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and the numerial hallenges when evaluating the high-dimensional integralshave drawn great attention to the stability analysis of stohasti programswith respet to hanges in the underlying probability measure. In this hap-ter we present a uni�ed framework for suh a stability analysis by regardingstohasti programs as optimization problems depending on the probabilitymeasure varying in some spae of measures endowed with some distane. Wegive stability results both for general models and for more spei� stohastiprograms like two-stage and hane onstrained models and inlude most ofthe proofs. Moreover, we disuss some onlusions about spei� approxima-tion proedures for stohasti programs.To speify the stohasti programming models for our analysis, we reall thatmany deterministi equivalents of suh models are of the formminn Z� F0(x; �)dP (�) : x 2 X; Z� Fj(x; �)dP (�) � 0; j = 1; :::; do; (1)where the set X � Rm is losed, � is a losed subset of Rs , the funtionsFj from Rm � � to the extended reals R are random lower semiontinuousfuntions for j = 0; :::; d, and P is a Borel probability measure on �.The set X is used to desribe all onstraints not depending on P , and the set� ontains the supports of the relevant measures and provides some exibil-ity for formulating the models and the orresponding assumptions. We reallthat Fj is a random lower semiontinuous funtion if its epigraphial mapping� 7! epi Fj(�; �) := f(x; r) 2 Rm � R : Fj(x; �) � rg is losed-valued andmeasurable, whih implies, in partiular, that Fj(�; �) is lower semiontinuousfor eah � 2 � and Fj(x; �) is measurable for eah x 2 Rm .Although our stability analysis mainly onerns model (1) and its spei�a-tions, we also provide an approah to the stability of more general models thatontain risk funtionals and are of the formminnF0(P [F0(x; �)℄�1) : x 2 X; Fj (P [Fj(x; �)℄�1) � 0; j = 1; :::; do; (2)where the risk funtionals Fj , j = 0; : : : ; d, map from suitable subsets of theset P(R) of all probability measures on R to R. In general, the funtionalsFj depend on a measure in P(R) in a more involved way than the expeta-tion funtional Fe(G) := RR rdG(r), for whih we have Fe(P [F0(x; �)℄�1) =RR r dP [F0(x; �)℄�1(r) = R� F0(x; �)dP (�). Another example is the varianefuntional Fv (G) := RR r2dG(r) � (RR rdG(r))2. We also refer to the value-at-risk funtional in Example 1 and to the examples in Setion 2.4.We illustrate the abstrat models by the lassial newsboy example (see e.g.Dupa�ov�a (1994), Example 1 in Ruszzy�nski and Shapiro (2003)).Example 1 (newsboy problem)A newsboy must plae a daily order for a number x of opies of a newspaper.2



He has to pay r dollars for eah opy and sells a opy at  dollars, where 0 <r < . The daily demand � is random with (disrete) probability distributionP 2 P(N) and the remaining opies y(�) = maxf0; x��g have to be removed.The newsboy might wish that the deision x maximizes his expeted pro�t or,equivalently, minimizes his expeted osts, i.e.,ZR F0(x; �)dP (�) := ZR [(r � )x+ maxf0; x� �g℄dP (�)= (r � )x+ Xk2N �kmaxf0; x� kg= rx� xXk2Nk�x �k � Xk2Nk<x �kkwhere �k is the probability of demand k 2 N . The unique integer solution isthe maximal k 2 N suh that P1i=k �i � r . Another possibility is that thenewsboy wishes to maximize his pro�t and, at the same time, to minimizehis risk osts s where s bounds the number y(�) of opies that remain withprobability p. The minimal s orresponds to his value-at-risk at level p. Theresulting stohasti program readsminx2R+ n(r � )x+  inf fs 2 R+ : P (y(�) � s) � pgo:The latter program is equivalent to the hane onstrained modelmin(x;s)2R2+ n(r � )x + s : Xk2Nx�s�k �k � po (3)whose unique integral solution is (k; 0) with the maximal k 2 N suh thatP1i=k �i � p. Hene, the minimum risk solution is more pessimisti than theminimal expeted ost solution if r < p < 1, i.e., if the newsboy wants to besure with high probability that no opies of the newspaper remain.However, the inherent diÆulty of all these approahes is that the newsboydoes not know the probability distribution P of the demand and has to usesome approximation instead. Hene, he is interested in the stability of his dei-sion whih means that it doesn't vary too muh for small perturbations of thedata. For instane, his deision might be based on n independent identiallydistributed observations �i, i = 1; : : : ; n, of the demand, i.e., on approximat-ing P by the empirial measure Pn (f. Setion 4.1) and, in ase of minimalexpeted osts, on solving the approximate problemminx2R+ n(r � )x+ n nXi=1maxf0; x� �igo: (4)3



Of ourse, this approah is only justi�ed if some optimal solution xn of theapproximate problem (4) is lose to some original solution for suÆiently largen. Both variants of the newsboy problem represent spei� two-stage andhane onstrained stohasti programs, respetively. Their disussion will beontinued in the Examples 15, 19 and 54.Throughout we will denote the set of all Borel probability measures on � byP(�), the feasible set of (1) by X (P ), the optimal value by #(P ) and the("-approximate) solution set of (1) by X�" (P ) and X�(P ), respetively, i.e.,X (P ) := nx 2 X : Z� Fj(x; �)dP (�) � 0; j = 1; :::; do; (5)#(P ) := inf n Z� F0(x; �)dP (�) : x 2 X (P )o; (6)X�" (P ) := nx 2 X (P ) : Z� F0(x; �)dP (�) � #(P ) + "o (" � 0); (7)X�(P ) :=X�0 (P ) = nx 2 X (P ) : Z� F0(x; �)dP (�) = #(P )o: (8)In this hapter, stability mostly refers to ontinuity properties of the optimalvalue funtion #(�) and the ("-approximate) solution-set mapping X�" (�) at P ,where both #(�) and X�" (�) are regarded as mappings given on a set of probabil-ity measures endowed with a suitable distane. The distane has to be seletedsuh that it allows to estimate di�erenes of objetive and onstraint funtionvalues, and, that it is optimum adapted to the model at hand. Fortunately,there exists a diversity of onvergene notions and metris in probability theoryand statistis that address di�erent goals and are based on various onstru-tions (see, e.g., Rahev (1991), van der Vaart (1998)). We will use so-alleddistanes with �-struture that are given as uniform distanes of expetationsof funtions taken from a lass F of measurable funtions from � to R, i.e.,dF(P;Q) = supF2F ��� Z� F (�)dP (�)� Z� F (�)dQ(�)���: (9)In a �rst step we hoose the lass F as the set fFj(x; �) : x 2 X \ lU ; j =0; : : : ; dg, where U is a properly hosen open subset of Rm , and derive some(qualitative and quantitative) stability results in the Setions 2.2 and 2.3. Suha distane forms a kind of minimal information (m.i.) metri for the stabilityof (1). Some of the orresponding results (e.g. the Theorems 5 and 9) workunder quite weak assumptions on the underlying data of (1). In partiular,if possible di�erentiability or even ontinuity assumptions on the funtionsx 7! R� Fj(x; �)dP (�) are avoided for the sake of generality. The approah isinspired by general perturbation results for optimization problems in Klatte4



(1987,1994), Attouh and Wets (1993) and in the monographs by Bank et al.(1982), Rokafellar and Wets (1998) and Bonnans and Shapiro (2000).Sine the m.i. metris are often rather involved and diÆult to handle, welook, on the one hand, for impliations of the general qualitative result on sta-bility with respet to the topology of weak onvergene. On the other hand,we look for another metri having �-struture by enlarging the lass F and,hene, bounding the m.i. metri from above. Our strategy for ontrolling thisenlargement proedure onsists in adding funtions to the enlarged lass thatshare the essential analytial properties with some of the funtions Fj(x; �). Asa result of this proess we obtain ideal metris that are optimum adjusted tothe model (1) or to a whole lass of models and that enjoy pleasant properties(e.g., a duality and onvergene theory). In Setion 3, we show for three typesof stohasti programs how suh ideal metris ome to light in a natural wayby revealing the analytial properties of the relevant funtions Fj(x; �). At thesame time, we obtain quantitative stability results for all models.For two-stage models ontaining integer variables and for hane onstrainedmodels, the relevant funtions are disontinuous and their ideal lasses ontainproduts of (loally) Lipshitzian funtions and of harateristi funtions ofsets desribing regions of ontinuity (see Setions 3.2 and 3.3).When using stability results for designing or analyzing approximation shemesor estimation proedures, further properties of the funtion lasses F and ofthe metris may beome important. For example, we derive overing num-bers of ertain funtion lasses and disuss their impliations on probabilistibounds for empirial optimal values and solution sets.The hapter is organized as follows. First Setion 2 ontains some prerequisiteson onvergenes and metri distanes of probability measures. This is followedby our main qualitative stability result (Theorem 5) and its onlusions on thestability with respet to weak onvergene of probability measures. We on-tinue with the quantitative stability results for solution sets of (1) (Theorems9 and 12) and a Lipshitz ontinuity result (Theorem 13) for "-approximatesolution sets of onvex models. We add a disussion of how to assoiate idealmetris with more spei� stohasti programs. Setion 2 is �nished by dis-ussing the hallenges and by presenting �rst results of a perturbation analysisfor stohasti programs ontaining risk funtionals (2). In Setion 3 we on-sider linear two-stage, mixed-integer two-stage and linear hane onstrainedstohasti programs and present various perturbation results for suh models.The potential of our general perturbation analysis is explained in Setion 4 fortwo types of approximations of the underlying probability measure P . First,we onsider empirial measures as nonparametri estimators of P and deriveasymptoti statistial properties of values and solutions by using empirial pro-ess theory. Seondly, we disuss the optimal onstrution of �nitely disretemeasures based on probability metris and sketh some results and heuristialgorithms for the optimal redution of disrete measures. We onlude thehapter with some bibliographial notes on the relevant literature.5



