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STEPSIZE CONTROL FOR MEAN-SQUARE NUMERICAL
METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH

SMALL NOISE∗
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Abstract. A strategy for controlling the stepsize in the numerical integration of stochastic
differential equations (SDEs) is presented. It is based on estimating the pth mean of local errors.
The strategy leads to stepsize sequences that are identical for all computed paths. For the family of
Euler schemes for SDEs with small noise, we derive computable estimates for the dominating term
of the pth mean of local errors and show that the strategy becomes efficient for reasonable stepsizes.
Numerical experience is reported for test examples including scalar SDEs and a stochastic circuit
model.
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1. Introduction. We consider Itô stochastic differential equations (SDEs) of
the type

x(t) = x0 +

∫ t

t0

f(x(s), s)ds +

∫ t

t0

G(x(s), s)dw(s), t ∈ J ,(1.1)

where J = [t0, T ], f : R
n × J → R

n, G : R
n × J → R

n×m are continuous functions,
and, moreover, f has continuous derivatives with respect to x. w is an m-dimensional
Wiener process on a given probability space (Ω,F , P ) with filtration (Ft)t∈J , and
x0 is a given Ft0-measurable initial value, independent of the Wiener process. It is
assumed that there exists a pathwise unique, strong solution x(·).

We study mean-square and, more generally, pth mean convergent numerical meth-
ods for solving (1.1) based on time discretization. Our work is motivated by practical
SDE models in circuit simulation [24, 27, 28] that do not satisfy the commutativity
condition for G and are large scale with respect to n and m. As function calls are
costly, we look at variable stepsize methods of low order and propose a new strategy
for selecting stepsizes.

Several variable stepsize strategies for SDEs were developed during the last few
years. Most of them are based on pathwise arguments and lead to pathwise different
stepsize sequences. Such approaches often require a separate convergence analysis, as
the available convergence theory for SDEs (e.g., in the mean-square or weak sense)
is based on properties of certain expectations rather than paths which are typically
nonsmooth objects. The strategies for pathwise controlling stepsizes differ for each
approach. The classical paper [7] proposes a pathwise strategy by comparing results
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of a given integration scheme with those of a higher order method. Hence, at least
the higher order method requires the (approximate) computation of multiple Itô-
integrals. The approaches in [18, 19, 4] are also based on a comparison of two Runge–
Kutta schemes of different order. In [15] conditions are provided that imply mean-
square convergence of the Euler–Maruyama scheme with pathwise different stepsize
sequences. A different approach was developed in [12, 13, 23], where the authors
obtain stepsize sequences that are (mean-square and pth mean, respectively) optimal
for asymptotically small stepsizes.

In contrast to the above approaches we present a stepsize control that is based on
estimates of the mean square or the pth mean of the local discretization error. This is
justified by the fact that pth mean global errors can be estimated by the corresponding
local ones provided that the method is stable and the exact initial value is given. In
particular, we analyze the errors for the family of Euler–Maruyama schemes in the
case of small noise. The local errors are represented in terms of stochastic integrals.
The terms containing multiple stochastic integrals become so small that they are
negligible for realistic stepsizes, and the low asymptotic order of convergence 1/2 of
the Euler–Maruyama schemes is observed only for stepsizes that are far too small to
be used. We provide estimates for the mean square or pth mean of the dominating
local error term that does not cost additional evaluations of the coefficients of the
SDE or their derivatives.

Implementing a numerical scheme for the approximate integration of SDEs re-
quires also a discretization of the sample space. One can compute only a finite num-
ber of paths. To implement the stepsize control we used a heuristic approach, where
the mean square of the local terms was approximated by the information available
from an ensemble of approximate solution paths that is computed simultaneously.
This way our approach leads to stepsize sequences that are identical for all computed
paths.

The stepsize strategy was implemented for the drift-implicit Euler method and
extensively tested on a set of test examples. The choice of this drift-implicit method
allows us to study the effects of the stepsize selection on the accuracy, i.e., the global
discretization error, and on the convergence behavior of Newton’s method for solving
the implicit nonlinear equations simultaneously. In the case of step rejections, the
method described in [19] is used to ensure that the correct Wiener paths are followed.
Our numerical experience of the stepsize strategy confirms its usefulness and potential
for SDEs with small noise, and also provides some information on its limitations. As
expected by the analysis, it turns out that the stepsize control works successfully
for ranges of stepsizes that lead to reasonably accurate results but that are still not
so small that the asymptotic order of convergence O(h

1
2 ) dominates the error. The

latter phenomenon for SDEs with small noise was experimentally observed in [1, 6].
In the test examples we have used deterministic initial values. In general we think of
applications in which the initial value has at least small variance. For deterministic
differential equations with random initial values a pathwise stepsize control should be
more efficient.

Our paper is organized as follows. In section 2 we introduce the class of dis-
cretization schemes that will be considered in this paper. We recall basic pth mean
stability results and conditions for pth mean convergence stated in terms of the pth
mean of the local discretization error and of its rate of convergence as the stepsize
tends to zero. Starting from this observation we present, in section 3, a strategy for
selecting pathwise identical stepsize sequences by estimating the pth mean of the local
error. For the special case of integrating SDEs with small noise by the family of Euler
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schemes, we provide computable estimates for the local errors in section 4. Finally,
in section 5 we report on numerical experience of test runs of an implementation of
the stepsize control for the implicit Euler scheme.

2. Numerical stability, consistency, and convergence of discretization
methods for SDEs. We consider the drift-implicit discretization scheme of the form

x� = x�−1 + ϕ(x�−1, x�; t�−1, h�) + ψ(x�−1; t�−1, h�, It�−1,h�
), � = 1, . . . , N,(2.1)

for solving (1.1) on the deterministic grid t0 < t1 < · · · < tN = T with stepsizes
h� := t�− t�−1, � = 1, . . . , N . Here, ϕ and ψ are functions defined on R

n×R
n×T and

R
n ×T ×R

mI with T := {(t, h) : t, t+ h ∈ J , h ∈ R+}, respectively, and mapping to
R

n. By It,h we denote a vector of mI multiple stochastic integrals of the form

Ii1...ik;t,h =

∫ t+h

t

∫ s1

t

· · ·
∫ sk−1

t

dwi1(sk)dwi2(sk−1) · · · dwik(s1),

where the indices i1, . . . , ik are in {0, 1, . . . ,m}, k is bounded by a certain finite order
kmax, and dw0(s) corresponds to ds.

