.

 Then, (A1)-(A5) imply that VQ is locally Lipschitzian on Rs, in other words, Q is a
 C1"' functional. We will discuss (A5) at the end of the present section.

 To formulate our general sufficient condition for strong convexity of Q we need a
 specific notion of directional differentiability for locally Lipschitzian mappings which
 goes back to Kummer [19]. Given f: RS -- IW5 locally Lipschitzian on Rs and x,
 y E RS, the generalized directional derivative Af(x; u) is defined as the set consisting
 of all points z e RSW which are a limit of points

 zk = (Ak) l(f(xk + AkU) -f(k)),

 where xk -> x and Ak I0 (k -- oo). (Definition 1.4 in [19]).
 To the generalized Jacobian df(x) in the sense of Clarke [6] we have the relation

 ((P4) in [19]):

 Af(x; u) c {z E s: z = Mu,M E df(x)}.

 This inclusion can be strict (Example 2.2 in [19]).

 THEOREM 3.1. Suppose (A1)-(A5), let V c WR convex, compact and

 0 =kerD n (lin{1}) n X Afi(x; u)
 i=1

 for all x E V, u E SIS, Ilull = 1. Then Q is strongly convex on V.

 Here, ker D denotes the kernel of the linear mapping given by the matrix D E
 L(R', IR) whose columns are the vectors dl,..., dt (cf. (3.1)), (lin{1})- is the orthogo-
 nal complement of the linear subspace spanned by the vector 1 E Ill whose compo-
 nents are identically 1 and X A fi(x; u) is the cartesian product.
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 SOLUTIONS FOR STOCHASTIC PROGRAMS

 PROOF. Consider A(VQ)(x; u) c R8, the generalized directional derivative in the
 sense of Kummer for the mapping VQ, and assume that we have already established

 (3.3) infK(W, U): WE A(VQ)(x;u)} >0

 for all x E V, u E l-R, liull - 1, (Kw, u> := w'u). Then it is possible to conclude
 Strong convexity of Q on the set V by showing that there exists K > 0 such that

 Q(x) - Q( ) - K1VQ(.),x -4 > Kllx _ l112

 for all x, i e V.
 Indeed, since the mapping A(VQ)(-, ) is locally bounded and closed ((P2) in [191),

 relation (3.3) implies that for any x0 e- V there exist p > 0 and c > 0 such that

 inf{Kw, u): w E A(VQ)(j;u)I > C

 for all i E V, II - x0ll <Q , u e l7 S, lull = 1. Since V is compact, this yields that
 there is some co0> 0 such that

 inf{Kw, u): wE Lc(VQ)(x;u)} > Co

 for all x E V, u E TER, lull = 1. Using the Taylor formula in [19, Theorem 3.2], we
 obtain that for any x, i E V there exist

 yE (0, 1) and -vE -A(VQ)(x?+ y(i - x); > - x)

 such that

 Q(k) - Q(X) - (VQ(x), i - 2 W i,-

 and, hence,

 Q(i) - Q(x) - KVQ(x), i -x>

 1 1 - _ .X112 - x i -x
 >ll - xil2 lnf~\w. K xll W E VQ) x + y( -x);

 lj~~~~ - xllx -xi
 o Cllj _ X112

 which yields the desired strong convexity.
 It remains to verify (3.3). Let x c-- R', u E= - R' w e A(VQ)(x; u). Then

 Kw, u) = lim Ak2( VQ(Xk + Uku) - VQ(Xk),AkU)
 k -b oo

 for some sequences x k - x and A k O. By monotonicity of VQ the above limit is
 nonnegative and, therefore, the same is true for the infimum in (3.3). Assume that,
 for some x E V, u E R', lull = 1, the infimum in (3.3) were zero. Denote by
 E,vQ c RS the set of those points where VQ is (Frechet-) differentiable and consider

 d,(VQ)(x) = {M -E L(Ws , Rs): 3xk -- x, xk e EVQ, V2Q(xk) -* Ml
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 WERNER ROMISCH & RUDIGER SCHULTZ

 By (P4) and (P5) in [19] we have

 (3.4) * (VQ)(x)u c A(VQ)(x; u) c2Q(x)u

 where d2Q(x) is the convex hull of d,(VQ)(x). Next, one confirms that

 (3.5) inf{(Mu, u): M E a (VQ)(x)} = 0.