2 General Stability Results2.1 Convergenes and Metris of Probability MeasuresLet us onsider the set P(�) of all Borel probability measures with supportontained in a losed subset � of Rs . We will endow the set P(�) or some ofits subsets with di�erent onvergenes and distanes, whih are adapted to theunderlying stohasti program or to a whole lass of stohasti programs. Thelassial onvergene onept in probability theory is the weak onvergene ofmeasures in P(�) (see e.g. Billingsley (1968) and Dudley (1989)). A sequene(Pn) in P(�) is said to onverge weakly to P 2 P(�), shortly Pn w�! P , iflimn!1 Z� g(�)dPn(�) = Z� g(�)dP (�) (10)holds for eah g in the spae Cb(�) of bounded ontinuous funtions from �to R. It is well known that the topology �w of weak onvergene is metrizable(e.g. by the bounded Lipshitz metri (11)) and that Pn w�! P holds i� thesequene of probability distribution funtions of Pn onverges pointwise tothe distribution funtion FP of P at all ontinuity points of FP . Anotherimportant property of weak onvergene is the ontinuous mapping theorem:If Pn w�! P and g : � ! R is measurable, bounded and P -ontinuous, i.e.,P (f� 2 � : g is not ontinuous at �g) = 0, we have (10).Most of the distanes on (subsets of) P(�) that will be onsidered are of theform dF in (9), where F is a lass of measurable funtions from � to R, and arede�ned on the set PF := fQ 2 P(�) : supF2F j R� F (�)dQ(�)j < 1g, wheredF is �nite. A uniform distane of the form (9) is alled a distane having�-struture (see Zolotarev (1983) and Rahev (1991)). Clearly, dF does nothange if the set F is replaed by its onvex hull. It is nonnegative, symmetriand satis�es the triangle inequality, i.e., a pseudometri on PF . dF is a metriif the lass F is rih enough to preserve that dF(P;Q) = 0 implies P = Q.Next we list some important examples of distanes having �-struture, wherethe lasses F range from (loally) Lipshitz ontinuous funtions to pieewiseonstant funtions with a presribed struture of disontinuity sets.Example 2 (metris with �-struture)(a) For p = 0 and p � 1 we introdue lasses Fp(�) of loally Lipshitzontinuous funtions that inrease with pFp(�) := fF : � 7! R : jF (�)� F (~�)j � p(�; ~�)k� � ~�k; 8�; ~� 2 �g;F0(�) :=F1(�) \ nF 2 Cb(�) : sup�2� jF (�)j � 1o:6



Here, k � k denotes some norm on Rs and p(�; ~�) := maxf1; k�k; k~�kgp�1for all �; ~� 2 � and p � 1 desribes the growth of the loal Lipshitzonstants. The orresponding distane with �-struture for p = 0 is thebounded Lipshitz metri (Setion 11.3 of Dudley (1989))�(P;Q) := supF2F0(�) ��� Z� F (�)dP (�)� Z� F (�)dQ(�)��� (11)and metrizes the weak onvergene on P(�). For p = 1 we arrive at theKantorovih metri�1(P;Q) := supF2F1(�) ��� Z� F (�)dP (�)� Z� F (�)dQ(�)��� (12)and for p � 1 at the p-th order Fortet-Mourier metris (see Fortet andMourier (1953) and Rahev (1991))�p(P;Q) := supF2Fp(�) ��� Z� F (�)dP (�)� Z� F (�)dQ(�)��� (13)on the set Pp(�) := fQ 2 P(�) : R� k�kpdQ(�) < 1g of probabilitymeasures having �nite p-th order absolute moments. It is known that asequene (Pn) onverges to P in (Pp(�); �p) i� it onverges weakly andlimn!1 Z� k�kpdPn(�) = Z� k�kpdP (�)holds. Furthermore, the estimate��� Z� k�kpdP (�)� Z� k�kpdQ(�)��� � p�p(P;Q)is valid for eah p � 1 and all P;Q 2 Pp(�) (Setion 6 in Rahev (1991)).Hene, loseness with respet to �p implies the loseness of q-th orderabsolute moments for q 2 [1; p℄.(b) Let B denote a set of Borel subsets of � and onsider the lass FB :=f�B : B 2 Bg of their harateristi funtions �B taking the value 1 if theargument belongs to B and 0 otherwise. The distane with �-struturegenerated by FB is de�ned on P(�). It takes the form�B(P;Q) := dFB(P;Q) = supB2B jP (B)�Q(B)jand is alled B-disrepany. The following instanes play a speial role inthe ontext of stability in stohasti programming:(b1) Let � be onvex and B(�) the set of all losed onvex subsets of �.(b2) Let � be polyhedral and Bphk(�) the set of all polyhedra being sub-sets of � and having at most k faes.7



(b3) Let � = Rs and Bh(�) be the set of all losed half-spaes in Rs .(b4) Let � = Rs and BK(�) := f(�1; �℄ : � 2 Rsg be the set of all ells.The orresponding distanes are the isotrope disrepany �, the polyhe-dral disrepany �phk , the half-spae disrepany �h and the Kolmogorovmetri. The latter metri oinides with the uniform distane of distribu-tion funtions on Rs and is denoted by dK, i.e.,dK(P;Q) = �BK(P;Q) = sup�2Rs jP ((�1; �℄)�Q((�1; �℄)j:A sequene (Pn) onverges to P in P(�) with respet to �B, where B isa lass of losed onvex subsets of �, i� (Pn) onverges weakly to P andP (bdB) = 0 holds for eah B 2 B (with bdB denoting the boundary ofthe set B).The examples reveal some relations between the weak onvergene of proba-bility measures and their onvergene with respet to a uniform metri dF forsome lasses F . Suh relations have already been explored more systematiallyin the literature. A lass F of measurable funtions from � to R is alled aP -uniformity lass iflimn!1 dF(Pn; P ) = 0 (14)holds for eah sequene (Pn) that onverges weakly to P . Neessary onditionsfor F to be a P -uniformity lass are that F is uniformly bounded and thatevery funtion in F is P -ontinuous. SuÆient onditions are given in Billings-ley and Tops�e (1967), Tops�e (1967,1977) and Luhetti et al. (1994). Forexample, F is a P-uniformity lass if it is uniformly bounded and it holds thatP (f� 2 � : F is not equiontinuous at �g) = 0 (Tops�e (1967)). Unless F isuniformly bounded, ondition (14) annot be valid for any sequene (Pn) thatonverges weakly to P . In that ase, a uniform integrability ondition withrespet to the set fPn : n 2 Ng has to be additionally imposed on F . The setF is alled uniformly integrable with respet to fPn : n 2 Ng iflimR!1 supn2N supF2F ZF (�)>R jF (�)jdPn(�) = 0: (15)Note that ondition (15) is satis�ed if the moment onditionsupn2N supF2F Z� jF (�)j1+"dPn(�) <1 (16)holds for some " > 0 (Setion 5 in Billingsley (1968)). Then the ondition(14) is valid for any sequene (Pn) that onverges weakly to P in PF and has8



the property that F is uniformly integrable with respet to fPn : n 2 Ngif the set FR := f[F ℄R(�) := maxf�R;minfF (�); Rgg : F 2 Fg of trun-ated funtions of F is a P -uniformity lass for large R > 0. Sine thelass FR is uniformly bounded, it is a P -uniformity lass if P (f� 2 � :FR is not equiontinuous at �g) = 0. SuÆient onditions for lasses of har-ateristi funtions of onvex sets to be P -uniformity lasses are mentioned inExample 2(b).2.2 Qualitative StabilityTogether with the original stohasti programming problem (1) we onsider aperturbation Q 2 P(�) of the probability distribution P and the perturbedmodelminn Z� F0(x; �)dQ(�) : x 2 X; Z� Fj(x; �)dQ(�) � 0; j = 1; :::; do (17)under the general assumptions imposed in Setion 1. To �x our setting, letk � k denote the Eulidean norm and h�; �i the orresponding inner produt. ByB we denote the Eulidean unit ball and by d(x;D) the distane of x 2 Rmto the set D � Rm . For any nonempty and open subset U of Rm we onsiderthe following sets of funtions, elements and probability measuresFU := fFj(x; �) : x 2 X \ lU ; j = 0; :::; dg;XU(Q) := nx 2 X \ lU : Z� Fj(x; �)dQ(�) � 0; j = 1; :::; do (Q 2 PFU (�));PFU (�) := nQ 2 P(�) : �1 < Z� infx2X\ rB Fj(x; �)dQ(�) for eah r > 0 andsupx2X\ lU Z� Fj(x; �)dQ(�) <1 for eah j = 0; :::; do;and the pseudometri on PFU := PFU (�)dFU (P;Q) := supF2FU ��� Z� F (�)(P �Q)(d�)��� = supj=0;:::;dx2X\ l U ��� Z� Fj(x; �)(P �Q)(d�)���:Thus, dFU is a distane of probability measures having �-struture. It is non-negative, symmetri and satis�es the triangle inequality (see also Setion 2.1).Our general assumptions and the Fatou Lemma imply that the objetive fun-tion and the onstraint set of (17) are lower semiontinuous on X and losed9



in Rm , respetively, for eah Q 2 PFU (�). Our �rst results provide furtherbasi properties of the model (17).Proposition 3 Let U be a nonempty open subset of Rm . Then the mapping(x;Q) 7! R� Fj(x; �)dQ(�) from (X \ lU) � (PFU ; dFU ) to R is sequentiallylower semiontinuous for eah j = 0; :::; d.Proof: Let j = 0; :::; d, x 2 X \ lU , Q 2 PFU , (xn) be a sequene in X \ lUsuh that xn ! x, and (Qn) be a sequene onverging to Q in (PFU ; dFU ).Then the lower semiontinuity of Fj(�; �) for eah � 2 � and the Fatou Lemmaimply the estimateZ� Fj(x; �)dQ(�)� lim infn!1 Z� Fj(xn; �)dQ(�)� lim infn!1 fdFU (Q;Qn) + Z� Fj(xn; �)Qn(d�)g= lim infn!1 Z� Fj(xn; �)Qn(d�): 2Proposition 4 Let U be a nonempty open subset of Rm . Then the graph ofthe set-valued mapping Q 7! XU(Q) from (PFU ; dFU ) into Rm is sequentiallylosed.Proof: Let (Qn) be a sequene onverging to Q in (PFU ; dFU ) and (xn) be asequene onverging to x in Rm and suh that xn 2 XU(Qn) for eah n 2 N .Clearly, we have x 2 X \ lU . For j 2 f1; :::; dg we obtain from Proposition 3that the estimateZ� Fj(x; �)dQ(�) � lim infn!1 Z� Fj(xn; �)Qn(d�) � 0 :and, thus, x 2 XU(Q) holds. 2To obtain perturbation results for (1), a stability property of the onstraintset X (P ) when perturbing the probabilisti onstraints is needed. Consistentlywith the general de�nition of metri regularity for multifuntions (see, e.g.,Rokafellar and Wets (1998)), we onsider the set-valued mapping y 7! Xy(P )from Rd to Rm , whereXy(P ) = nx 2 X : Z� Fj(x; �)dP (�) � yj; j = 1; :::; do;and say that its inverse x 7! X�1x (P ) = fy 2 Rd : x 2 Xy(P )g from Rm to Rdis metrially regular at some pair (�x; 0) 2 Rm � Rd with �x 2 X (P ) = X0(P )10



