
R�omisch, W.; Schultz, R.Decomposition of a Multi-Stage Stochastic Program for Power DispatchWe develop a multi-stage stochastic program for the optimal dispatch of electric power under uncertain demand in ageneration system comprising thermal and pumped storage hydro plants. Based on an abstract duality argument wepropose an iterative decomposition scheme involving a non-smooth convex master problem and decoupled single-unitmulti-stage stochastic programs.1. IntroductionThis paper deals with a multi-stage stochastic program for �nding a cost-optimal dispatch of electric power in apower system comprising thermal power plants and pumped storage plants, which is typical for the eastern partof Germany. Stochasticity enters via the electric power demand, which is random and unveiled only in the courseof the power generation process which covers a time horizon of up to 168 hours (one week). Hence, a scheme ofalternate decision and observation underlies the dispatch of electric power: Fix the schedule (dispatch) for the �rsttime interval, observe the demand for the second interval, �x the schedule for the second interval and so on. Underthe assumption that the power demand of the �rst interval is known the schedule for that interval is deterministicand the remaining schedules are random. The multi-stage stochastic program elaborated below aims at �nding anoptimal schedule for the �rst interval given the operational constraints for the power system and a proper modellingof the stochastic power demand.The present paper widens the scope adopted in a former article ([4]), where a two-stage stochastic planningmodel with simpli�ed dynamics between decision and observation was studied. Further related work is containedin [16] where multi-stage stochastic programs for the unit commitment problem are analysed. The latter includesstart-up and shut-down decisions of units into the optimization. Whereas our model allows duality statements,the (non-convex) unit commitment model leads to a duality gap, which, however, is getting smaller if the numberof units in the model is increasing. Here, we focus on the simpler power dispatch model, elaborate duality anddecomposition, but do keep in mind relations to the more general case.2. ModelLet T denote the number of time intervals in the optimization horizon and fdt : t = 1; : : : ; Tg be the stochasticprocess (on some probability space (
;A;P)) reecting the randomness of power demand. We assume that theinformation on the power demand is complete for t = 1 and that it decreases with growing t. This is modelled by anested sequence (�ltration) of ���eldsA1 = f;;
g � A2 � : : : � At � : : : � AT � Awhere dt is At�measurable (t = 1; : : : ; Tg. (In particular, d1 is then deterministic.)Let It � f1; :::; Ig denote the index set of thermal units committed (i.e. on-line) at time t, with I denotingthe number of available thermal units, and let J denote the number of pumped storage plants which are assumedto be on-line all the time, since both in the pumping and generation modes they can be driven upward from zerocontinuously. According to the stochasticity of power demand the scheduling decisions for the units are discrete-timestochastic processes as well:fpt : t = 1; : : : ; Tg; f(st; wt) : t = 1; : : : ; Tg:Here, pit (i 2 It; t = 1; : : : ; T ) denotes the output of the thermal unit i at time t and sjt , wjt (j = 1; :::; J; t = 1; : : : ; T )are the generation and pumping levels, respectively, of the pumped storage plant j in time step t. The following boxconstraints reect output limitations of the unitspimin � pit � pimax; 0 � sjt � sjmax; 0 � wjt � wjmax; i 2 It; j = 1; : : : ; J; t = 1; : : : ; T; (1)where pimin; pimax; sjmax; wjmax are (non-stochastic) constants. Further operational constraints model availability



restrictions and water balances in the pumped storage plants (for details see [4], [5])Sjin � Sjmax � P�t=1(sjt � �jwjt ) � Sjin; j = 1; : : : ; J; � = 1; : : : ; T;PTt=1(sjt � �jwjt ) = SjLev ; j = 1; : : : ; J: (2)By �j (j = 1; : : : ; J) we denote the pumping e�ciency which computes as the quotient of the energy gained whenemptying the full upper dam and the energy needed when pumping upward the full content of the lower dam. Weassume that there are no additional in- and outows to the dams. The constants Sjin; Sjmax denote the initial andmaximal �ll (in energy), respectively, of the upper dam, and SjLev is a given �ll of the upper dam at the end of thetime horizon. The constraints (2) are crucial as they couple operation of units at di�erent time steps. Thus, demandvalues at later times inuence also actual decisions and the mentioned scheme of alternate decision and observationcannot be decoupled with respect to time. The following equations model the equilibrium between generation and(random) demand at all time stepsXi2It pit + JXj=1(sjt � wjt ) = dt; t = 1; : : : ; T: (3)These are the only constraints coupling operation of di�erent units. A �nal constraint models the non-anticipativityof the stochastic process of decisions f(pt; st; wt) : t = 1; : : : ; Tg. It says that, at time t, decisions (pt; st; wt) must notdepend on future realizations of the process fdt : t = 1; : : : ; Tg. In other words, (pt; st; wt) has to be At�measurable,which can be formalized by(pt; st; wt) = E((pt; st; wt)jAt); t = 1; : : : ; T; (4)where E(�jAt) denotes the conditional expectation with respect to At. The objective function is given by theexpected value of fuel costs of the thermal unitsE[ TXt=1Xi2It ci(pit)] = E[ TXt=1 IXi=1 aitci(pit)] (5)where E denotes