 Indeed, the first inclusion in (3.4) and our assumption that the infimum in (3.3) were
 zero imply that the infimum in (3.5) is nonnegative. If the latter infimum were
 positive, then, by d2Q(x) = conv d* (VQ)(x), the same is true for

 inf{(Mu, u): M E d2Q(x)}.

 Together with the second inclusion in (3.4) this would imply that the infimum in (3.3)
 is positive, contradicting our assumption that this infimum were zero. Hence, (3.5) is
 verified and, by compactness of d*(VQ)(x)(recall that VQ is locally Lipschitzian)
 there exists M E d*(VQ)(x) such that (Mu, u) = 0. By a standard argument (repre-
 senting u by an orthonormalized basis of eigenvectors of M in Rs), this yields
 Mu = 0.

 Now, there exist Xk EEVQ, xk -> x with V2Q(xk)u -> Mu = 0. For any k E
 N \ {0}, we have some Ak E (0, k-l] such that

 I]Akl(VQ(xk + Au) - VQ(xk)) - V2Q(Xk)ul < k-

 In view of V2Q(xk)u -- 0, it follows that

 Ak-(VQ(xk + Aku) - VQ(xk)) -0 0 as k -? oo.

 Formula (3.1) yields

 i=1

 For k sufficiently large, now xk + Aku and xk belong to the neighbourhood of x
 where all the fi (i = 1,..., 1) are Lipschitz (w.l.o.g. with joint module L > 0). Hence

 Ik l(fi(k + AkU) - fi(xk))l < L for i = 1,...,1.

 Successively, we pick subsequences of (xk) and (Ak), again denoted by (xk),(Ak),
 such that

 A(fi(k + AkU) -fi(xk)) fi* (i = 1,...,; k -> oo)

 for certain f*, ..., f* E R.

 In view of the properties of (xk),(Ak), we have fi* E Afi(x; u) for i = 1,..., 1.
 According to (3.6), it holds that El =difi* = 0, hence f* := (f*,..., f/i)T E ker D.
 Furthermore, (3.2) yields

 l l

 E fi(xk + Aku- ) - 1- 1= 0 for all k,
 i=l i=1
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 and, therefore, E =fi* = 0, implying f* E (lin({})l. Hence,

 f* E kerD n (lin{1}) n X Afi(x;u)
 i=l

 in contradiction to the assumption in our theorem. Hence, the infimum in (3.3) is not
 zero, and (3.3) is verified. o
 Before applying Theorem 3.1 let us consider some "exceptional" situation where

 the functional Q is linear (hence, necessarily not strongly convex). Assume (A1)-(A4)
 and split the second-stage cost vector q (see the definition of Q above) into a direct
 sum

 (3.7) q = ql + q2

 where q1 E ker W and q2 E (ker W) = im WT. Then, there exists u E R5 such that
 WTu = q2 implying Bfu = qB for i = . 1 l, and, therefore, u =(B1 lqBi for
 i=1,...,/.

 According to formula (3.1), we have

 l l

 VQ(x) = E - (Bi- ) qlfi(x) + E - (B )T qBii(x)
 i-i i=l

 l l

 - (Bi) qBT fi(x) - U Efi(x)
 i=1 i=l

 - E (B -) Tqifi(x) - u (inview of (3.2)).
 i=l

 If q e imWT, then q = 0 and VQ(x) = -u for all x e Rl, hence Q is a linear
 function independently on the choice of it. To exclude this case from further
 considerations we always will assume that q < im WT. Then in (3.7) we have ql + 0
 and, by the above representation of VQ, we may neglect the portion q2 in our
 considerations on strong convexity of Q.