if there are onstants a � 0 and " > 0 suh that it holds for all x 2 X andy 2 Rd with kx� �xk � " and maxj=1;:::;d jyjj � " thatd(x;Xy(P )) � a maxj=1;:::;dmaxn0; Z� Fj(x; �)dP (�)� yjo :To state our results we will need loalized versions of optimal values andsolution sets. We follow the onept proposed in Robinson (1987) and Klatte(1987), and set for any nonempty open set U � Rm and any Q 2 PFU#U(Q)= inf n Z� F0(x; �)dQ(�) : x 2 XU(Q)o;X�U(Q)=nx 2 XU(Q) : Z� F0(x; �)dQ(�) = #U(Q)o:A nonempty set S � Rm is alled a omplete loal minimizing (CLM) set of(17) relative to U if U � Rm is open and S = X�U(Q) � U . Clearly, CLM setsare sets of loal minimizers, and the set X�(Q) of global minimizers is a CLMset with X�(Q) = X�U(Q) if X�(Q) � U .Now, we are ready to state the main qualitative stability result.Theorem 5 Let P 2 PFU and assume that(i) X�(P ) is nonempty and U � Rm is an open bounded neighbourhood ofX�(P ),(ii) if d � 1, the funtion x 7! R� F0(x; �)dP (�) is Lipshitz ontinuous onX \ lU ,(iii) the mapping x 7! X�1x (P ) is metrially regular at eah pair (�x; 0) with�x 2 X�(P ).Then the multifuntion X�U from (PFU ; dFU ) to Rm is upper semiontinuous atP , i.e., for any open set O � X�U(P ) it holds that X�U(Q) � O if dFU (P;Q) issuÆiently small. Furthermore, there are positive onstants L and Æ suh thatj#(P )� #U(Q)j � LdFU (P;Q) (18)holds and X�U(Q) is a CLM set of (17) relative to U whenever Q 2 PFU anddFU (P;Q) < Æ. In ase d = 0, the estimate (18) is valid with L = 1 and forany Q 2 PFU .Proof: We onsider the (loalized) parametri optimization problemminnf(x;Q) = Z� F0(x; �)dQ(�) : x 2 XU(Q)o;11



where the probability measure Q is regarded as a parameter varying in thepseudometri spae (PFU ; dFU ). Proposition 4 says that the graph of the mul-tifuntion XU from PFU to Rm is sequentially losed. Hene, XU is upper semi-ontinuous on PFU , sine lU is ompat. Furthermore, we know by Proposi-tion 3 that the funtion f from (X\ lU)�PFU to R is sequentially lower semi-ontinuous and �nite. Let us �rst onsider the ase of d = 0. Sine f(�; Q) islower semiontinuous, X�U(Q) is nonempty for eah Q 2 PFU . Let x� 2 X�(P ),Q 2 PFU and ~x 2 X�U(Q). Then the estimatej#(P )� #U (Q)j �maxn Z� F0(x�; �)(Q� P )(d�); Z� F0(~x; �)(P �Q)(d�)o� dFU (P;Q)holds. This implies that the multifuntion X�U from (PFU ; dFU ) to Rm is losedat P and, thus, upper semiontinuous at P .In ase d � 1, ondition (ii) implies that the funtion f is even ontinuouson (X \ lU) � PFU . Then we use Berge's lassial stability analysis (seeBerge (1963) for topologial parameter spaes and Theorem 4.2.1 in Bank etal. (1982) for metri parameter spaes) and onlude that X�U is upper semi-ontinuous at P if XU satis�es the following (lower semiontinuity) propertyat some pair (�x; P ) with �x 2 X�(P ):XU(P ) \ B(�x; �") � XU(Q) + a dFU (P;Q)B whenever dFU (P;Q) < �"; (19)where a � 0 is the orresponding onstant in ondition (iii), and �" > 0 issuÆiently small. To establish property (19), let �x 2 X�(P ), and a = a(�x) � 0," = "(�x) > 0 be the metri regularity onstants from (iii). First we observe thatthe estimate R� Fj(x; �)(Q� P )(d�) � dFU (P;Q) holds for any x 2 X \ lU ,j 2 f1; :::; dg and Q 2 PFU . Next we hoose �" = �"(�x) suh that 0 < �" < " and�x + (a + 1)�" B � U . Hene, we have x + a�" B � U for any x 2 �x + �" B . LetQ 2 PFU be suh that dFU (P;Q) < �". Putting yj = �dFU (P;Q), j = 1; :::; d,the above estimate implies that Xy(P )\ lU � XU(Q). Due to the hoie of �"we have d(x;Xy(P )\ lU) = d(x;Xy(P )) for any x 2 XU(P )\ (�x+ �" B ), and,hene, the metri regularity ondition (iii) yields the estimated(x;XU(Q))� d(x;Xy(P ) \ lU) = d(x;Xy(P ))� a maxj=1;:::;dmaxn0; Z� Fj(x; �)dP (�) + dFU (P;Q)o� a dFU (P;Q);whih is equivalent to the property (19). Hene, X�U is sequentially uppersemiontinuous at P and there exists a onstant Æ̂ > 0 suh that X�U(Q) � Ufor any Q 2 PFU with dFU (P;Q) < Æ̂. Thus X�U(Q) is a CLM set of (17) relative12



to U for eah suh Q.Moreover, for any x 2 XU(Q) \ (�x + �" B ) (iii) implies the estimated(x;XU(P ))= d(x;X0(P ) \ lU) = d(x;X0(P ))� a maxj=1;:::;dmaxn0; Z� Fj(x; �)dP (�)o� a maxj=1;:::;dmaxn0; Z� Fj(x; �)dP (�)� Z� Fj(x; �)dQ(�)o� a dFU (P;Q) ;whih is equivalent to the inlusionXU(Q) \ (�x + �" B ) � XU(P ) + a dFU (P;Q)B :Sine X�(P ) is ompat, we employ a �nite overing argument and arriveat two analogues of both inlusions, where a neighbourhood N of X�(P )appears instead of the balls �x + �" B in their left-hand sides, and a uniformonstant â appears instead of a in their right-hand sides. Moreover, thereexists a uniform onstant "̂ > 0 suh that the (new) inlusions are validwhenever dFU (P;Q) < "̂. Now, we hoose Æ > 0 suh that Æ � minfÆ̂; "̂g andX�U(Q) � N whenever dFU (P;Q) < Æ.Let Q 2 PFU be suh that dFU (P;Q) < Æ and ~x 2 X�U(Q) � XU(Q) \ N .Then there exists an element �x 2 XU(P ) satisfying k~x� �xk � â dFU (P;Q). Weobtain #(P ) � f(�x; P )� f(~x;Q) + jf(�x; P )� f(~x;Q)j�#U(Q) + jf(�x; P )� f(~x; P )j+ jf(~x; P )� f(~x;Q)j�#U(Q) + Lfk�x� ~xk+ dFU (P;Q)�#U(Q) + (Lf â+ 1)dFU (P;Q) ;where Lf � 0 denotes a Lipshitz onstant of f(:; P ) on X \ lU . For theonverse estimate, let �x 2 X�(P ) and Q 2 PFU be suh that dFU (P;Q) < Æ.Then there exists ~x 2 XU(Q) suh that k~x� �xk � â dFU (P;Q). We onlude#U (Q) � f(~x;Q) � #(P ) + jf(~x;Q)� f(�x; P )jand arrive analogously at the desired ontinuity property of #U by puttingL = Lf â + 1. 2The above proof partly parallels arguments in Klatte (1987). The most re-stritive requirement in the above result is the metri regularity ondition(iii). Example 40 in Setion 3.3 provides some insight into the neessity of13



ondition (iii) in the ontext of hane onstrained models. Criteria for themetri regularity of multifuntions are given e.g. in Setion 9G of Rokafellarand Wets (1998) and in Mordukhovih (1994b). Here, we do not intend toprovide a spei� suÆient ondition for (iii), but reall that the onstraintfuntions R� Fj(�; �)dP (�) (j = 1; : : : ; d) are often nondi�erentiable or evendisontinuous in stohasti programming. In Setion 3.3 we show how metriregularity is veri�ed in ase of hane onstrained programs.Although Theorem 5 also asserts a quantitative ontinuity property for opti-mal values, its essene onsists in a ontinuity result for optimal values andsolution sets. As a �rst onlusion we derive onsequenes for the stability of(1) with respet to the weak onvergene of probability measures (f. Setion2.1). To state our main stability result for (1) with respet to the topologyof weak onvergene, we need the lasses FRU of trunated funtions of FU forR > 0 and the uniform integrability property of FU (see Setion 2.1).Theorem 6 Let the assumptions of Theorem 5 for (1) be satis�ed. Further-more, let FRU be a P-uniformity lass for large R > 0 and (Pn) be a sequenein PFU that is weakly onvergent to P .Then the sequene (#U(Pn)) onverges to #(P ), the sets X�U(Pn) are CLM setsrelative to U for suÆiently large n 2 N andlimn!1 supx2X�U (Pn) d(x;X�(P ))) = 0holds if FU is uniformly integrable with respet to fPn : n 2 Ng.Proof: Let (Pn) be a sequene in PFU that onverges weakly to P and has theproperty that FU is uniformly integrable with respet to fPn : n 2 Ng. Thenthe assumption implies (see Setion 2.1)limn!1 dFU (Pn; P ) = 0and, hene, the result is an immediate onsequene of Theorem 5. 2Compared to Theorem 5, the stability of (1) with respet to weakly onver-gent perturbations of P requires additional onditions on FU . The previoustheorem provides the suÆient onditions that its trunated lass FRU has theP -uniformity property for large R > 0 and that FU is uniformly integrablewith respet to the set of perturbations. The �rst ondition is satis�ed if FRUis P -almost surely equiontinuous on � (f. Setion 2.1). It implies, in parti-ular, the P -ontinuity of Fj(x; �) for eah j = 0; : : : ; d and x 2 X \ lU . Theuniform integrability onditionlimR!1 supn2N maxj=0;:::;d supx2X\ lU ZjFj(x;�)j>R jFj(x; �)jdPn(�) = 0 (20)14