For example, the family of drift-implicit Euler schemes, sometimes also called
stochastic θ-methods, is of the form

x� := x�−1 + h�(θf(x�, t�) + (1 − θ)f(x�−1, t�−1)) + G(x�−1, t�−1)Δw�, � = 1, . . . , N,
(2.2)

where θ ∈ [0, 1], and Δw� := w(t�) − w(t�−1) = (Ii;t�−1,h�
)mi=1. Hence, one has

kmax := 1, mI := m, and

ϕ(z, x; t, h) := h(θf(x, t + h) + (1 − θ)f(z, t)),

ψ(z; t, h, It,h) := G(z, t)(w(t + h) − w(t)) =

m∑
j=1

gj(z, t)

∫ t+h

t

dwj(s),

where gj(z, t), j = 1, . . . ,m, are the columns of the matrix G(z, t).
The family of drift-implicit Milstein schemes differs from the Euler schemes by an

additional correction term for the stochastic part. The Milstein schemes are described
by the same function ϕ, and kmax := 2, mI := m + m2, and

ψ(z; t, h, It,h) := G(z, t)Δwt,h +

m∑
j=1

(gjxG)(z, t)I(j);t,h,(2.3)

where Δwt,h := w(t + h) − w(t) = (Ii;t,h)mi=1, and I(j);t,h := (Ij,i;t,h)mi=1.
For measuring errors in the discretization scheme we use the norm for pth order

integrable random variables z ∈ Lp(Ω,Rn), i.e., ‖z‖Lp
:= (E|z|p)1/p, where the expo-

nent p ≥ 1 is properly chosen in the sense that the initial value x0 has a pth order
moment and in that it fits into the unknown statistical parameters of x(·), which have
to be computed approximately. We start our analysis by stating a result concern-
ing the pth mean stability of (2.1), which extends the fundamental result of Milstein
[20, 21]. Its proof is given in [24, 27].

Theorem 2.1. Let p ≥ 1 and x0 have a finite pth mean. Assume that the scheme
(2.1) satisfies the following properties:
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• For all z, z̃, x, x̃ ∈ R
n, (t, h) ∈ T , h ≤ h1, we have

|ϕ(z, x; t, h) − ϕ(z̃, x̃; t, h)| ≤ h(L1|z − z̃| + L2|x− x̃|)(A1)

for some positive constants h1, L1, L2.
• For all (t, h) ∈ T , h ≤ h1, and Ft-measurable random vectors y, ỹ, we have

E(ψ(y; t, h, It,h) − ψ(ỹ; t, h, It,h)|Ft) = 0,(A2)

E(|ψ(y; t, h, It,h) − ψ(ỹ; t, h, It,h)|p|Ft) ≤ h
p
2 Lp

3|y − ỹ|p,(A3)

E|ψ(0; t, h, It,h)|p < ∞(A4)

for some constant L3 > 0.
Then for all a ≥ 1 there exist a maximal stepsize h0 > 0 and a stability constant
S > 0 such that the following holds for each grid {t0, t1, . . . , tN} having the property
h := max�=1,...,N h� ≤ h0 and h ·N ≤ a · (T − t0):

For all Ft0-measurable random vectors x∗
0, x̃0 having a finite pth mean, and for

all � ∈ {1, . . . , N} and Ft�-measurable perturbations d∗� , d̃� having a finite pth mean,
the perturbed discrete system

x̃� = x̃�−1 + ϕ(x̃�−1, x̃�; t�−1, h�) + ψ(x̃�−1; t�−1, h�, It�−1,h�
) + d̃�, � = 1, . . . , N,

(2.4)

has a unique solution {x̃�}N�=0, and the following estimates are valid for any two
solutions {x∗

�}N�=1 and {x̃�}N�=0 of the perturbed discrete systems with perturbations

{d∗�}N�=1 and {d̃�}N�=1 and any splittings of d� := d∗� − d̃� such that d� = s� + r� with
E(s�|Ft�−1

) = 0:

E max
�=1,...,N

|x∗
� − x̃�|p ≤ Sp

⎛
⎝E|x∗

0 − x̃0|p +

max
�=1,...,N

E|s�|p

h
p
2

+

E max
�=1,...,N

|r�|p

hp

⎞
⎠ ,(2.5)

max
�=1,...,N

E|x∗
� − x̃�|p ≤ Sp

⎛
⎝E|x∗

0 − x̃0|p +

max
�=1,...,N

E|s�|p

h
p
2

+

max
�=1,...,N

E|r�|p

hp

⎞
⎠ .(2.6)

Extracting the pth root from (2.6) yields the stability inequality

max
�=1,...,N

‖x∗
� − x̃�‖Lp ≤ S

(
‖x∗

0 − x̃0‖Lp + max
�=1,...,N

‖s�‖Lp/h
1
2 + max

�=1,...,N
‖r�‖Lp/h

)
.

(2.7)

The scheme (2.1) is called pth mean stable if it satisfies properties (2.5) and (2.6),
respectively, in the above result. Furthermore, it is called pth mean consistent of
order γ > 0 if the local discretization error l� at step �, i.e.,

l� := x(t�) − x(t�−1) − ϕ(x(t�−1), x(t�); t�−1, h�) − ψ(x(t�−1); t�−1, h�, It�−1,h�
),

(2.8)

satisfies the properties

‖l�‖Lp
≤ c · hγ+ 1

2

� and ‖E(l�|Ft�−1
)‖Lp

≤ c̄ · hγ+1
� , � = 1, . . . , N,
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with constants c, c̄ > 0 depending only on the SDE and its solution. Clearly, the
local discretization error arises by inserting the exact solution x(·) into the numerical
scheme.

By the global errors e� we denote the difference

e� := x(t�) − x�

of the exact and approximate solution at time t�. The discretization scheme (2.1) for
(1.1) is called pth mean convergent of order γ > 0 if the global error e� := x(t�) − x�

satisfies the property

max
�=1,...,N

‖e�‖Lp ≤ C · hγ , where h := max
�=1,...,N

h�,

with a grid-independent constant C > 0.
Theorem 2.2. If the discretization scheme (2.1) for (1.1) is pth mean consistent

of order γ > 0 and the assumptions of Theorem 2.1 are satisfied, then (2.1) is pth
mean convergent of order γ. For the difference of the solution x(t�) at the discrete
time-points and the solution x̃� of the perturbed numerical scheme (2.4), we have the
estimate

max
�=1,...,N

‖x(t�) − x̃�‖Lp ≤ S

(
(c + c̄)hγ + max

�=1,...,N
δ�/h

1/2 + max
�=1,...,N

δ̄�/h

)
,(2.9)

where δ� := ‖d̃�‖Lp
, δ̄� := ‖E(d̃�|Ft�−1

)‖Lp
, with d̃� from (2.4).

Proof. The assertion follows by applying the triangle inequality

max
�=1,...,N

‖x(t�) − x̃�‖Lp ≤ max
�=1,...,N

‖x(t�) − x�‖Lp + max
�=1,...,N

‖x� − x̃�‖Lp

and the stability estimate (2.5) once to x(t�) related to the perturbations l� and once
again to x̃� related to the perturbations d̃�. The pth mean convergence follows as a
special case of (2.9) for d∗� = l�, d̃� = 0. By means of r� = E(l�|Ft�−1

), a suitable
splitting d� = l� = s� + r� is realized.

The general results immediately apply to well-known schemes for SDEs. We illus-
trate this for the families of drift-implicit Euler and Milstein schemes. Both schemes
fit into the framework of (2.1). By checking the assumptions of Theorem 2.1 we ob-
serve that both are pth mean stable: (A1) follows from the Lipschitz continuity of the
drift coefficient f , (A2) is satisfied due to the explicit, nonanticipative discretization
of the diffusion term, (A3) follows from the Lipschitz continuity of the diffusion co-
efficient G (and in the case of the Milstein scheme of the functions gjxG), and (A4)
is a more technical assumption, which is satisfied since the function G(0, ·) (and the
functions (gjxG)(0, ·)) are bounded on the compact interval J . Summarizing we have
the following.