 LEMMA 3.2. Let i,L E Y(Rs) fulfill (A3)-(A5) and consider some function f:
 Rs -> R given by f(x) := i(x + JY), where Xc Rs is a simplicial cone. Suppose that
 for some density 0 of it and for some x? E Rs there exist R > 0 and r > 0 such that

 0(x) > r for allx E RS, lIx - x?1ll R.

 Then there exists a constant c > 0 such that for all u E XA

 sup{w: w E f(x?; u)} <U -cllull.

 PROOF. Let B E L(1Rs, Rs) nonsingular, such that J'= {t E Rs: Bt > 0}. Con-
 sider u E Y\ {0} (for u = 0 the assertion trivially holds). Then we have

 Bu > 0 and Bu 0.
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 602 WERNER ROMISCH & RUDIGER SCHULTZ

 Without loss of generality, let

 (3.9) [Bu]l = IIBull0 := max I[Bu]i[

 where [Bu]i denotes the ith component of Bu. Let w E Af(x?; u). Then there exist
 sequences (xk), (Ak) with xk -o xO, Ak k 0 and

 w = lim Ak l(f(Xk + AkU) -f(xk)). k-- oo

 Take some e > 0 such that

 (3.10) B-l({y E Rs: IIBx? - yll, < 2k}) c {x E Rs: lix - x?ll < R}

 and then fix some k0o E N sufficiently large such that

 (3.11) IIBx? - Bxkll_t ? 1 and AkllBull < 2e for k > k0.

 With the transformation r = Bt we have for all x E Rs

 f(x) = f: ( t) dt
 teRs: Bt>Bx}

 (B-'7)ldet B-ll dr.
 {rTERs: T>Bx}

 Hence

 f(xk + Aku) - f(xk) = f 0(B-'r)ldet B-'I dr
 UT ER r> Bxk+AkBu}

 -(B-17)ldet B-l[ dr
 T EEREs: T >Bxk}

 < f[Bxk+AkBullf' ... Of (B-7) ldet B -1l dr
 [Bxk]l [Bxk]2 [Bxk]5

 (this estimate holds in view of (3.8) and (3.9))

 < [BXk]i +AkllBull f[Bxk]2+g/2

 "[Bxk3 [Bxk]2

 .. " [Bxk]s+e/20(B-'r)Idet B -1l d
 [Bxkls

 i s-l
 < - AkllBullo 2e rldet B -11

 (this estimate holds in view of (3.10) and (3.11)). Due to the equivalence of norms in
 RS, there exists c1 > 0 such that

 cjllull < IlBulloo for all u E Rs,
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 and we finally obtain

 k l(f(Xk + Ak) -f(Xk)) < _-IIU[C1() rldt B -I,

 i.e., w < -cllull with c := c1(I)S-'rldet B-1l. a

 LEMMA 3.3. Let W E L(Rs+ 1, [s) fulfill (Al) and q E ker W \ {0}. Then ker D is
 spanned by the vector whose components are the squares of the components of q. o

 The proof of the above lemma can be bound in [26] (Lemma 3.4). It consists of a
 rather long algebraic argumentation using specific properties of W as a complete-
 recourse matrix with dimension s X (s + 1) (cf. Lemma 13 and Theorem 14 in [14, p.
 52]).

 Although the general sufficient condition in Theorem 3.1 can, formally, be checked
 for any given recourse model, one, nevertheless, is interested in direct relations
 between problem data and the desired strong convexity. Such relations are estab-
 lished in the next theorem, which also covers simple recourse, where, due to the
 inherent separability, of course, a direct approach is possible too.

 THEOREM 3.4. Let either W E L(Rsl, RS), q 0 im WT and (A1)-(A5) or W E
 L(R2s, RS), W - (H, -H) with some nonsingular matrix H E L(Rs, IR), q = (q+, q-)
 with q+, q - Rs, q ++ q-> 0 (componentwise) and (A3)-(A5). Let further V c RW
 convex, compact and suppose there exist an open set U D V and a constant r > 0 such
 that for some density 0 of lt

 (t) >r forall t U.