is satis�ed if the moment onditionsupn2N maxj=0;:::;d supx2X\ lU Z� jFj(x; �)j1+"dPn(�) <1 (21)holds for some " > 0. Assume, for example, that the funtions Fj satisfy anestimate of the formjFj(x; �)j � Ck�kk; 8(x; �) 2 (X \ lU)� �;for some positive onstants C; k and all j = 0; : : : ; d (see e.g. Setions 3.1 and3.2). In this ase, the uniform integrability ondition (20) is satis�ed iflimR!1 supn2N Zk�k>R k�kkdPn(�) = 0:The orresponding suÆient moment ondition readssupn2N Z� k�kk+"dPn(�) <1for some " > 0. The latter ondition is often imposed in stability studies withrespet to weak onvergene.The P -ontinuity property of eah funtion Fj(x; �) and ondition (20) arenot needed in Theorem 5. However, the following examples show that bothonditions are indispensable for stability with respet to weak onvergene.Example 7 Let m = s = 1, d = 0, � = R, X = R� , F0(x; �) = ��(�1;x℄(�)for (x; �) 2 R � � and P = Æ0, where Æ� denotes the measure that plaes unitmass at �. Then #(P ) = 1 and X�(P ) = f0g. The sequene (Æ 1n ) onvergesweakly to P in P(�), but it holds that #(Pn) = 0 for eah n 2 N . This is due tothe fat that, for some neighbourhood U of 0, the set f�(�1;x℄(�) : x 2 X\ lUgis not a P-uniformity lass sine P (bd (�1; 0℄) = P (f0g) = 1.Example 8 Let m = s = 1, d = 0, � = R+ , X = [�1; 1℄, F0(x; �) =maxf��x; 0g for (x; �) 2 R�� and P = Æ0. Then #(P ) = 0 andX�(P ) = [0; 1℄.Consider the sequene Pn = (1� 1n)Æ0 + 1nÆn, n 2 N , whih onverges weaklyto P . It holds that #(Pn) = 1 � 1n and X�(Pn) = f1g for eah n 2 N and,thus, (#(Pn)) does not onverge to #(P ). Here, the reason is that the lassfmaxf� � x; 0g : x 2 [�1; 1℄g is not uniformly integrable with respet tofPn : n 2 Ng.Indeed, the weak onvergene of measures is a very weak ondition on se-quenes and, hene, requires strong onditions on (1) to be stable. Many ap-15



proximations of P (e.g., in Setion 4.1), however, have muh stronger proper-ties than weak onvergene and, hene, work under weaker assumptions thanTheorem 6. To give an example, we reall that the P -ontinuity property ofeah funtion Fj(x; �) is an indispensable assumption in ase of stability withrespet to weak onvergene, but this property is not needed when workingwith dFU and with spei�ally adjusted ideal metris (and the orrespondingonvergenes of measures) in ase of (mixed-integer) two-stage and haneonstrained models (see Setions 3.1, 3.2 and 3.3). Consequently, we prefer towork with these distanes, having in mind their relations to the topology ofweak onvergene.2.3 Quantitative StabilityThe main result in the previous setion laims that the multifuntion X�U(�)is nonempty near P and upper semiontinuous at P . In order to quantify theupper semiontinuity property, a growth ondition on the objetive funtionin a neighbourhood of the solution set to the original problem (1) is needed.Instead of imposing a spei� growth ondition (as e.g. quadrati growth), weonsider the growth funtion  P de�ned on R+ by P (�) := minn Z� F0(x; �)dP (�)� #(P ) : d(x;X�(P )) � �; x 2 XU(P )o (22)of problem (1) on lU , i.e., near its solution set X�(P ), and the assoiatedfuntion 	P (�) := � +  �1P (2�) (� 2 R+); (23)where we set  �1P (t) := supf� 2 R+ :  P (�) � tg. Both funtions,  P and	P , depend on the data of (1) and, in partiular, on P . They are lower semi-ontinuous on R+ ;  P is nondereasing, 	P inreasing and both vanish at 0(f. Theorem 7.64 in Rokafellar and Wets (1998)). The seond main stabilityresult establishes a quantitative upper semiontinuity property of (loalized)solution sets and identi�es the funtion 	P as modulus of semiontinuity. Inthe onvex ase, it also provides ontinuity moduli of ountable dense familiesof seletions to solution sets.Theorem 9 Let the assumptions of Theorem 5 be satis�ed and P 2 PFU .Then there exists a onstant L̂ � 1 suh that; 6= X�U(Q) � X�(P ) + 	P (L̂dFU (P;Q))B (24)16



holds for any Q 2 PFU with dFU (P;Q) < Æ. Here, Æ is the onstant in Theorem5 and 	P is given by (23). In ase d = 0, the estimate (24) is valid with L̂ = 1and for any Q 2 PFU .Proof: Let L > 0, Æ > 0 be the onstants in Theorem 5, Q 2 PFU withdFU (P;Q) < Æ and ~x 2 X�U(Q). As argued in the proof of Theorem 5, thereexists an element �x 2 XU(P ) suh that k~x � �xk � âÆ, where Æ := dFU (P;Q).Let LP � 0 denote a Lipshitz onstant of the funtion x 7! R� F0(x; �)dP (�)on X \ lU . Then the de�nition of  and Theorem 5 imply thatÆ(1 + LP â + L)� Æ(1 + LP â) + #U(Q)� #(P )= Æ(1 + LP â) + Z� F0(~x; �)dQ(�)� #(P )� ÆLP â+ Z� F0(~x; �)dP (�)� #(P )� Z� F0(�x; �)dP (�)� #(P ) �  P (d(�x;X�(P )))� infy2~x+âÆB  P (d(y;X�(P ))) =  P (d(~x;X�(P ) + âÆB )) :Hene, we obtaind(~x;X�(P ))� âÆ + d(~x;X�(P ) + âÆB )� âÆ +  �1P (Æ(1 + LP â+ L)) � L̂Æ +  �1P (2L̂Æ) = 	P (L̂Æ);where L̂ := maxfâ; 12(1+LP â+L)g � 1. In ase d = 0, we may hoose x̂ = ~x,â = 1, L = 1, LP = 0 and an arbitrary Æ. This ompletes the proof. 2Parts of the proof are similar to arguments of Theorem 7.64 in Rokafellarand Wets (1998). Next, we briey omment on some aspets of the generalstability theorems, namely, spei� growth onditions and loalization issues.Remark 10 Problem (1) is said to have k-th order growth at the solution setfor some k � 1 if  P (�) � �k for eah small � 2 R+ and some  > 0, i.e., ifZ� F0(x; �)dP (�) � #(P ) + d(x;X�(P ))kholds for eah feasible x lose to X�(P ). Then 	P (�) � � + (2� ) 1k � C� 1k forsome onstant C > 0 and suÆiently small � 2 R+ . In this ase, Theorem9 provides the H�older ontinuity of X�U at P with rate 1k . Important speialases are the linear and quadrati growth for k = 1 and k = 2, respetively.17



Remark 11 In the Theorems 5 and 9 the loalized optimal values #U (Q)and solution sets X�U(Q) of the (perturbed) model (17) may be replaed bytheir global versions #(Q) and X�(Q) if there exists a onstant Æ0 > 0 suhthat for eah Q 2 PFU with dFU (P;Q) < Æ0 either of the following onditionsis satis�ed: (a) The model (17) is onvex and X�U(Q) is a CLM set, (b) theonstraint set of (17) is ontained in some bounded set V � Rm not dependingon Q, and it holds that V � U .In ase of a �xed onstraint set, i.e., d = 0, we derive an extension of Theorem 9by using a probability distane that is based on divided di�erenes of thefuntions x 7! R� F0(x; �)d(P �Q)(�) around the solution set of (1). For somenonempty, bounded, open subset U of Rm we onsider the following set ofprobability measuresP̂FU := nQ 2 PFU : 9CQ > 0 suh that Z� F0(x; �)� F0(�x; �)kx� �xk dQ(�) � CQ;8x; �x 2 X \ lU ; x 6= �xoand the distaned̂FU (P;Q) := sup n Z� F0(x; �)� F0(�x; �)kx� �xk d(P �Q)(�) : x; �x 2 X \ lU ; x 6= �xowhih is well de�ned and �nite on P̂FU . The following result has been inspiredby Setion 4.4.1 in Bonnans and Shapiro (2000).Theorem 12 Let d = 0, P 2 P̂FU , X�(P ) be nonempty and U � Rm be abounded and open neighbourhood of X�(P ). Then the estimatesupx2X�U (Q) d(x;X�(P )) � ( rP )�1(d̂FU (P;Q))is valid for any Q 2 P̂FU , where  rP (0) = 0,  rP (�) :=  P (�)� for eah � > 0and  P (�) is the growth funtion given by (22).If, moreover, ( rP )�1 is ontinuous at � = 0, there exists a onstant Æ > 0 suhthat X�U(Q) is a CLM set relative to U whenever d̂FU (P;Q) < Æ.If, in partiular, the original problem (1) has quadrati growth, i.e.,  P (�) �� 2 for some  > 0, there exists a onstant Æ > 0 suh that the inlusion; 6= X�U(Q) � X�(P ) + 1 d̂FU (P;Q)Bholds whenever d̂FU (P;Q) < Æ. 18



Proof: Let Q 2 P̂FU , x 2 X�U(Q) and �x 2 X�(P ) be suh that kx � �xk =d(x;X�(P )) > 0. We denote fQ(y) := R� F0(y; �)dQ(�) for eah y 2 X, andhave fQ(x) � fQ(�x) and fP (x)� fP (�x) �  P (d(x;X�(P ))) =  P (kx� �xk).This leads to the following estimate rP (kx� �xk)= 1kx� �xk P (kx� �xk) � 1kx� �xk(fP (x)� fP (�x))� 1kx� �xk(fP (x)� fQ(x) + fQ(�x)� fP (�x))= 1kx� �xk((fP � fQ)(x)� (fP � fQ)(�x))� d̂FU (P;Q);whih ompletes the �rst part. Sine U is open, there exists an " > 0 suhthat the "-enlargement fx 2 Rm : d(x;X�(P )) � "g of X�(P ) is ontained inU . Let Æ > 0 be hosen suh that ( rP )�1(Æ) � ". Then d(x;X�(P )) � " and,thus, x 2 U holds for eah x 2 X�U(Q), ompleting the seond part.Finally, it remains to remark that quadrati growth implies  rP (�) � � forany � > 0 and some  > 0. 2Compared to the estimate in Theorem 9 based on funtion values of the fun-tion F0, the above bound uses divided di�erene information of F0 relative tox and leads to Lipshitz-type results in ase of quadrati growth.While the growth behaviour of the objetive funtion is important for thequantitative stability of solution sets even for onvex models, the situation ismuh more advantageous for "-approximate solution sets. For onvex models(1) with a �xed onstraint set (i.e., d = 0), we will see that the latter setsbehave Lipshitz ontinuously with respet to hanges of probability distribu-tions measured in terms of the distane dFU , but for a larger set U omparedwith stability results for solution sets. To state the result, letD �(C;D) := inff� � 0 : C \ �B � D + �B ; D \ �B � C + �Bg (25)D1(C;D) := inff� � 0 : C � D + �B ; D � C + �Bg (26)denote the �-distane (� � 0) and the Pompeiu-Hausdor� distane, respe-tively, of nonempty losed subsets C, D of Rm .Theorem 13 Let d = 0, F0 be a random lower semiontinuous onvex fun-tion, X be losed onvex, P 2 PFU and X�(P ) be nonempty and bounded.Then there exist onstants � > 0 and �" > 0 suh that the estimateD1(X�" (P ); X�" (Q)) � 2�" dFU (P;Q)19