Proposition 2.3. Let the functions f and G be Lipschitz continuous with respect
to x. Then the Euler schemes (2.2) are pth mean stable. If, in addition, the partial
derivatives gjx, j = 1, . . . ,m, exist and the functions gjx ·G are Lipschitz continuous
with respect to x, then the Milstein schemes (2.3) are pth mean stable.

From the literature (see, e.g., [21]) it is known that the Euler schemes (2.2) are
mean-square consistent of order 1/2 if, in addition, the coefficients are Hölder con-
tinuous with exponent 1/2 with respect to t. The Milstein schemes are mean-square
consistent of order 1 if the functions f and G are sufficiently smooth. Appealing to
Theorem 2.2 then provides the known mean-square convergence of the Euler schemes
of order 1/2 and of the Milstein schemes of order 1.
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3. Stepsize control based on the pth mean of local errors. For the effi-
cient numerical integration of applied nonlinear SDEs, a reasonable stepsize control
is indispensable. The problem was addressed in a number of recent papers, e.g.,
[3, 4, 7, 16, 18, 19]. Most of them suggest individual stepsize sequences for every
path. Our approach is rigorously based on the stability and convergence results pre-
sented in the previous section. It leads to adaptive stepsize sequences that are uniform
for all computed paths.

By means of the stability inequality (2.7) we know that the pth mean of the global
errors e� := x(t�) − x� can be estimated by a term that is proportional to the pth
mean of the local errors l�. Here, we assume that the initial value x0 is given exactly.
Therefore, a natural approach consists of controlling the local error term

η� := max{‖s�‖Lp/h
1/2
� , ‖r�‖Lp/h�}, where l� = s� + r�, E(s�|Ft�−1

) = 0,(3.1)

according to a given tolerance. Controlling this term requires some insight into its
behavior. Clearly, we have η� = O(hγ

� ) for a method that is pth mean convergent
of order γ. However, for problems with small noise and stepsizes that cannot be
considered asymptotically small and are of interest, η� may even be dominated by a
term κ� ·hγ̄

� , where γ̄ ≥ γ and κ� is a slowly varying factor (cf. section 4). The insight
into the behavior of η� should lead to expressions for the error constant in the form
κ� = ‖k�‖Lp

with k� = χ(x�−1, x�, t�−1, t�).
Given that, for an interesting range of stepsizes h�, the local error term η� is

dominated by

η� ≤ κ� · hγ̄
� , κ� = ‖k�‖Lp = ‖χ(x�−1, x�, t�−1, t�)‖Lp ;(3.2)

the stepsizes should be chosen according to the following conceptual algorithm.
Algorithm 3.1. Given the initial value x0 ∈ Lp(Ω) at t0, an initial stepsize h1

and a tolerance tol, set � := 1.
(1) Solve the system

x� = x�−1 + ϕ(x�−1, x�; t�−1, h�) + ψ(x�−1; t�−1, h�, It�−1,h�
)

for x� ∈ Lp(Ω).
(2) Set

η̄� := hγ̄
� ‖χ(x�−1, x�, t�−1, t�)‖Lp

.(3.3)

(3) Apply a control strategy that aims at matching the tolerance multiplied by
a safety factor, say 0.8, with the proposed new stepsize. For example, the
elementary control leads to

hnew

h�
:=

(
0.8 · tol

η̄�

)1/γ̄

(3.4)

for � ≥ 2; the proportional integral control PI34 (cf. [10, 25]) leads to

hnew

h�
:=

(
0.8 · tol

η̄�

)0.3/γ̄ (
η̄�−1

η̄�

)0.4/γ̄

.(3.5)

(4) If η̄� ≤ tol, accept the step.
If t� ≥ T , stop, else set � := � + 1, h� := hnew and go to (1).
If η̄� > tol, reject the step and repeat it with the smaller stepsize h� := hnew

that results from (3.4).
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We emphasize that a stepsize sequence generated by Algorithm 3.1 is determin-
istic, since ‖χ(x�−1, x�, t�−1, t�)‖Lp is deterministic, though x�−1, x� are random vari-
ables. Hence, Theorems 2.1 and 2.2 apply. If Algorithm 3.1 is realized and the com-
puted quantities η̄� are really dominating the local error term η�, say, e.g., η� ≤ 1.2 η̄�,
then we have

max
�=1,...,N

‖x(t�) − x�‖Lp
≤ 2.4S · tol

by the pth mean stability inequality (2.7) following Theorem 2.1. Even if the actual
errors η� show a smaller order than the quantities η̄� used, and only a relation like
η� ≤ const · η̄β� , β ∈ (0, 1), is true, we still have

max
�=1,...,N

‖x(t�) − x�‖Lp ≤ 2 const · S · tolβ .

Intending to make use of this theoretical result for practical implementations, one
faces several questions.

First, how large is the stability constant S? Of course, it is problem dependent.
A more detailed look into the proof of Theorem 2.1, together with Proposition 2.3,
shows that S behaves essentially as eL(T−t0), where L is a Lipschitz constant for the
drift and diffusion coefficients f and G (and of (gj)

′
x ·G for the Milstein schemes) of

the problem. By analogy with deterministic ODEs one may consider the problem as
nonstiff and numerically well-posed, as long as eL(T−t0) is moderate. Modifications
for stiff problems are desirable, but go beyond the scope of this paper.

Second, how can the observed order γ̄ and the error function χ be determined,
and what conditions guarantee an estimate like η� ≤ 1.2 η̄�? These questions are
discussed for the family of Euler–Maruyama schemes in the next section.

Finally, we discuss implementation issues of the conceptual algorithm, Algorithm
3.1. Of course, any implementation requires a finite number of realizations of the
random variables. Here, we consider an ensemble of M paths starting from M samples
x1

0, . . . , x
M
0 of the initial value. Starting from � = 1, the next elements x1

� , . . . , x
M
� of

the M paths are computed by solving the nonlinear equations

xi
� = xi

�−1 + ϕ(xi
�−1, x

i
�; t�−1, h�) + ψ(xi

�−1; t�−1, h�, I
i
t�−1,h�

), i = 1, . . . ,M,

where Iit�−1,h�
are samples of the corresponding stochastic integrals.

Next, the Lp-norm ‖χ(x�−1, t�−1, x�, t�)‖Lp in step (2) of Algorithm 3.1 is esti-
mated by using the M samples of x�−1 and x�, namely, by

κ̄� :=

(
1

M

M∑
i=1

|χ(xi
�−1, x

i
�, t�−1, t�)|p

) 1
p

.(3.6)

Set

η̂� := hγ̄
� κ̄�(3.7)

and perform steps (3) and (4) of Algorithm 3.1 with η̄� replaced by η̂�. In the case
of step rejections, the information computed so far is stored and used to compute
intermediate values according to the strategy in [18, 19]. For a scheme (2.1), which
uses only the Wiener increments Δw� = w(t�) − w(t�−1), the computation of the
intermediate values of the Wiener process is done as follows: Given Δwh := w(t+h)−
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w(t) for some t ∈ R+ and h > 0, and h = h1 + h2, h1 > 0, h2 > 0, the Wiener
increments

Δwh1 = w(t + h1) − w(t) and Δwh2 = w(t + h1 + h2) − w(t + h1)

are simulated according to the formulas

Δwh1
=

h1

h
Δwh +

√
h1h2

h
ν, Δwh2 =

h2

h
Δwh −

√
h1h2

h
ν, ν ∼ N(0, Im).