expectation, ci(:) is a convex (linear, piecewise linear or quadratic) function and ait = 1 for alli 2 It and ait = 0 otherwise.Altogether, (1) - (5) amounts to a multi-stage stochastic program which, via (3), is loosely coupled with re-spect to operation of di�erent units. For larger power systems like the one considered here the number of stochasticvariables in (1) - (5), which computes asPTt=1 card (It)+2JT , is considerable. Numerical approaches are based onsuitable discretizations of the demand distribution (scenario trees), which leads to large-scale optimization problemswith usually millions of variables. In general, such problems are too large from the viewpoint of even the latest solu-tion methods in multi-stage stochastic programming ([1], [2], [6], [13], [14]). Therefore, we present a decompositionscheme for (1) - (5) that employs solutions to smaller multi-stage stochastic programs for which existing solutionmethodology can be applied and adapted, respectively.3. Duality and DecompositionLet x := fxt : t = 1; :::; Tg; with xt := (pt; st; wt) (t = 1; :::; T ); denote the decision process andX := �Tt=1L1(
; At;P ; IRnt); with nt := card (It) + 2J(t = 1; :::; T ), the decision space equipped with thenorm kxk := maxt=1;:::;T kxtk1. The �xed constraints (1), (2), (4) for the decision process are formalized byC := fx 2 X : x(!) 2 B; P � a.s. g where B denotes the bounded polyhedron in IRm (m :=PTt=1 nt) given by theoperational constraints (1), (2).Further, let Y := �Tt=1L1(
; At;P ; IR) denote the data space, Y � its dual and de�ne the mappingA : X �! Yby [Ax]t := Pi2It pit +PJj=1(sjt � wjt ) for all x 2 X and t 2 f1; :::; Tg. Assuming that the stochastic demand dbelongs to Y , (1)-(5) is equivalent to the abstract minimization problem(P ) min ff(x) : x 2 C; Ax = dg;where f(x) denotes the objective function given by (5). Of course, f : X �! IR is convex and continuous. Together



with (P ) we consider the perturbed problem(P�) min ff(x) : x 2 C; Ax = d+ �g (� 2 Y )and denote its marginal value by '(�). It is well known that convex duality results hinge upon the behaviour of '(�)at � = 0 ([11], [17]). We will make use of the following duality statement.P r o p o s i t i o n .Let d 2 Y and assume the regularity condition: There exists � > 0 such that fv 2 B : Av = d+ yg 6= ; P � a.s.for all y 2 IRT with kyk � �. Then we have'(0) = sup�2Y � infx2Cff(x) + �(Ax � d)g: (6)Proof. Let � 2 Y be such that k�k := ess sup!2
k�(!)k � �. The regularity condition implies fv 2 B :Av = d + �g 6= ; P � a.s. By utilizing a measurable selection argument [12] one shows analogously to the proofof Theorem 3.1 in [3] that there exists an element x 2 C such that Ax = d + �. Hence d belongs to the interior ofthe set A(C) � Y . In the terminology of [10] this means that the system fx 2 C : Ax = dg is regular. Theorem 1of [10] then implies that the constraint set M(�) := fx 2 C : Ax = d + �g of (P�) has the Hausdor� Lipschitzproperty dH(M(�); M(0)) � LMk�k for all � 2 Y with k�k su�ciently small (with some constant LM > 0 and dHdenoting the Hausdor� distance). This property together with the Lipschitz continuity of f on bounded sets leadsto a Lipschitz property of ' at 0. Appealing to the convex duality theorem in Section 2.2.3 of [17] completes theproof.2In terms of the power dispatch model the regularity condition says that, in each step t 2 f1; :::; Tg, thecommitment schedule for the (on-line) thermal units has to ful�ll a capacity (or reserve) constraint for P - almostall realizations of the random demand dt .According to the above duality statement, we consider the dual (concave) maximization problemmaxfD(�) : � 2 Y �g; (7)where D(�) := infff(x) + �(Ax � d) : x 2 Cg (� 2 Y �) and Y � := �Tt=1L�1(
; At; P ; IR). For a general charac-terization of the duals to L1 the reader may consult e.g. Sect. 3 of [12]. Here we only use the observation thatY � := �Tt=1L1(
; At; P ; IR) holds as an isometry if P is a discrete probability measure with �nite support. Wecon�ne ourselves to discrete P with �nite support and focus on the decomposition structure of the dual function:D(�) = inffE" TXt=1Xi2It ci(pit)#+ TXt=1 E[�t([Ax]t � dt)] : x 2 Cg= inff IXi=1 TXt=1 aitE �ci(pit) + �tpit�+ JXj=1 TXt=1 E h�t(sjt � wjt )i� TXt=1 E[�tdt] : (p; s; w) 2 Cg= IXi=1 infpi ( TXt=1 aitE �ci(pit) + �tpit�)+ JXj=1 inf(sj ;wj)( TXt=1 E h�t(sjt � wjt )i)� TXt=1 E[�tdt] (8)Here the in�ma are taken subject to the single-unit contraints (1), (2) for pi and (sj ; wj).Given � 2 Y �, the evaluation of D(�) (and of a subgradient) requires the solution of I+J multi-stage stochas-tic programs for all single (thermal, pumped storage hydro) units. Since the stochastic programs for the thermalunits only contain box constraints (1), they can be solved explicitly for each t 2 f1; :::; Tg. The linear multi-stagemodel for each pumped storage plant contains only 2T stochastic variables and can be solved by existing solutionmethods (e.g. [1], [6], [14]).The (iterative) decomposition approach for (1)-(5) now consists in solving (7) (with a discrete demand dis-tribution) by convex nonsmooth minimization methods ([7], [8], [9], [15]) such as the bundle-trust method whoseapplication is outlined next. Let �D denote the convex function �D. An iteration step of the bundle method thenlooks as follows�k+1 = �k � �k�kwhere �k 2 argminfmaxi2�kfgi� � �D(�k) + �D(�i)� gi(�k � �i)g+ 12k k�k2 : � 2 IRNg:Here, �k denote the iteration points and �i are trial points that are accepted as iteration points if they ful�ll
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