 Then Q is strongly convex on V.

 PROOF. Let us denote

 ,s( x, u) := kerD nr (lin{)1}) 1 X A.fi(x; u).
 i=1

 First, we show that

 (3.12) 0 df(x, u) for all x e V, u E Rs, lull = 1.

 Indeed, if 0 e (x, u) for some x E V, u E R, Ilull = 1, then there exists i e
 {1,..., l} such that u E JE (cf. (3.1)). Our positivity condition for the density and
 Lemma 3.2 now provide that 0 0 Afi(x; u), contradicting 0 E '(x, u). We continue
 with the case W e L(Rls+ ,IRs) and split q into a direct sum as in (3.7). Since
 q ( im WT, we have q' = 0 and, as stated above, the portion q2 can be neglected.
 Lemma 3.3 (applied to ql) yields

 kerD n (lin{1})l= {0}.

 Hence, d(x, u) c {0} for all x E V, u WRs, Ilull = 1. By (3.12), this yields I(x, u)
 = 0 for all x e V, u E LRS, Ilull = 1, and the assumption of Theorem 3.1 is verified.

 For the second part of our assertion we first reduce the proof to "simple recourse",
 i.e., to the case H = I with I E L(lS,IRs) denoting the identity matrix. Denote
 W, = (I, -I), then W = HW, and for any basis matrix Bi arising in (3.1) we obtain
 the representation Bi = HBi, , where Bi, is the basis matrix formed by the corre-
 sponding columns of WI. This yields di = (H-1)Tdi where di I again corresponds to
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 WERNER ROMISCH & RUDIGER SCHULTZ

 Wi, and for the matrix DI with columns di,I (i = 1,..., ) we obtain ker DI = ker D.
 For the functions fi in (3.1) we obtain

 fi(x) = o H(H-lx + Ji I) where , I = H-'( ).

 The transformation formula for densities together with our positivity condition for
 the density of F yield that there is a density of ,l o H satisfying the positivity
 condition on a neighbourhood of H- (V). Hence, we may confine ourselves to simple
 recourse. In a first step, we will show that for each x E V

 0 = ( x, uj) for all uj in the canonical basis of lRS, implies
 (3.13)

 0 = X(x, u) for all u E [I, llull = 1.

 Assume that there exists v E R1 such that

 v E eV(x, u) for some x E V, u E Rs, lull = 1.

 Then u = Ej".Ajuj with suitable Aj E ER, and, by property (P1) in [19], u E
 U j=1Aj(x, uj). Therefore v Aj V(, Uj*) for some j* e {1,...,s). In case
 Aj = 0 this would provide v = 0, and 0 E M(x, u) in contradiction to (3.12). If
 Aj* = 0, then (Aj,)- v Es (x, uj ) in contradiction to (3.13).

 In the remainder, let uj be the canonical basis vector whose jth component equals
 1. When investigating ker D we may confine ourselves to q E ker W \ {0}, i.e., we
 may assume q+= q-, and the assumption q++ q-> 0 turns into q+> 0. For simple
 recourse, the basis matrices Bi in (3.1) are diagonal with nonzero entries in {-1, 1}.
 Furthermore I = 2s, and the cones J in (3.1) are the orthants in Rs. Now there
 exists a subset I c {1,..., 2s} with cardinality 2- 1 such that uj Ee X for all i E I.

 Consider [di]j, the jth components of the vectors di (i = 1,..., 1) which form the
 matrix D. We have

 [di]j= -[q+]j fori I and [di] = [q+]j for i I.