In this way, the estimate (3.7) of (3.3) leads to estimates of the next stepsize and,
hence, of the whole grid t0, t1, . . . , tN . Though all computed paths (xi

0, x
i
1, . . . , x

i
N ),

i = 1, . . . ,M , are determined by using the same stepsizes h1, . . . , hN , the stepsize
sequence is no longer deterministic and, due to possible step rejections, the computed
grid-points do not need to be stopping times. The estimate of the grid depends on
the M paths, and its quality clearly depends on the sample size M as well as on the
smallness of the noise. The resulting implementable algorithm represents a theory-
based heuristic stepsize control.

The numerical results in section 5 show that a relatively small number M = 100
already provides good results for SDEs with small noise.

4. Local error estimates for the family of Euler schemes for SDEs with
small noise. There are important applications of SDEs with small noise, where the
diffusion coefficients are orders of magnitude smaller than the drift coefficients. For
such problems the asymptotic order of convergence is too pessimistic for a reasonable
range of stepsizes. Special numerical methods are constructed in [22], taking into
account the smallness of the stochastic parts in such systems. Here, we will deal with
the family of Euler schemes and present an efficient stepsize control based on the pth
mean of local errors.

Following along the lines of [22] we let the SDE with small noise be of the form

x(t) = x0 +

∫ t

t0

f(x(s), s)ds +

∫ t

t0

εG̃(x(s), s)dw(s), t ∈ J ,(4.1)

where f : R
n×J → R

n, G̃ : R
n×J → R

n×m are functions satisfying the assumptions
introduced in section 1 for f and G, and ε is a small parameter.

The family of drift-implicit Euler schemes with parameter θ ∈ [0, 1] for solving
(4.1) on the deterministic grid t0 < t1 < · · · < tN = T with stepsizes h� := t� − t�−1,
� = 1, . . . , N , has the form

x� = x�−1 + h�

(
θf(x�, t�) + (1 − θ)f(x�−1, t�−1)

)
+ εG̃(x�−1, t�−1)Δw�, � = 1, . . . , N,

(4.2)

where Δw� = w(t�) − w(t�−1) ∼ N(0, h�Im).

In order to derive estimates for the local discretization error l� of (4.2), we first
establish, similarly to [22], a representation of l� in terms of certain multiple stochastic
integrals obtained by the Itô–Taylor expansion. The Lp-norm of these stochastic

integrals is then characterized in terms of O(h
k/2
� εq) for some k, q ∈ N∪ {0}. Finally,

we discuss which terms are dominating for interesting ranges of stepsizes and present
computable estimates for the dominating terms.
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4.1. Estimating local errors by Itô–Taylor expansion. In order to charac-
terize the conditions on f and G̃ that are needed in the following, we introduce the
classes CL and Cs,s−1, s ∈ N, of functions from R

n×J to R
n. The class CL contains

all continuous functions that are Lipschitz continuous with a uniform constant with
respect to the first variable. Cs,s−1 is the class of all functions having continuous
partial derivatives up to order s − 1 and, in addition, continuous partial derivatives
of order s with respect to the first variable.

Let x(·) be a solution of the SDE (4.1) and y be a function in C2,1. Then Itô’s
formula provides the expansion

y(x(t), t) − y(x0, t0) =

∫ t

t0

⎛
⎝yt + yxf + ε2

1

2

m∑
r=1

n∑
i,j=1

yxixj g̃rig̃rj

⎞
⎠ (x(s), s)ds

+ ε

m∑
r=1

∫ t

t0

(yxg̃r)(x(s), s)dwr(s), t ∈ J .(4.3)

Following [22] we introduce m+1 operators Λ0 and Λr, r = 1, . . . ,m, defined on C2,1

and C1,0, respectively, by

Λ0y = yt + yxf + ε2
1

2

m∑
r=1

n∑
i,j=1

yxixj
g̃rig̃rj , Λry = yxg̃r, r = 1, . . . ,m.

Then the Itô formula (4.3) reads

y(x(t), t) − y(x0, t0) =

∫ t

t0

Λ0y(x(s), s)ds + ε

m∑
r=1

∫ t

t0

Λry(x(s), s)dwr(s), t ∈ J .

(4.4)

For y ∈ CL, and similarly to section 2, we denote multiple stochastic integrals over
intervals [t, t + h] ⊆ J by

Ii1...ij ;t,h(y) =

∫ t+h

t

∫ s1

t

· · ·
∫ sj−1

t

y(x(sj), sj)dwi1(sj) · · · dwij−1(s2)dwij (s1),

where i1, . . . , ij take values in {0, . . . ,m}, and dw0(s) is understood to mean ds. As
the function y has linear growth with respect to the first variable, the stochastic
integrals are well defined.

Lemma 4.1. For any p ≥ 1 such that x0 has a finite pth mean, any (t, h) ∈ T ,
and ij ∈ {1, . . . ,m}, j = 1, . . . , k, we have for any function y ∈ CL that

E(Ii1...ik;t,h(y)|Ft) = 0 if ij �= 0 for some j ∈ {1, . . . , k},

‖E(Ii1...ik;t,h(y)|Ft)‖Lp
≤ ‖Ii1...ik;t,h(y)‖Lp = O(h

∑k
j=1 νj ), νj =

{ 1, ij = 0,
1
2 , ij �= 0.

Proof. The first property is well known. The first estimate in the second assertion
is due to properties of the conditional expectation. For p = 2 the second part is proved
in [21, Lemma 2.1]. For 1 ≤ p < 2 it is a consequence of the estimate ‖ · ‖Lp ≤ ‖ · ‖L2 .

Now, let p > 2. For i1 = 0 we obtain by Hölder’s inequality that

‖I0,i2...ik;t,h(y)‖pLp
= E(|I0,i2...ik,0;t,h(y)|p) ≤

(
E

∫ t+h

t

|Ii2...ik;t,s1−t(y)|ds1

)p

≤ h
p
q

∫ t+h

t

E(|Ii2...ik;t,s1−t(y)|p)ds1,
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where 1
q + 1

p = 1. Hence, for ‖I0,i2...ik;t,h(y)‖pLp
we obtain the order O(h

p
q +1) = O(hp).

For i1 �= 0 we make use of estimates for the pth mean of stochastic integrals (see
[8, section 1.4, Theorem 6], [17, section 1.7, Theorem 7.1]) and have

‖Ii1...ik;t,h(y)‖pLp
≤

(
1

2
p(p− 1)

) p
2

h
p−2
2

∫ t+h

t

E(|Ii2...ik;t,t−s1(y)|p)ds1.

Hence, in this case we obtain the order O(h
p−2
2 +1) = O(h

p
2 ).

Repeating these arguments successively, and using that the function y has linear
growth and, thus, that y(x(·), ·) has a finite pth mean, completes the proof.

Proposition 4.2. Assume that f ∈ C4,3 and g̃r ∈ C2,1, r = 1, . . . ,m, and that
the functions Λ0Λ0f , Λ0g̃r, ΛrΛ0f , Λrf , and Λkg̃r, k, r = 1, . . . ,m, belong to CL.