holds for U := (�+ �")B and any " 2 (0; �"), Q 2 PFU suh that dFU (P;Q) < ".Proof: First we hoose �0 > 0 suh that X�(P ) is ontained in the open ballU�0 around the origin in Rm with radius �0 and that #(P ) � ��0+1. ApplyingTheorem 5 with U�0 as the bounded open neighbourhood of X�(P ), we obtainsome onstant "0 > 0 suh that X�(Q) is nonempty and ontained in U�0 and#(Q) � �0 holds whenever Q 2 PFU�0 and dFU�0 (P;Q) < "0. Now, let � > �0,�" := minf"0; �� �0; 1g and U := (�+ �")B .For any Q 2 PFU we set again fQ(x) := R� F0(x; �)dQ(�) for eah x 2 Rm . Fur-thermore, we denote by bd+� the auxiliary epi-distane of fP and fQ introduedin Proposition 7.61 in Rokafellar and Wets (1998):bd+� (fP ; fQ) := inff� � 0 : infy2x+�B fQ(y) � maxffP (x);��g + �;infy2x+�B fP (y) � maxffQ(x);��g + �; 8x 2 �B g:From Theorem 7.69 in Rokafellar and Wets (1998) we onlude that theestimateD �(X�" (P ); X�" (Q)) � 2�" bd+�+"(fP ; fQ)is valid for " 2 (0; �") if bd+�+"(fP ; fQ) < ". Furthermore, we may estimatethe auxiliary epi-distane bd+�+"(fP ; fQ) from above by the uniform distanedFU (P;Q) (f. also Example 7.62 in Rokafellar and Wets (1998)).It remains to note that the level sets X�" (P ) and X�" (Q) are also bounded,sine fP and fQ are lower semiontinuous and onvex, and their solution setsare nonempty and bounded, respetively. Hene, we may hoose the onstant �large enough suh that the equality D �(X�" (P ); X�" (Q)) = D1(X�" (P ); X�" (Q))holds. This ompletes the proof. 2Most of the results in this and the previous setion illuminate the role ofthe distane dFU as a minimal information (m.i.) pseudometri for stability,i.e., as a pseudometri proessing the minimal information of problem (1)and implying quantitative stability of its optimal values and solution sets.Furthermore, notie that all results remain valid when enlarging the set FUand, thus, bounding dFU from above by another distane, and when reduingthe set PFU to a subset on whih suh a distane is de�ned and �nite.Suh a distane did bounding dFU from above will be alled an ideal probabilitymetri assoiated with (1) if it has �-struture (9) generated by some lass offuntions F = Fid from � to R suh that Fid ontains the funtions CFj(x; �)for eah x 2 X\ lU , j = 0; : : : ; d, and some normalizing onstant C > 0, andsuh that any funtion in Fid shares typial analytial properties with somefuntion Fj(x; �). 20



In our appliations of the general analysis in Setion 3 we larify suh typialanalytial properties. Here, we only mention that typial funtions Fj(x; �)in stohasti programming are nondi�erentiable, but pieewise loally Lip-shitz ontinuous with disontinuities at boundaries of polyhedral sets. Morepreisely, funtion lasses F ontained inspan fF�B : F 2 F ; B 2 Bg; (27)where F � Fp(�), B � Bphk(�) for some p � 1 and k 2 N , are andidates foran ideal lass Fid. The extremal ases, namely, Fp(�) and FB, are disussed inSetion 2.1. To get an idea of how to assoiate an ideal metri with a stohastiprogram, we onsider the p-th order Fortet-Mourier metri �p introdued inSetion 2.1. Then the following result is an immediate onsequene of thegeneral ones.Corollary 14 Let d = 0 and assume that(i) X�(P ) is nonempty and U is an open, bounded neighbourhood of X�(P ),(ii) X is onvex and F0(�; �) is onvex on Rm for eah � 2 �,(iii) there exist onstants L > 0, p � 1 suh that 1LF0(x; �) 2 Fp(�) for eahx 2 X \ lU .Then there exists a onstant Æ > 0 suh thatj#(P )� #(Q)j �L�p(P;Q) and; 6= X�(Q)�X�(P ) + 	P (L�p(P;Q))Bwhenever Q 2 Pp(�) and �p(P;Q) < Æ. Here, the funtion 	P is given by (23).Proof: The assumptions of Theorem 5 are satis�ed. Hene, the result is aonsequene of the Theorems 5 and 9 and the fat that (iii) is equivalent tojF0(x; �)� F0(x; ~�)j � Lmaxf1; k�k; k~�kgp�1k� � ~�kfor eah �; ~� 2 � and x 2 X\ lU , and, thus, it implies dFU (P;Q) � L�p(P;Q)for all P;Q 2 Pp(�). Furthermore, due to the onvexity assumption (ii) theloalized optimal values #U and solution sets X�U may be replaed by # andX�, respetively, if Q is lose to P (see Remark 11). 2Example 15 (newsboy ontinued)In ase of minimal expeted osts the set FU is a spei� lass of pieewiselinear funtions of the form f(r � )x + maxf0; x � �g : x 2 X \ lUg.Furthermore, R� F0(x; �)dP (�) is also pieewise linear and Corollary 14 applieswith L := , p := 1 and a linear funtion 	P . Hene, the solution set X�(�)21



behaves upper Lipshitzian at P 2 P1(N) with respet to �1, i.e.,supx2X�(Q) d(x;X�(P )) � �1(P;Q) =  ZR jFP (r)�FQ(r)jdr = Xk2N ��� kXi=1(�i� ~�i)���:Here, we made use of an expliit representation of the Kantorovih metrion P(R) (Setion 5.4 in Rahev (1991)), and FP and FQ are the probabilitydistribution funtions of the measures P = Pk2N �kÆk and Q = Pk2N ~�kÆk,respetively.2.4 Mean-Risk ModelsThe expetation funtional appearing in the basi model (1) is ertainly notthe only statistial parameter of interest of the (real-valued) ost or onstraintfuntions Fj, j = 0; : : : ; d, with respet to P . Risk funtionals or risk mea-sures are regarded as statistial parameters of probability measures in P(R),i.e., they are mappings from subsets of P(R) to R. When risk funtionals areused in the ontext of the model (1), they are evaluated at the probabilitydistributions P [Fj(x; �)℄�1 for x 2 X and j = 0; : : : ; d. Pratial risk man-agement in deision making under unertainty often requires to minimize orbound several risk funtionals of the underlying distributions. Typial exam-ples for risk funtionals are (standard semi-) deviations, exess probabilities,value-at-risk, onditional value-at-risk et. Some risk measures are de�ned asin�ma of ertain (simple) stohasti optimization models (e.g. value-at-risk,onditional value-at-risk). Other measures are given as the expetation of anonlinear funtion and, hene, their optimization �ts into the framework ofmodel (1) (e.g. expeted utility funtions, exess probabilities).We refer to Setion 4 of Pug (2003) for an introdution to risk funtionals andvarious examples, to Artzner et al. (1999), Delbaen (2002), F�ollmer and Shied(2002) for a theory of oherent and onvex risk measures, to Ogryzak andRuszzy�nski (1999) for the relations to stohasti dominane and to Roka-fellar and Uryasev (2002) for the role of the onditional value-at-risk.Now, we assume that risk funtionals Fj , j = 0; : : : ; d are given. In additionto the mean-risk model (2) we denote by Q a perturbation of the originalprobability measure P and onsider the perturbed modelminfF0(Q[F0(x; �)℄�1) : x 2 X; Fj (Q[Fj(x; �)℄�1) � 0; j = 1; :::; dg: (28)To have all risk funtionals Fj well de�ned, we assume for simpliity thatthey are given on the subset Pb(R) of all probability measures in P(R) havingbounded support. Then both models, (2) and (28), are well de�ned if weassume that all funtions Fj(x; �) are bounded. Furthermore, we will need aontinuity property of risk funtionals.22



A risk funtional F on Pb(R) is alled Lipshitz ontinuous w.r.t. to a lass Hof measurable funtions from R to R if the estimatejF(G) � F( ~G)j � supH2H ��� ZR H(r)d(G� ~G)(r)��� (29)is valid for all G; ~G 2 Pb(R). The following examples and Proposition 8 inPug (2003) show that many risk funtionals satisfy suh a Lipshitz property.Example 16 We onsider the onditional value-at-risk of a probability dis-tribution G 2 Pb(R) at level p 2 (0; 1), whih is de�ned byCVaRp(G) := inf nr + 11� p ZR maxf0; � � rgdG(�) : r 2 Ro:Hene, CVaRp(G) is the optimal value of a stohasti program with reourse(see Setion 3.1). Clearly, the estimatejCVaRp(G)� CVaRp( ~G)j � 11� p supr2R ��� ZR maxf0; � � rgd(G� ~G)(�)���is valid for all G; ~G 2 Pb(R). Hene, the onditional value-at-risk is Lipshitzontinuous w.r.t. the lass H := fmaxf0; � � rg : r 2 Rg.The value-at-risk of G 2 Pb(R) at level p 2 (0; 1) is given byVaRp(G) := inf fr 2 R : G(� � r) � pg:Thus, VaRp(G) is the optimal value of a hane onstrained stohasti pro-gram. In Setion 3.3 it is shown that the metri regularity of the mappingr 7! fy 2 R : G(� � r) � p�yg at pairs (�r; 0) with �r 2 X�(G) is indispenablefor Lipshitz ontinuity properties of the optimal value. If the metri regular-ity property is satis�ed for the measure G and the level p, we obtain, fromTheorem 39, the estimatejVaRp(G)� VaRp( ~G)j � LdK(G; ~G) = supr2R ��� ZR L�(�1;r℄(�)d(G� ~G)(�)���for some onstant L > 0 and suÆiently small Kolmogorov distane dK(G; ~G).Hene, the orresponding lass of funtions is H := fL�(�1;r℄ : r 2 Rg. Wenote that the metri regularity requirement may lead to serious omplia-tions when using the value-at-risk in stohasti programming models beauseVaRp(�) has to be evaluated at measures depending on x.23