 If there were v E ker D n (lin{1})' we would obtain in light of [q+]j > 0,

 (3.14) E [U]i - E [v]i = 0.
 ieI ieI

 Since uj E i for all i E I, we have by our positivity condition for the density and
 Lemma 3.2 that there exists c > 0 such that

 sup{w: w E Afi(x; Uj)} < -c

 for all x E V and all i E I. Together with (3.14) this yields V(x, uj)= 0 for all
 x V. ?

 The above theorem raises the question whether already the positivity condition for
 the density together with q ~ im WT will yield us strong convexity of Q for an
 arbitrary complete-recourse matrix W. The following example shows that the answer
 is negative.

 EXAMPLE 3.5. Let

 W (1 1 ) and 9= (1,-1,1,1)T
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 Then (Al) is fulfilled and (A2) holds with u = (0, - 1)T. We choose an arbitrary
 tL E q,(R2) fulfilling (A3)-(A5). Since q E ker W \ {0}, we have q 0 im WT. One
 calculates

 D (-2 -2 2 2

 which yields together with (3.1) and (3.2)

 4

 VQ( x) - E [di]l 'fi(x) VQ(x)
 1 ,

 Hence VQ is not strongly monotone, and, therefore, Q is not strongly convex on any
 convex set V c WS containing elements x, x such that [x]2 2 [x]2.
 Using Theorems 3.1 and 3.4 it is in principal possible to check in Theorem 2.2

 whether Q, satisfies the hypothesis to be strongly convex on an open neighbourhood
 V, of (the bounded set) A(i(/t)). Of course, in general A(f(/t)) is hardly available
 and one cannot benefit from restricting considerations to V,. Nevertheless, there are
 relevant cases where the verification is possible. For instance, if in P(,u) the
 constraint set C is compact and the density of /t is positively bounded below on an
 open set containing A(C) or if the density of , is positively bounded below on any
 compact subset of Rs (as, e.g., for the nondegenerated normal distribution).
 REMARK 3.6. Our analysis on strong convexity of Q, readily extends to probabil-

 ity measures ,t E 3(RS) with representation

 /. = aY1 + (1 - a)A2

 where a E [0, 1), , 1 E 9(IRs) is arbitrary and /2 E 9(WS) fulfills (A3)-(A5) and the
 hypotheses in Theorem 3.1 and 3.4, respectively. Indeed, we have

 Q = aQY l + (1 -)Q

 which is strongly convex as the sum of the convex function aQ, and the strongly
 convex function (1 - a)Q,2.

 Let us now discuss assumption (A5). We have

 PROPOSITION 3.7. (A5) is fulfilled if and only if, for any nonsingular matrix
 B E L(Rs, IR), the distribution function F. B of ,t o B is locally Lipschitzian.

 PROOF. Let Jc Rs be a simplicial cone. Then there exists a nonsingular matrix
 B E L(Rs, Rs) such that

 X= {t E RS: Bt > 0)}.

 Hence, for all x E IRs,

 L(x + Xk) = /x({t E IS: -Bt < -Bx))

 = (A o(-B-1))({t E RS: t < -Bx})

 = F, ( B-)(-B).

 This verifies the asserted equivalence. o
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 WERNER ROMISCH & RUDIGER SCHULTZ

 PROPOSITION 3.8. Let Au.E (ES) such that for all one-dimensional marginal
 distributions of ,L there exist densities which are locally bounded on R. Then the
 distribution function F of AI is locally Lipschitzian on 5s.

 PROOF. The assumption implies that all the one-dimensional marginal distribu-
 tion functions F,i (i = 1,..., s) are locally Lipschitzian on R. To have a simpler
 notation we continue the proof for s = 2. For higher dimensions, an analogous
 argument applies. Let (x , x2), (x I, x2) E 2,

 I F (X1 X2) -F l X2)1

 <[ F,l(x, x2) - F,( 1, x2) + I F( 1, x2) - F(I, x2)

 A ({((1, 2)' e1 E (min {x, ,i},max{ xl, l}], 2 < X2})

 +i({((1, s2) ' 1 < X11, 2 E (min X2, 2}, max{ X2, 2}]})