Then the local discretization error l� (see (2.8)) of the family of drift-implicit
Euler schemes (4.2) at step � allows a decomposition

l� = s� + r� with E(s�|Ft�−1
) = 0

and

‖r�‖Lp/h� = h�

∣∣∣∣θ − 1

2

∣∣∣∣ ‖(Λ0f)t�−1
‖Lp + O(h2

�),

‖s�‖Lp/h
1/2
� = εO(h�) + ε2O(h

1/2
� ).

Proof. For y ∈ CL we make use of the following abbreviations:

ys := y(x(s), s), Ii1...ij (y) = Ii1...ij ;t�−1,h�
(y).

By reformulating the local error and by expanding all of its components at the pair
(x(t�−1), t�−1) using (4.4) and the smoothness properties f, g̃r ∈ C2,1, r = 1, . . . ,m,
we obtain

l� = x(t�) − x(t�−1) − h�

(
θf(x(t�), t�) + (1 − θ)f(x(t�−1), t�−1)

)
− εG̃(x(t�−1), t�−1)Δw�

=

∫ t�

t�−1

fsds− h�

(
θft� + (1 − θ)ft�−1

)
+

∫ t�

t�−1

εG̃sdw(s) − εG̃t�−1
Δw�

=

∫ t�

t�−1

{
ft�−1

+

∫ s

t�−1

(Λ0f)τdτ + ε

m∑
r=1

∫ s

t�−1

(Λrf)τdwr(τ)

}
ds

− θh�

{
ft�−1

+

∫ t�

t�−1

(Λ0f)τdτ + ε

m∑
r=1

∫ t�

t�−1

(Λrf)τdwr(τ)

}
− (1 − θ)h�ft�−1

+ ε

m∑
r=1

∫ t�

t�−1

{∫ s

t�−1

(Λ0g̃r)τdτ + ε

m∑
k=1

∫ s

t�−1

(Λkg̃r)τdwk(τ)

}
dwr(s)

= I00(Λ0f)−θh�I0(Λ0f)+ε

m∑
r=1

(
I0r(Λrf)−θh�Ir(Λrf)Ir0(Λ0g̃r)

)
+ε2

m∑
r,k=1

Irk(Λkg̃r),

and, hence, a representation of the local error in terms of (multiple) stochastic
integrals.
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Next, we study the leading term I00(Λ0f) − θh�I0(Λ0f) of this representation.
Since Λ0f belongs to C2,1, we may use the Itô formula (4.4) again and obtain

Λ0fτ = Λ0ft�−1
+

∫ τ

t�−1

(Λ0Λ0f)sds + ε

m∑
r=1

∫ τ

t�−1

(ΛrΛ0f)sdwr(s)), τ ∈ [t�−1, t�],

(4.5)

which is taken to compute the desired (multiple) stochastic integrals and the whole
leading term, respectively, i.e.,

I00(Λ0f) =
1

2
h2
�(Λ0f)t�−1

+ I000(Λ0Λ0f) + ε

m∑
r=1

I00r(ΛrΛ0f),

I0(Λ0f) = h�(Λ0f)t�−1
+ I00(Λ0Λ0f) + ε

m∑
r=1

I0r(ΛrΛ0f),

I00(Λ0f) − θh�I0(Λ0f) = h2
�

(
1

2
− θ

)
(Λ0f)t�−1

+ I000(Λ0Λ0f) − θh�I00(Λ0Λ0f)

+ ε

m∑
r=1

(
I00r(ΛrΛ0f) − θh�I0r(ΛrΛ0f)

)
.

Now, we split l� = s� + r�, where s� is composed of all integral terms with at least one
nonzero index. Then we have E(s�|Ft�−1

) = 0, and

r� = h2
�

(
1

2
− θ

)
(Λ0f)t�−1

+ I000(Λ0Λ0f) − θh�I00(Λ0Λ0f),

s� = ε

m∑
r=1

(
I00r(ΛrΛ0f) − θh�I0r(ΛrΛ0f)

)

+ ε

m∑
r=1

(
I0r(Λrf) − θh�Ir(Λrf) + Ir0(Λ0g̃r)

)
+ ε2

m∑
r,k=1

Irk(Λkg̃r).

Since all the functions Λ0Λ0f , Λ0g̃r, ΛrΛ0f , Λrf , and Λkg̃r, k, r = 1, . . . ,m, appearing
as integrands of multiple stochastic integrals, satisfy the assumptions of Lemma 4.1,
we may use the lemma repeatedly to obtain the assertion.

4.2. Suggestions for local error estimates. The previous result enables us
to study the local error term η� for special relations between ε and the stepsizes h�.
Unless θ = 1/2 for the trapezoidal rule, the dominating term of ‖r�‖Lp/h� is

h�

∣∣∣∣θ − 1

2

∣∣∣∣ ‖(Λ0f)t�−1
‖Lp = h�

∣∣∣∣θ − 1

2

∣∣∣∣ ‖(ft + fxf)t�−1
‖Lp + ε2O(h�),

and hence,

η� = η̄∗� + O(ε2h
1/2
� + εh� + h2

�), η̄∗� := h�

∣∣∣∣θ − 1

2

∣∣∣∣ ‖(ft + fxf)(x(t�−1), t�−1)‖Lp .

(4.6)

Substituting the exact solution value x(t�−1) with its numerical approximation x�−1

does not lead to perturbations that are larger than O(ε2h1/2+εh+h2). This motivates
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the choice of γ̄ = 1 and χ(z, x, s, t) := |θ− 1
2 |(ft + fxf)(z, s) for the definition of η̄� in

(3.3). We assume now that θ �= 1
2 and that the relation of the small parameter ε and

the applied stepsize h� is such that the global error term of order O(h�) dominates

the error term of order O(ε2h
1/2
� ). This is realized if h� is much larger than ε2h

1/2
� ,

which we express by

ε2h
1/2
� � h�, i.e., ε4 � h�.(4.7)

More precisely, we need that

ε2

∥∥∥∥∥∥
m∑

r,k=1

Irk(Λkg̃r)

∥∥∥∥∥∥
Lp

/
h

1/2
� < h�

∣∣∣∣θ − 1

2

∣∣∣∣ ‖(ft + fxf)t�−1
‖Lp ,(4.8)

which follows from (4.7) provided that the values of the functions g̃rxg̃k, r, k =
1, . . . ,m, and ft + fxf are moderate. Then, the local error term η� is indeed domi-
nated by η̄∗� from (4.6). Note that the corresponding choice of η̄� leads to an a priori
known estimate of the local error, since η̄� involves only the knowledge of x�−1, not
of x�. That way, step rejections do not occur.

One drawback of the choice of (4.6) is its explicit use of the derivatives of the drift
function f , which may not be available in practical problems. Therefore, we look for
a derivative-free estimate of η�. We use

h�‖(Λ0f)t�−1
‖Lp = ‖ft� − ft�−1

‖Lp + O(h2
� + εh

3/2
� + εh

1/2
� ),

which follows from the expansion

ft� − ft�−1
= h�(Λ0f)t�−1

+ I00(Λ0Λ0f) + ε

m∑
r=1

Ir0(ΛrΛ0f) + ε

m∑
r=1

Ir(Λrf)

that is valid under the assumptions of Proposition 4.2 and is obtained by inserting
(4.5) into Itô’s formula (4.4) for y = f . Hence,

η� = ¯̄η∗� + O(h2
� + εh� + εh

1/2
� ), ¯̄η∗� :=

∣∣∣∣θ − 1

2

∣∣∣∣ ‖f(x(t�), t�) − f(x(t�−1), t�−1)‖Lp .