Example 17 The upper semi-deviation sd+(G) of a measure G 2 Pb(R),whih is de�ned bysd+(G) := ZR maxn0; � � ZR udG(u)odG(�);is Lipshitz ontinuous w.r.t. the lass H := fmaxf0; � � rg+ � : r 2 Rg.The examples indiate that typial Lipshitz ontinuity lasses H of risk fun-tionals ontain produts of some funtions in Fk(R) for some k 2 N andof harateristi funtions �(�1;r℄ for some r 2 R. Hene, their struture isstrongly related to that of the ideal funtion lasses (27) for stability.To state our main stability result for the model (2), let X (P ), #(P ), X�(P )denote the following more general quantities in this setion:X (P ) := fx 2 X : Fj (P [Fj(x; �)℄�1) � 0; j = 1; :::; dg;#(P ) := inffF0(P [F0(x; �)℄�1) : x 2 X (P )g;X�(P ) := fx 2 X (P ) : F0(P [F0(x; �)℄�1) = #(P )g:The loalized notions #U(P ) and X�U(P ) are de�ned aordingly.Theorem 18 For eah j = 0; : : : ; d, let the funtion Fj be uniformly boundedand the risk funtional Fj be Lipshitz ontinuous on Pb(R) w.r.t. some lassHj of measurable funtions from R to R. Let P 2 P(�) and assume that(i) X�(P ) 6= ; and U � Rm is an open bounded neighbourhood of X�(P ),(ii) if d � 1, the funtion x 7! F0(P [F0(x; �)℄�1) is Lipshitz ontinuous onX \ lU ,(iii) the mapping x 7! fy 2 Rd : x 2 X; Fj (P [Fj(x; �)℄�1) � yj; j = 1; :::; dgfrom Rm to Rd is metrially regular at eah pair (�x; 0) with �x 2 X�(P ).Then there exist onstants L > 0 and Æ > 0 suh that the estimatesj#(P )� #U(Q)j �LdFHU (P;Q); 6= X�U(Q)�X�(P ) + L	P (dFHU (P;Q))Bare valid whenever Q 2 P(�) and dFHU (P;Q) < Æ. Here, 	P is given by (23)and the distane dFHU is de�ned bydFHU (P;Q) := supj=0;:::;dx2X\ lUHj2Hj ��� Z� Hj(Fj(x; �))(P �Q)(d�)���:
24



Proof: We proeed as in the proofs of Theorems 5 and 9, but now we use thedistane d̂F(P;Q) := supj=0;:::;dx2X\ lU ���Fj (P [Fj(x; �)℄�1)� Fj (Q[Fj(x; �)℄�1)���instead of dFU . In this way we obtain onstants L > 0, Æ > 0 and the estimatesj#(P )� #U(Q)j �Ld̂F(P;Q); 6= X�U(Q)�X�(P ) + L	P (d̂F(P;Q))Bfor eah Q 2 P(�) suh that d̂F(P;Q) < Æ. It remains to appeal to the estimated̂F(P;Q)� supj=0;:::;dx2X\ l U supHj2Hj ��� ZR Hj(r)d((P �Q)[Fj(x; �)℄�1)(r)��� = dFHU (P;Q);whih is a onsequene of the Lipshitz ontinuity (29) of the risk funtionalsFj , j = 0; : : : ; d. 2The result implies that stability properties of the mean-risk model (2) on-taining risk funtionals Fj with Lipshitz ontinuity lasses Hj, j = 0; : : : ; d,depend on the lassFHU := fHj(Fj(x; �)) : x 2 X \ lU ; Hj 2 Hj; j = 0; : : : ; dginstead of FU in ase of model (1). Hene, the stability behaviour may hangeonsiderably when replaing the expetation funtionals in (1) by other riskfuntionals. For example, the newsboy model based on minimal expeted ostsbehaves stable at all P 2 P1(N) (Example 15), but the minimum risk variantof the model (see Example 1) may beome unstable.Example 19 (newsboy ontinued)We onsider the hane onstrained model (3) whose solution set is X�(P ) =f(k; 0)g with the maximal k suh that P1i=k �i � p in its �rst omponent. Weassume that equality P1i=k �i = p and �k > 0 holds. To establish instability,we onsider the approximations Pn := P1i=1 �(n)i Æi of P , where �(n)i := �i for alli 62 fk� 1; kg and �(n)k�1 := �k�1+ 1n , �(n)k := �k� 1n for suÆiently large n 2 Nsuh that �k� 1n > 0. Then the perturbed solution set is X�(Pn) = f(k�1; 0)gfor any suÆiently large n. On the other hand, we obtain for the Kolmogorovdistane dK(P; Pn) = 1n , i.e., weak onvergene of (Pn) to P . Furthermore, themodel (3) is stable with respet to the metri dK at eah P = P1i=1 �iÆi 2 P(N)suh that Pki=1 �i 6= 1� p for eah k 2 N . The latter fat is a onsequene of25



Theorem 5 as the metri regularity ondition is satis�ed (see also Remark 2.5in R�omish and Shultz (1991b)).However, if the onditional value-at-risk or the upper semi-deviation are inor-porated into the objetive of (mixed-integer) two-stage stohasti programs,their ideal funtion lasses and, thus, their ideal metris (see Setions 3.1 and3.2) do not hange. These observations are immediate onsequenes of thefollowing more general onlusion of the previous theorem.Corollary 20 Let d = 0. We onsider the stohasti programming modelminfF0(P [F0(x; �)℄�1) : x 2 Xg; (30)where F0 is uniformly bounded and the risk funtional F0 is Lipshitz ontin-uous on Pb(R) w.r.t. some lass H0.Let P 2 P(�), X�(P ) 6= ; and U be an open bounded neighbourhood of X�(P ).Assume that fF0(x; �) : x 2 X \ lUg is ontained in some lass F of fun-tions from � to R and H Æ F 2 L0F holds for all H 2 H0, F 2 F and somepositive onstant L0.Then there exist onstants L > 0 and Æ > 0 suh that the estimatesj#(P )� #U(Q)j �LdF(P;Q); 6= X�U(Q)�X�(P ) + L	P (dF(P;Q))Bare valid whenever Q 2 P(�) and dF(P;Q) < Æ.Proof: Clearly, we have in that ase dFHU (P;Q) � L0dF(P;Q). 2Important examples for H0 and F are multiples of F1(R) and of Fp(�) (forp � 1) and fF�B : F 2 F1(�); B 2 Bg, respetively.3 Stability of Two-Stage and Chane Constrained Programs3.1 Linear Two-Stage ModelsWe onsider the linear two-stage stohasti program with �xed reourseminnh; xi+ Z� hq(�); y(�)idP (�) :Wy(�) = h(�)� T (�)x; (31)y(�) � 0; x 2 Xo;26



where  2 Rm , X � Rm and � � Rs are onvex polyhedral, W is an (r;m)-matrix, P 2 P(�), and the vetors q(�) 2 Rm , h(�) 2 Rr and the (r;m)-matrixT (�) depend aÆne linearly on � 2 �. The latter assumption overs many pra-tial situations. At the same time, it avoids the inlusion of all omponentsof the reourse osts, the tehnology matrix and the right-hand side into �,beause this ould lead to serious restritions when imposing additional on-ditions on P . We de�ne the funtion F0 : Rm � �! R byF0(x; �) = 8><>: h; xi+ �(q(�); h(�)� T (�)x) ; h(�)� T (�)x 2 posW ; q(�) 2 D+1 ; otherwisewhere posW = fWy : y 2 Rm+ g, D = fu 2 Rm : fz 2 Rr : W 0z � ug 6= ;g(with W 0 denoting the transpose of the matrix W ) and �(u; t) = inffhu; yi :Wy = t; y � 0g ((u; t) 2 Rm � Rr ). Then problem (31) may be rewrittenequivalently as a minimization problem with respet to the �rst stage deisionx, namely, minn Z� F0(x; �)dP (�) : x 2 Xo: (32)In order to utilize the general stability results of Setion 2, we need a har-aterization of the ontinuity and growth properties of the funtion F0. As a�rst step we reall some well-known properties of the funtion �, whih werederived in Walkup and Wets (1969a).Lemma 21 The funtion � is �nite and ontinuous on the (m+r)-dimensio-nal polyhedral one D�posW and there exist (r;m)-matries Cj and (m+r)-dimensional polyhedral ones Kj, j=1,...,N, suh thatN[j=1Kj =D � posW ; intKi \ intKj = ; ; i 6= j;�(u; t)= hCju; ti; for eah (u; t) 2 Kj; j = 1; :::; N:Moreover, �(u; �) is onvex on posW for eah u 2 D, and �(�; t) is onaveon D for eah t 2 posW .To have problem (32) well de�ned we introdue the following assumptions:(A1) For eah (x; �) 2 X�� it holds that h(�)�T (�)x 2 posW and q(�) 2 D.(A2) P 2 P2(�), i.e., R� k�k2dP (�) <1.Condition (A1) sheds some light on the role of the set �. Due to the aÆnelinearity of q(�), h(�) and T (�) the polyhedrality assumption on � is not re-stritive. (A1) ombines the two usual onditions: relatively omplete reourse27



and dual feasibility. It implies that X � � � domF0 .Proposition 22 Let (A1) be satis�ed. Then F0 is a random onvex funtion.Furthermore, there exist onstants L > 0, L̂ > 0 and K > 0 suh that thefollowing holds for all �; ~� 2 � and x; ~x 2 X with maxfkxk; k~xkg � r:jF0(x; �)� F0(x; ~�)j �Lrmaxf1; k�k; k~�kgk� � ~�k;jF0(x; �)� F0(~x; �)j� L̂maxf1; k�k2gkx� ~xk;jF0(x; �)j�Krmaxf1; k�k2g:Proof: From Lemma 21 and (A1) we onlude that F0 is ontinuous on domF0and, hene, on X ��. This implies that F0 is a random lower semiontinuousfuntion (f. Example 14.31 in Rokafellar and Wets (1998)). It is a randomonvex funtion sine the properties of � in Lemma 21 imply that F0(�; �) isonvex for eah � 2 �. In order to verify the Lipshitz property of F0, letx 2 X with kxk � r and onsider, for eah j = 1; : : : ; N , and � 2 �j thefuntiongj(�) := F0(x; �) = �(q(�); h(�)� T (�)x) = hCjq(�); h(�)� T (�)xi;where the sets �j := f� 2 � : (q(�); h(�) � T (�)x) 2 Kjg are polyhedral,and Cj and Kj are the matries and the polyhedral ones from Lemma 21,respetively. Sine q(�), h(�) and T (�) depend aÆne linearly on �, the funtiongj depends quadratially on � and linearly on x. Hene, there exists a onstantLj > 0 suh that gj satis�es the following Lipshitz property:jgj(�)� gj(~�)j � Ljrmaxf1; k�k; k~�kgk� � ~�k for all �; ~� 2 �j:Now, let �; ~� 2 �, assume that � 2 �i and ~� 2 �k for some i; k 2 f1; : : : ; Ngand onsider the line segment [�; ~�℄ = f�(�) = (1 � �)� + �~� : � 2 [0; 1℄g.Sine [�; ~�℄ � �, there exist indies ij; j = 1; : : : ; l, suh that i1 = i, il = k,[�; ~�℄ \ �ij 6= ; for eah j = 1; : : : ; l and [�; ~�℄ � Slj=1 �ij . Furthermore, thereexist inreasing numbers �ij 2 [0; 1℄ for j = 0; : : : ; l � 1 suh that �(�i0) =�(0) = �, �(�ij) 2 �ij \ �ij+1 and �(�) 62 �ij if �ij < � � 1. Then we obtainjF0(x; �)� F0(x; ~�)j= jgi1(�)� gil(~�)j� l�1Xj=0 jgij+1(�(�ij))� gij+1(�(�ij+1))j� l�1Xj=0Lij+1rmaxf1; k�k; k~�kgk�(�ij)� �(�ij+1)k28