 < /L([min{ xl, l}, ,max{ x,, } ] X R)

 + ,.(R X [min{ x2, x2}, max{ x2, x2}])

 I| Fl(l) -F1( 1) + IF 2(2) F-2( 2)

 Hence, F, is locally Lipschitzian. z
 Combining the "if" part of Proposition 3.7 and Proposition 3.8 one obtains the

 sufficient condition of Wang for Q, to have locally Lipschitzian gradient ([30,
 Theorem 2.8]). It is clear that the local Lipschitz property in (A5) is needed only for
 those simplicial cones which are determined by the basis matrices arising in represen-
 tation (3.1). Sometimes this observation can lead to simplifications. For instance, in
 the case of simple recourse it can be shown that VQ is locally Lipschitzian if
 /t E 91(Rl) has a locally Lipschitzian distribution function.

 We mention that in general (local) boundedness of the marginal densities is not
 implied by (local) boundedness of the density of the distribution itself (cf., e.g.,
 Example 2.5 in [26]). Furthermore, if a distribution function is locally Lipschitzian
 then this property is in general not preserved under (nonsingular) linear transforma-
 tions, as can be seen by the following example, which we present without the rather
 long but straightforward calculation in the background.

 EXAMPLE 3.9. Consider , E 9Y(1R2) with the density

 (t1, t2) =^- 2t2 log tl if t1 e (0, 1], t2 E [0, 1],
 { 1? 0 else,

 and the matrix

 B= (-1 1i ' C2ii J

 Then the one-dimensional marginal distributions of u o B have bounded densities.
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 On the other hand, we have for (,/ o B)o B-' = /u

 1(t) = - log t if tl, (0,1],
 [,(t,>0 r oelse,

 which is not bounded on neighbourhoods of t, = 0.
 Finally, we present distributions which satisfy (A5). Following [4], [20], [21] we say

 that I E ( 9(Rs) belongs to the class 4'r (r E [-oo,0]) if for all A E [0, 1] and all
 Borel subsets C1, C2 of Rs such that AC, + (1 - A)C2 is Borel,

 IX(AC1 + (1 - A)C2) > Mr(Ai(Ci),Ix(C2); A).

 Here, we denote by Mr(a, b; A) the rth mean of the nonnegative numbers a, b with
 weights A, 1 - A, defined as

 '0 if ab = 0,
 min{a, b} if r = -oo,

 Mr(a, b;A) := ? A1-A* Mra b;A) = aAbl A if r = 0,
 ,(Aar+ (1 -A)b )l/r if r E (-oo,0).

 Measures belonging to r(-' o, '0) are called "convex of order r" ("quasi-concave",
 "logarithmic concave") (see [21]). It is known that IL belongs to lr (r E [ - o, 0]) if LI
 has a density ?, and log O, is concave (r = 0, [20]), 01/(1/r-s) is convex (r < 0, [4])
 (see also [5]).

 PROPOSITION 3.10. Assume that, for some r < O, Iu E lr, and that the support of
 Iu is the whole of RW. Then (A5) holds.

 PROOF. First we observe that for each nonsingular B E L(Rs, lR) we have j ?o B
 E r and supp(u o B) = Rs. Hence, it remains to show that for every measure
 I. E lr having the property supp I = lRs, its distribution function F, is locally
 Lipschitzian. Since 0 c '1r, for every r < 0, we may assume r < 0. We have that
 Fr: Rs -> (0, + oo) is convex. Let K c R5 be a compact subset, L(K) be a Lipschitz
 constant for Fj on K and LI be a Lipschitz constant of the mapping s - l/r on
 F,(K). Then we have for all z, i E K

 |F,(z) - F(Z)I LI|Fr(z) -F;(Z)I < L,L(K)liz - Zll. D

 Special instances of measures IL E 9a([Rs) satisfying the hypotheses of Proposition
 3.10 are the (nondegenerate) multivariate normal distribution and the multivariate
 t-distribution (cf. [4, p. 113]).
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