(4.9)

The estimate ¯̄η∗� is dominating the local error term η� under the more restrictive
assumption

εh
1/2
� � h�, i.e., ε2 � h�,(4.10)

or, more precisely,

ε

∥∥∥∥∥
m∑
r=1

Ir(Λrf)

∥∥∥∥∥
Lp

< h�‖(Λ0f)t�−1
‖Lp .(4.11)

Then, the term ¯̄η∗� behaves like an order 1 term. Hence, we represent this choice by
γ̄ = 1 and χ(z, x, s, t) := |θ − 1

2 | (f(x, t) − f(z, s))/(t − s). In Algorithm 3.1 this is
realized by the choice

γ̄ := 1, η̄� :=

∣∣∣∣θ − 1

2

∣∣∣∣ ‖f(x�, t�) − f(x�−1, t�−1)‖Lp .(4.12)
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Remark 4.3. Note that η̄∗� defined by (4.6), as well as ¯̄η∗� defined by (4.9), vanishes
for the trapezoidal rule. Here a more detailed discussion of the remaining terms is
necessary. Then the part ‖r�‖Lp/h� of the local error is of order 2 and is dominated
by ‖(Λ0Λ0f)t�−1

‖Lp · h2
�/12. This term dominates the local error term η� as long as

ε � h�, which is more restrictive than (4.10). Details will be given in a separate
paper.

Remark 4.4. If the length T − t0 of the considered time interval differs consider-
ably from 1, the more detailed stability estimate

max
�=1,...,N

‖x∗
� − x̃�‖Lp

≤ S̃

(
‖x∗

0 − x̃0‖Lp
+ max

�=1,...,N
‖s�‖Lp

(
T − t0

h

) 1
2

+ max
�=1,...,N

‖r�‖Lp

T − t0
h

)
(4.13)

(cf. [24]) should be used as a starting point. Since the length of the interval affects
the local error terms differently, condition (4.8) modifies to

ε2

∥∥∥∥∥∥
m∑

r,k=1

Irk(Λkg̃r)

∥∥∥∥∥∥
Lp

(
T − t0
h�

) 1
2

< (T − t0)h�

∣∣∣∣θ − 1

2

∣∣∣∣ ‖(ft + fxf)t�−1
‖Lp

,(4.14)

which is true for

ε2((T − t0)h�)
1
2 � (T − t0)h�, i.e., ε4 � (T − t0)h�,(4.15)

and moderate coefficients g̃rxg̃k, r, k = 1, . . . ,m, and (ft + fxf).
Remark 4.5. The conditions (4.14), (4.15), (4.11), (4.10) are independent of the

used time scale.
Proof. A transformation of the time scale t ∈ [t0, T ] to τ ∈ [0, 1] via

τ = (t− t0)/(T − t0), t(τ) = t0 + (T − t0)τ,

y(τ) := x(t(τ)), ŵ(τ) := (T − t0)
− 1

2w(t(τ))

leads to the transformed SDE

y(s)
∣∣∣τ
0

= (T − t0)

∫ τ

0

f(y(s), t(s))ds + ε(T − t0)
1
2

∫ τ

t0

G̃(y(s), t(s))dŵ(s), τ ∈ [0, 1].

The conditions (4.14), (4.15), (4.11), (4.10) in terms of the transformed functions and
variables

f̂(y, τ) = (T − t0)f(y, t(τ)), ˆ̃G(y, τ) = (T − t0)
1
2 G̃(y, t(τ)), ĥ = h/(T − t0), T̂ = 1,

coincide with the original conditions.
Remark 4.6. The simple conditions (4.7), (4.15), and (4.10), together with the

condition of moderate function values, describe rules of thumb for the used stepsizes.
We specify them for p = 2, a scalar Wiener process, and the diffusion coefficient
G = (g). Neglecting higher order terms in (4.8), (4.14), and (4.11), we then obtain
the conditions

h� >
‖(gxg)t�−1

‖2
L2

2|θ − 1
2 | ‖(ft + fxf)t�−1

‖2
L2

,(4.16)

(T − t0)h� >
‖(gxg)t�−1

‖2
L2

2|θ − 1
2 | ‖(ft + fxf)t�−1

‖2
L2

,(4.17)
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and

h� >
‖(fxg)t�−1

‖2
L2

‖(ft + fxf + 1
2fxxgg)t�−1

‖2
L2

(4.18)

in terms of the ratio of the coefficients.
Proof. For m = 1 condition (4.8) simplifies to

h
− 1

2

� ‖I11(gxg)‖Lp < h�

∣∣∣∣θ − 1

2

∣∣∣∣ ‖(ft + fxf)t�−1
‖Lp .

Choosing p = 2 and neglecting higher order terms, one obtains

h
− 1

2

� h�2
− 1

2 ‖(gxg)t�−1
‖L2

< h�

∣∣∣∣θ − 1

2

∣∣∣∣ ‖(ft + fxf)t�−1
‖L2 ,

i.e., (4.16). Analogous arguments apply to (4.14) and (4.11).

5. Test results. We implemented the stepsize strategy proposed in section 3 for
the drift-implicit Euler scheme (i.e., (4.2) with θ = 1). The error estimate (3.3) has
been realized by the derivative-free choice of (4.12), and the control has been realized
by (3.4) for � = 1 and (3.5) for � ≥ 2. We tested the resulting algorithm extensively for
p = 2 on a set of SDEs with small noise. First, we report results for two scalar SDEs
with known analytic solutions, where we can access the actual errors. The accuracy
is measured by the empirical error quantity

max
�=1,...,N

⎛
⎝ 1

M

M∑
j=1

|xj(t�) − xj
� |2

⎞
⎠

1/2

(5.1)

that is considered as an estimate of the maximum L2-norm of the global errors in
the considered time interval. Here N denotes the number of steps, M the number
of computed paths, and xj

� the computed approximation of the jth path at time t�,
while xj(t�) denotes the corresponding exact solution value.

Finally, we present results for a low-dimensional electronic circuit model. We
draw some conclusions on the potential and on the limitations of the strategy.

Example 5.1 (linear homogeneous SDE with constant coefficients). We
consider the linear scalar SDE in complex arithmetic

x(t) = x0 +

∫ t

0

αx(s)ds +

∫ t

0

iβx(s)dw(s), t ∈ [0, 1],(5.2)

with coefficients f(x, t) := αx, G(x, t) = (g(x, t)) = (iβx), initial value x0, parameters
α, β ∈ R, and a scalar Wiener process w. It was implemented as a two-dimensional
system in real arithmetic. Its solution is given by the geometric Brownian motion
x(t) = x0 exp

(
(α + 1

2β
2)t + iβw(t)

)
. Conditions (4.16) and (4.18) are equivalent to

β4

2α4
� h� and

β2

α2
� h�,

respectively. Here, the ratio |β/α| plays the role of the small parameter ε. As long as
stepsizes with β4/(2α4) � h� are used, the Euler scheme shows order 1 of convergence.
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Fig. 5.1. A computed solution path and stepsizes (left) or global errors (right) for the SDE (5.2).

As long as even β2/α2 � h� is satisfied, the proposed stepsize control should act
properly.