� maxj=1;:::;N Ljrmaxf1; k�k; k~�kg l�1Xj=0 k�(�ij)� �(�ij+1)k� maxj=1;:::;N Ljrmaxf1; k�k; k~�kgk� � ~�k;where we have used for the last three estimates that k�(�)k � maxfk�k; k~�kgfor eah � 2 [0; 1℄ and j�� ~�jk�� ~�k = k�(�)� �(~�)k holds for all �; ~� 2 [0; 1℄.Lipshitz ontinuity of F0 with respet to x is shown in Theorem 10 of Kall(1976) and in Theorem 7.7 of Wets (1974). In partiular, the seond estimateof the proposition is a onsequene of those results. Furthermore, from Lemma21 we onlude the estimatejF0(x; �)j� supkxk�rfjh; xij+ maxj=1;:::;N jhCjq(�); h(�)� T (�)xijg� kkr + ( maxj=1;:::;N kCjk)kq(�)k(kh(�)k+ kT (�)kr)for any pair (x; �) 2 X � � with kxk � r. Then the third estimate followsagain from the fat that q(�), h(�) and T (�) depend aÆne linearly on �. 2The estimate in Proposition 22 implies that, for any r > 0, any nonemptybounded U � Rm and some � > 0, it holds thatZ� infx2Xkxk�r F0(x; �)dQ(�)��Kr(1 + Z� k�k2dQ(�)) > �1 ;supx2X\U j Z� F0(x; �)dQ(�)j�K�(1 + Z� k�k2dQ(�)) <1 ;if Q 2 P(�) has a �nite seond order moment. Hene, for any nonemptybounded U � Rm the set of probability measures PFU ontains the set ofmeasures on � having �nite seond order moments, i.e.,PFU � nQ 2 P(�) : Z� k�k2dQ(�) <1o = P2(�):The following stability results for optimal values and solution sets of the two-stage problem (32) are now a diret onsequene of the results of Setion 2.Theorem 23 Let (A1) and (A2) be satis�ed and let X�(P ) be nonempty andU be an open, bounded neighbourhood of X�(P ).Then there exist onstants L > 0 and Æ > 0 suh thatj#(P )� #(Q)j �L�2(P;Q) and; 6= X�(Q)�X�(P ) + 	P (L�2(P;Q))B29



whenever Q 2 P2(�) and �2(P;Q) < Æ, where 	P is given by (23).Proof: The result is a onsequene of Corollary 14 with p = 2. The assump-tions (ii) and (iii) of Corollary 14 are veri�ed in Proposition 22. 2Theorem 24 Let (A1) and (A2) be satis�ed and let X�(P ) be nonempty andbounded. Then there exist onstants �L > 0 and �" > 0 suh that the estimateD1(X�" (P ); X�" (Q)) � �L" �2(P;Q)holds for any " 2 (0; �") and Q 2 P2(�) suh that �2(P;Q) < ". Here, D1denotes the Pompeiu-Hausdor� distane (26).Proof: Sine the assumptions of Theorem 13 are satis�ed, we onlude thatthere exist onstants � > 0 and �" > 0 suh thatD1(X�" (P ); X�" (Q)) � 2�" dFU (P;Q)holds for U := (�+ �")B and any " 2 (0; �"), Q 2 PFU suh that dFU (P;Q) < ".Proposition 22 implies the estimate dFU (P;Q) � L(� + �")�2(P;Q), for someonstant L > 0, whih ompletes the proof. 2The theorems establish the quantitative stability of #(�) and X�(�) and theLipshitz stability of X�" (�) with respet to �2 in ase of two-stage modelswith �xed reourse for fairly general situations. In ase that either only thereourse osts or only the tehnology matrix and right-hand side are random,both results are valid for (P1(�); �1) instead of (P2(�); �2). We verify thisobservation for the orresponding onlusion of Theorem 23.Corollary 25 Let either only q(�) or only T (�) and h(�) be random and (A1)be satis�ed. Let P 2 P1(�), X�(P ) be nonempty and U be an open, boundedneighbourhood of X�(P ). Then there exist onstants L > 0, Æ > 0 suh thatj#(P )� #(Q)j �L�1(P;Q) and; 6= X�(Q)�X�(P ) + 	P (L�1(P;Q))Bwhenever Q 2 P1(�) and �1(P;Q) < Æ, where 	P is given by (23).Proof: By inspeting the proof of Proposition 22 one observes that now thefuntion F0 satis�es the following ontinuity and growth properties for all�; ~� 2 � and x; ~x 2 X with maxfkxk; k~xkg � r:jF0(x; �)� F0(x; ~�)j �Lrk� � ~�k;30



jF0(x; �)j�Krmaxf1; k�kg:Hene, the set PFU ontains P1(�) and Corollary 14 applies with p = 1. 2Next we provide some examples of reourse models showing that, in general,the estimate for solution sets in Theorem 23 is the best possible one and thatX�(�) is not lower semiontinuous at P if X�(P ) is not a singleton.All examples exploit the spei� struture provided by the simple reourseondition, i.e., m = 2s, q = (q+; q�) and W = (I;�I), where q+; q� 2 Rs andI is the (s; s)-identity matrix. Then posW = Rs holds and, hene, (A1) issatis�ed i� q 2 D, whih is equivalent to the ondition q+ + q� � 0, and�(q; t) = supfht; ui : �q� � u � q+g:Example 26 Let m = s = r = 1, m = 2,  = 0, W = (1;�1), X = [�1; 1℄,� = R, q(�) = (1; 1), T (�) = 1, h(�) = �, 8� 2 �. Let P 2 P(R) be theuniform distribution on the interval [�12 ; 12 ℄. Then #(P ) = 1, X�(P ) = f0g,and quadrati growthZ� F0(x; �)dP (�) = 12Z� 12 j� � xjd� = 14 + x2 = #(P ) + d(x;X�(P ))2holds for eah x 2 [�12 ; 12 ℄. Let us onsider the following perturbations Pn 2P(R) of P for n > 4 given byPn = (12 � "n)(Pln + Prn) + "n(Æ�"n + Æ"n);where " = n� 12 , Pln and Prn are the uniform distributions on [�12 ;�"n) and("n; 12 ℄, respetively, and Ær is the measure plaing unit mass at r. Using theexpliit representation of �1 in ase of probability distributions on R (seeChapter 5.4 of Rahev (1991)), we obtain�1(P; Pn) = 1Z�1 jP ((�1; �℄)� Pn((�1; �℄)jd� = 1n = "2n :Furthermore, it holds that #(Pn) = 12("2n+ 14), X�(Pn) = [�"n; "n℄ and, hene,j#(P )�#(Pn)j = 12"2n and supx2X�(Pn) d(x;X�(P )) = "n for eah n 2 N . Hene,the estimate in Theorem 23 is best possible.Next we onsider the distribution P̂ = 12(Æ� 12 + Æ 12 ). Then we have #(P̂ ) = 12and X�(P̂ ) = [�12 ; 12 ℄ and the linear growth ondition31



Z� F0(x; �)dP̂ (�)= Z� j� � xjdP̂ (�) = 12(jx+ 12 j+ jx� 12 j)�#(P̂ ) + d(x;X�(P̂ ))for eah x 2 X. Consider the perturbations P̂n = (1� 1n)P̂ + 1nÆ0 (n 2 N) ofP̂ . Then �1(P̂ ; P̂n) = 1Z�1 jP̂ ((�1; �℄)� P̂n((�1; �℄)jd� = 12n ;holds for eah n 2 N , where we have again used the expliit representa-tion of �1 in ase of probability measures on R. Furthermore, it holds that#(P̂n) = (1 � 1n)12 and X�(P̂n) = f0g for eah n 2 N . Hene, we havesupx2X�(P̂ ) d(x;X�(P̂n)) = 12 .Next we onsider models with a stohasti tehnology matrix and reourseosts, respetively, and show that in suh ases X�(�) is also not lower semi-ontinuous at P , in general.Example 27 Let m = s = r = 1, m = 2,  = 0, W = (1;�1), X = [0; 1℄,� = R+ , h(�) = 0, 8� 2 �.In the �rst ase, we set q(�) = (1; 1) and T (�) = ��, 8� 2 �.In the seond ase, we set q(�) = (�; �) and T (�) = �1, 8� 2 �.In both ases (A1) is satis�ed. We onsider P = Æ0 and Pn = Æ 1n , i.e., the unitmasses at 0 and 1n , respetively, for eah n 2 N . Clearly, (Pn) onverges withrespet to the metri �1 to P in P1(R). Furthermore, in both asesZ� F0(x; �)dPn(�) = Z� �x dPn(�) = xnholds for eah x 2 X. Then X�(P ) = X and X�(Pn) = f0g for any n 2 N ,whih implies supx2X�(P ) d(x;X�(Pn)) = 1.The examples show that ontinuity properties of X�(�) at P in terms of thePompeiu-Hausdor� distane annot be ahieved in general unless X�(P ) is asingleton. Nevertheless, we �nally establish suh quantitative stability resultsfor models where the tehnology matrix is �xed, i.e., T (�) � T , and a spei�nonuniqueness of X�(P ) is admitted. For their derivation we need an argu-ment that deomposes the original two-stage stohasti program into anothertwo-stage program with deisions taken from T (X) and a parametri linearprogram not depending on P .Lemma 28 Let (A1) be satis�ed and let Q 2 P2(�) be suh that X�(Q) isnonempty. Then we have 32