In regions where the first condition is satisfied but the second one is violated, the
controlled quantity ‖f� − f�−1‖L2

is dominated by∥∥∥∥∥
∫ t�

t�−1

fxg(x(s), s)dw(s)

∥∥∥∥∥
L2

≈ |αβ|h 1
2 ‖x�−1‖L2

instead of ∥∥∥∥∥
∫ t�

t�−1

fxf(x(s), s)ds

∥∥∥∥∥
L2

≈ α2h‖x�−1‖L2 .

The proposed control leads to stepsizes that match

α2‖x�−1‖L2
h ≈ tol2/(|β| ‖x�−1‖L2

).

In the following we present results for different values of the parameters α, β. The
initial value was chosen to be x0 = 1. We start with results for the parameters
α = −10, β = 10−2 with ratio |β/α| = 10−3. The solution shows an exponential
decrease with the steepest gradients at the beginning of the integration interval. In
Figure 5.1 we give the real part of the solution (+) together with the adaptively
chosen stepsizes (left picture, ×) and the observed global errors (right picture, ×) for
the relative tolerance tol = 0.125 in Algorithm 3.1. The total number of steps was
129 corresponding to an average stepsize of 7.75 · 10−3, whereas the minimal stepsize
was 2.33 · 10−3.

One hundred paths are computed simultaneously. Figure 5.2 gives the tolerance
and accuracy (5.1) versus the number of steps. We plot the relative tolerance (�)
and the accuracy with adaptively chosen stepsizes (+) and with constant stepsizes
(×) versus the number of steps in logarithmic scale with base 10. Lines with slopes
−1 and −0.5 are provided to enable comparisons with convergence of order 1 or 1/2.

To see how much the results are influenced by the statistical error due to only 100
randomly chosen paths, we repeated the computations 100 times for selected values
of the relative tolerance. In Table 5.1 the mean value and standard deviation (in
percentages) of the observed grid-points of the rejected steps and of the accuracy
(5.1) are reported.

Let us add some observations. The global errors do not increase over the whole
time interval, but show an exponential decrease after a shorter phase of increase at
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Fig. 5.2. Tolerance and accuracy versus steps for the SDE (5.2) for α = −10 and β = 10−2.

Table 5.1

Variation of 100 repetitions of the simulation results for the SDE (5.2) with parameters
α = −10, β = 0.01, and 100 simultaneously computed paths.

Successful steps Rejected steps Accuracy
Tolerance Mean Deviation Mean Deviation Mean Deviation

2−5 494 0% 0 0% 1.08·10−3 0.073%

2−10 27426.25 0.11% 17.96 21.43% 2.11·10−5 0.077%

the beginning. Therefore, the maximum of the global errors over the integration steps
is more meaningful than just the global error at the end of the interval. Furthermore,
the error estimates are too pessimistic. Both effects are due to the damping of the
solution by α = −10, since the errors are damped as well. Further, in the case of the
small noise parameter |β/α| = 10−3, the stepsize control works well up to average
stepsizes of 10−4 and provides more accurate results than solving the SDE with the
same number of constant steps. For higher numbers of steps, the smaller stepsizes at
the beginning of the integration interval already lie below the threshold β2/α2 � h�.
The results in Table 5.1 show that the proposed stepsize control works very well
for stepsizes above this threshold and is still quite reasonable for stepsizes slightly
below the threshold. The achieved accuracy differs only by less than 0.1% from one
repetition of the simulation to another.

Next, we present results for the parameters α = −0.5 and β = 0.01, i.e., |β/α| =
0.02. Here, the decrease of the solution is much slower, and constant stepsizes are
nearly optimal. Compared to the problem with α = −10, the noise intensity is larger.
In Figures 5.3 and 5.4 and Table 5.2 we present results of experiments that correspond
to those described for α = −10.

Due to less small noise, the range of accuracy, where the stepsize selection strategy
works as intended, decreases to average stepsizes below 10−2. In this range one can
see a good correspondence of the tolerance to the accuracy. For very low accuracy (see
the far left side of Figure 5.4), constant stepsizes seem to perform even better. Here,
one has to see that the adaptive stepsize control first had to find the suitable stepsizes
that correspond to the tolerance. Further, Table 5.2 shows that the simulations for
|β/α| = 0.02 and average stepsizes below 10−2 are slightly more affected by the
randomly chosen 100 paths than the simulations for |β/α| = 0.001 above. However,
the differences from one repetition of the experiment to another still lie below 1%.
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Fig. 5.3. A computed solution path and stepsizes (left) or global errors (right) for the SDE (5.2).
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Table 5.2

Variation of 100 repetitions of the simulation results for the SDE (5.2) with parameters
α = −0.5, β = 0.01, and 100 simultaneously computed paths.

Successful steps Rejected steps Accuracy
Tolerance Mean Deviation Mean Deviation Mean Deviation

2−6 8 0% 0 0% 9.37·10−3 0.018%

2−11 2537.64 0.57% 9.64 34.53% 3.26·10−5 0.62%

Finally, we report results for α = −0.5, β = 0.1, i.e., |β/α| = 0.2, where one can
hardly speak of small noise. To obtain reasonable approximations of the ‖ · ‖L2-norm
of the local error estimates, we increased the number of simultaneously computed
paths to M = 1000. Nevertheless, we are in a situation for which the stepsize control
proposed in this paper is not tailored. We present corresponding results in Figures
5.5 and 5.6 and in Table 5.3.

Here one can already observe the asymptotic order 1/2 of convergence for medium
accuracy. In this region the local error term η� is dominated by ‖I11(Λ1g1)�−1‖L2 =
β2h1/2‖x�−1‖L2

, and the stepsize control leads to stepsizes that match

β2h1/2‖x�−1‖L2 ≈ tol |β/α|.

Though we have increased the number of simultaneously computed paths to 1000, the
results are influenced more by the randomness than in the previous simulations for



MEAN-SQUARE STEPSIZE CONTROL 621

α=−0.5, β=0.1
1000 paths
tol=0.05

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

0 0.2 0.4 0.6 0.8
 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

Re x
h

time t

Re x  h

α=−0.5, β=0.1
1000 paths
tol=0.05

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

0 0.2 0.4 0.6 0.8
 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

Re x
error

time t

Re x error

Fig. 5.5. A computed solution path and stepsizes (left) or global errors (right) for the SDE (5.2).
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Fig. 5.6. Tolerance and accuracy versus steps for the SDE (5.2) for α = −0.5 and β = 0.1.

Table 5.3

Variation of 100 repetitions of the simulation results for the SDE (5.2) with parameters
α = −0.5, β = 0.1, and 1000 simultaneously computed paths.

Successful steps Rejected steps Accuracy
Tolerance Mean Deviation Mean Deviation Mean Deviation

0.1·2−2 102.05 1.17% 0 0% 9.21·10−4 1.70%

0.1·2−6 24667.24 1.27% 8.46 60.94% 2.86·10−5 2.17%

smaller noise. We emphasize that the stepsize selection algorithm relies on a sufficient
approximation of the norm of the local error terms by the simultaneously computed
paths.

Example 5.2 (SDE with polynomial drift and diffusion). Here we con-
sider a nonlinear scalar SDE with known solution and drift and diffusion coefficients
f(x, t) := −(α + β2x)(1 − x2), G(x, t) = (g(x, t)) = (β(1 − x2)) that are tunable by
real parameters α, β:

x(t) =

∫ t

0

−(α + β2x(s))(1 − x(s)2)ds +

∫ t

0

β(1 − x(s)2)dw(s), t ∈ [0, T ],(5.3)

where w denotes a scalar Wiener process. The solution is given by (cf. [14, eq. (4.46)])

x(t) =
exp(−2αt + 2βw(t)) − 1

exp(−2αt + 2βw(t)) + 1
.
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Fig. 5.7. A computed solution path and stepsizes (left) or global errors (right) for the SDE (5.3).
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Fig. 5.8. Tolerance and accuracy versus steps for the SDE (5.3) for α = −10, β = 0.1.

Table 5.4

Variation of 100 repetitions of the simulation results for the SDE (5.3) with parameters
α = −10, β = 0.1, and 100 simultaneously computed paths.

Successful steps Rejected steps Newton failures Accuracy
Tolerance Mean Deviation Mean Deviation Mean Deviation Mean Deviation

0.01 1316.0 0.20% 5.01 12.46% 17.36 12.94% 3.75·10−4 0.60 %

0.005 3399.4 0.22% 8.45 23.56% 15.63 12.78% 1.88·10−4 0.71%

Due to the nonlinearity of the coefficients, the conditions (4.16), (4.17), (4.18) are so-
lution dependent. Another effect of the nonlinearity is that restrictions of the stepsize
are necessary to ensure the convergence of Newton’s method for solving the nonlinear
equations of the drift-implicit Euler scheme in every step. As in the deterministic set-
ting, failures of Newton’s method may also cause step rejections, especially for larger
stepsizes, where the quality of the starting point for Newton’s method may be worse.
In such a case we halved the unsuccessful stepsize and forbade stepsize enlargements
for the next five steps.

Though the problem is nonlinear, the principal observations we made were the
same as for the linear example, Example 5.1. Here, we restrict our presentation to
simulation results for one set of parameters, α = −10 and β = 0.1, where 100 paths
were computed simultaneously. In Figures 5.7 and 5.8 and Table 5.4 we present results
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Fig. 5.9. Thermal noise sources in a MOSFET inverter circuit.

of experiments that correspond to those described for Example 5.1.
The solution shows a transient behavior at the beginning of the time interval. At

the end of the time interval the stepsizes are bounded by the convergence behavior of
Newton’s method. Failures of Newton’s methods also prevented simulation results for
larger stepsizes in the case of larger noise. In Table 5.4 additional columns report the
number of step rejections due to failures of Newton’s method. In Figure 5.8 we observe
order 1 behavior up to accuracies of 10−3. The parameter α = −10 causes a damping
in the solution and a prediction of the global error that is much too pessimistic.
The use of adaptive stepsizes provides considerably more accurate results than the
computation with the same number of constant steps.

Example 5.3 (electronic circuit). We consider a model of an inverter circuit
with a metal oxide semiconductor field effect transistor (MOSFET) under the influence
of thermal noise. The equivalent circuit diagram is given in Figure 5.9.

The MOSFET is modeled as a current source from source to drain that is con-
trolled by the nodal potentials at gate, source, and drain: jD = fmosfet(egate, edrain,
esource). In our example the current jD through the MOSFET is controlled by the in-
put voltage Uin and the nodal potential e1 at node 1: jD(Uin, e1) := fmosfet(Uin, e1, 0).
Often the models of MOSFETs are very sophisticated and involve hundreds of pa-
rameters. A first order model for MOSFETs is described in [9], where also further
references are given. We simply used

jD = K ·
(
max(UGS − Vth, 0)2 − max(UGD − Vth, 0)2

)
,

where UGS = egate − esource, UGD = egate − edrain, and the threshold voltage Vth

and the current amplification factor K are given parameters. The thermal noise of
the resistor and of the MOSFET is modeled by additional white noise current sources
that are shunt in parallel to the original, noise-free elements. The noise intensity is
given by Nyquist’s rule (cf. [2, 5, 26]):

Ith = σR · ξ(t) =
√

2kTemp
R · ξ(t),

where ξ(t) is a standard Gaussian white noise process, k = 1.38066 · 10−23 [JK−1]
is Boltzmann’s constant, Temp is the absolute temperature, and R is the resistance.
For the thermal noise source of the MOSFET, this formula is modified by considering
a solution-dependent conductance gD = gmosfet(egate, edrain, esource) instead of g =
1/R. We used

gD = 0 if UGS ≤ Vth,

gD = β · (UGS − Vth) · (1 + λUDS) if 0 < UGS − Vth ≤ UDS ,



624 WERNER RÖMISCH AND RENATE WINKLER

0

1

2

3

4

5

6

0 5e–09 1e–08 1.5e–08 2e–08 2.5e–08 3e–08

e1
uin

5e9h +3σ
−3σ

0

1

2

3

4

5

6

0 5e–09 1e–08 1.5e–08 2e–08 2.5e–08 3e–08

e1
uin

Ee1

5e9h

0

1

2

3

4

5

6

0

uin
Ee1

0

1

2

3

4

5

6

0

uin
Ee1

Fig. 5.10. Simulation results for the noisy inverter circuit. Left: 1 path, 188 (+ 46 rejected)
steps. Right: 100 paths, 166 (+ 9 rejected) steps.

gD = β · (UDS) · (1 + λUDS) if 0 < UGS − Vth > UDS ,

where UDS = edrain − esource, and β, λ are parameters. Applying Kirchhoff’s current
law gives a model for the output voltage e1 at node 1:

Ce′1 − (Uop − e1)/R + jD(Uin, e1) − σRξ1 + σD(Uin, e1)ξ2 = 0,(5.4)

where ξ1, ξ2 are independent standard Gaussian white noise processes. We treat this
system as an Itô SDE with n = 1, m = 2, f(x, t) = (Uop − x)/(C ·R)− jD(Uin, x)/C,
g1(x, t) = σR/C, g2(x, t) = −σD(Uin, x)/C.

In this simple model, nearly no differences between the solutions of the noisy and
the deterministic problem could be seen. Therefore, we dealt with a system where the
diffusion coefficients had been scaled by a factor of 1000. In Figure 5.10 we present
simulation results for the parameters C = 2 · 10−13 [F ], R = 5 · 103 [Ω], Uop = 5 [V ],
Temp = 300 [K] on the time interval [0, 2.5·10−8] [s]. In the MOSFET model we chose
Vth = 1, K = 10−3, β = 0.3̄ · 10−4, λ = 0.02, and the tolerance was 10−2. In solid
lines we plotted the values of the nodal potential e1 and the given input voltage Uin

versus time. Moreover, the applied stepsizes, suitably scaled, are shown by means of
single crosses. We compare simulation results for the computation of a single path (in
the left picture of Figure 5.10) with those for the computation of 100 simultaneously
computed solution paths (in the right picture of Figure 5.10), where we additionally
plotted the mean μ (E e1 in the figure) and the lines μ± 3σ (+3σ,−3σ in the figure),
where σ was computed as the empirical estimate of the standard deviation for the
output voltage. Using the information of an ensemble of simultaneously computed
solution paths smoothes the stepsize sequence and considerably reduces the number of
rejected steps (from 46 to 9). Even the number of needed successful steps is reduced
from 188 to 166.
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