#(Q) = inf n�(�) + Z� �(q(�); h(�)� �)dQ(�) : � 2 T (X)o= �(Tx) + Z� �(q(�); h(�)� Tx)dQ(�); 8x 2 X�(Q);X�(Q) = �(Y �(Q)); whereY �(Q) := argminn�(�) + Z� �(q(�); h(�)� �)dQ(�) : � 2 T (X)o;�(�) := inffh; xi : x 2 X; Tx = �g;�(�) := argminfh; xi : x 2 X; Tx = �g (� 2 T (X)):Moreover, � is onvex polyhedral on T (X) and � is a polyhedral set-valuedmapping whih is Lipshitz ontinuous on T (X) with respet to the Pompeiu-Hausdor� distane.Proof: Let �x 2 X�(Q). We set �Q(�) := R� �(q(�); h(�)� �)dQ(�) and have#(Q) = h; �xi+ �Q(T �x) � inff�(�) + �Q(�) : � 2 T (X)g:For the onverse inequality, let " > 0 and �� 2 T (X) be suh that�(��) + �Q(��) � inff�(�) + �Q(�) : � 2 T (X)g+ "2 :Then there exists an �x 2 X suh that T �x = �� and h; �xi � �(��) + "2 . Hene,#(Q)�h; �xi+ �Q(T �x) � �(��) + �Q(��) + "2� inff�(�) + �Q(�) : � 2 T (X)g+ ":Sine " > 0 is arbitrary, the �rst statement is veri�ed. In partiular, x 2 �(Tx)and Tx 2 Y �(Q) for any x 2 X�(Q) . Hene, it holds that X�(Q) � �(Y �(Q)).Conversely, let x 2 �(Y �(Q)). Then x 2 �(�) for some � 2 Y �(Q). ThusTx = � and h; xi = �(�) = �(Tx), implyingh; xi+ �Q(Tx)=�(Tx) + �Q(Tx) = inff�(�) + �Q(�) : � 2 T (X)g=#(Q) and x 2 X�(Q):Furthermore, � is learly onvex and polyhedral, and the properties of � arewell known (f. Walkup and Wets (1969b)). 2Theorem 29 Let (A1),(A2) be satis�ed, X�(P ) be nonempty and U be anopen bounded neighbourhood of X�(P ). Furthermore, assume that T (X�(P ))33



is a singleton. Then there exist onstants L > 0 and Æ > 0 suh thatD1(X�(P ); X�(Q)) � L	P (L�2(P;Q))whenever Q 2 P2(�) and �2(P;Q) < Æ, where 	P is given by (23) and D1denotes the Pompeiu-Hausdor� distane.Proof: Let �� be the single element belonging to T (X�(P )). We use thenotation of Lemma 28 and onlude that Y �(P ) = f��g. Let V denote aneighbourhood of �� suh that T�1(V) � U and onsider the growth funtion �P (�) := minf�(�) + �P (�)� #(P ) : k�� ��k � �; � 2 T (X) \ Vgand the assoiated funtion 	�P (�) := �+( �P )�1(2�) of the stohasti programinff�(�) + �P (�) : � 2 T (X)g. Applying Corollary 14 to the latter programyields the estimatesup�2Y �(Q) d(�; Y �(P )) = sup�2Y �(Q) k�� ��k � 	�P (L��2(P;Q))for some L� > 0 and small �2(P;Q). Sine X�(P ) = �(��) and X�(Q) =�(Y �(Q)) hold due to Lemma 28 and the set-valued mapping � is Lipshitzontinuous on T (X) with respet to D1 (with some onstant L� > 0), weobtainD1(X�(P ); X�(Q)) = D1(�(��); �(Y �(Q)) � sup�2Y �(Q) D1(�(��); �(�))�L� sup�2Y �(Q) k�� � �k � L�	�P (L��2(P;Q)) :It remains to explore the relation between the two growth funtions  P and �P , and the assoiated funtions 	P and 	�P , respetively. Let � 2 R+ and�� 2 T (X)\V suh that k�� ���k � � and  �P (�) = �(�� )+�P (�� )�#(P ).Let x� 2 X, ~x� 2 X�(P ) be suh that Tx� = �� , �(�� ) = x� and d(x� ; X�) =kx� � ~x�k. Hene, we obtain x� 2 U ,  �P (�) = x� + �P (Tx� )� #(P ) and� � k�� � ��k = kTx� � T ~x�k � kTkd(x� ; X�);where kTk denotes the matrix norm of T . If kTk 6= 0, we onlude that �P (�) �  P ( �kTk) holds for any � 2 R+ and, hene, we have ( �P )�1(�) �kTk �1P (�) and 	�P (�) � maxf1; kTkg	P (�) for any � 2 R+ . This impliesD1(X�(P ); X�(Q)) � maxf1; kTkgL�	P (L��2(P;Q));34



and, thus, the desired estimate. In ase of kTk = 0, the solution set X�(P )is equal to argminfh; xi : x 2 Xg and, onsequently, does not hange if P isperturbed. Hene, the result is orret in the latter ase, too. 2Theorem 30 Let (A1),(A2) be satis�ed, X�(P ) be nonempty, U be an openbounded neighbourhood of X�(P ) and T (X�(P )) be a singleton. Assume thatthe funtion ( rP )�1 is ontinuous at � = 0, where  rP (0) = 0,  rP (�) := 1� P (�)for eah � > 0 and  P (�) is the growth funtion given by (22).Then there exists onstants L > 0 and Æ > 0 suh that the estimateD1(X�(P ); X�(Q)) � L( rP )�1(d̂�U (P;Q)) (33)is valid for eah Q 2 P2(�) with d̂�U (P;Q) < Æ. Here, we denoted̂�U (P;Q) := sup n��� Z� �(q(�); h(�)� Tx)� �(q(�); h(�)� T �x)kx� �xk d(P �Q)(�)��� :x; �x 2 X \ lU ; x 6= �xo:If the two-stage model (31) has quadrati growth, the estimate (33) assertsLipshitz ontinuity with respet to d̂�U .Proof: Using the same notation as in the previous proof we onlude againthat D1(X�(P ); X�(Q)) � L� sup�2Y �(Q) k�� � �k:If T is the null matrix, the result is true sine X�(Q) does not depend on Q.Otherwise, we denote by kTk the matrix norm of T , argue as in the proofs ofthe Theorems 12 and 29 and arrive at the estimate P ( 1kTkk�� ��k) �  �P (k�� ��k) � �P (�)� �Q(�)� (�P (��)� �Q(��))for eah � 2 Y �(Q), where �P (�) := R� �(q(�); h(�) � �)dP (�). The latterestimate implies (33). 2Remark 31 In all ases, where the original and perturbed solution setsX�(P )and X�(Q) are onvex and an estimate of the formD1(X�(P ); X�(Q)) � �(d(P;Q)) whenever Q 2 Pd; d(P;Q) < Æis available for some (pseudo) metri d on a set of probability measures Pdand some funtion � from R+ to R+ , this estimate may be omplemented by35



a quantitative ontinuity property of a ountable dense family of seletions.Namely, there exists a family fx�k(Q)gk2N of seletions of X�(Q) suh thatX�(Q) = l � [k2N x�k(Q)�kx�k(P )� x�k(Q)k�Lk�(d(P;Q)) whenever Q 2 Pd; d(P;Q) < Æfor some onstant Lk > 0 and any k 2 N . To derive this onlusion, let us�rst reall the notion of a generalized Steiner point of a onvex ompat setC � Rm (see Dentheva (2000)). It is given by St�(C) := RB �(��C(x))�(dx),where �C(�) is the support funtion of C, i.e., �C(x) := supy2Chx; yi, ��C(x)is the onvex subdi�erential of �C at x and �(��C(x)) its norm-minimal ele-ment. Furthermore, � is a probability measure on B having a C1-density withrespet to the Lebesgue measure. A generalized Steiner seletion St�(�) is Lip-shitz ontinuous (with a Lipshitz onstant depending on �) on the set ofall nonempty onvex ompat subsets of Rm equipped with the distane D1 .Furthermore, there exists a ountable family f�kgk2N of probability measureson R, eah having a C1-density with respet to the Lebesgue measure, suhthat the orresponding family of generalized Steiner seletions fSt�k(C)gk2Nis dense in C. Both results are proved in Dentheva (2000). By ombiningthese two arguments for the ountable family fx�k(Q) := St�k(X�(Q))gk2N ofseletions to the onvex ompat sets X�(Q) the desired result follows.The previous Theorems 29 and 30 extend the main results of R�omish andShultz (1993, 1996) and Shapiro (1994) to the ase of a general growth on-dition. The ruial assumption of both results is that T (X�(P )) is a singleton.The latter ondition is satis�ed, for example, if the expeted reourse funtion�P (�) := R� �(q(�); h(�) � �)dP (�) is stritly onvex on a onvex neighbour-hood of T (X�(P )).The situation simpli�es in ase of random right-hand sides only, i.e., q(�) � qand h(�) = �. Then the distane d̂�U an be bounded above by a disrepanyw.r.t. ertain polyhedral ones. Namely,d̂�U (P;Q) � L̂ supfj(P �Q)(Tx+Bi(Rs+))j : x 2 lU ; i = 1; : : : ; `g;holds, where L̂ > 0 is some onstant and Bi, i = 1; : : : ; `, are ertain nonsin-gular submatries of the reourse matrix W (R�omish and Shultz (1996)). Inthis ase, veri�able suÆient onditions for the strit and strong onvexity ofthe expeted reourse funtion �P are also available (Shultz (1994)). Namely,the funtion �P is stritly onvex on any open onvex subset of the support ofP if P has a density on Rs and the set fz 2 Rs : W 0z < qg is nonempty. It isstrongly onvex if, in addition to the onditions implying strit onvexity, thedensity of P is bounded away from zero on the orresponding onvex neigh-bourhood. Furthermore, the model (31) has quadrati growth if the funtion36



�P is strongly onvex on some open onvex neighbourhood of T (X�(P )). Thelatter fat was proved in Dentheva and R�omish (2000) by exploiting theLipshitz ontinuity of the mapping � in Lemma 28. The Lipshitz ontinuityresult of Theorem 30 in ase of quadrati growth forms the basis of the fol-lowing di�erential stability result for optimal values and solution sets provedin Dentheva and R�omish (2000).Theorem 32 Let (A1),(A2) be satis�ed, X�(P ) be nonempty and bounded,and T (X�(P )) be a singleton, i.e., T (X�(P )) = f��g. Let Q 2 P(�).Then the funtion # is Gateaux diretionally di�erentiable at P in diretionQ� P and it holds#0(P ;Q� P ) := limt!0+ 1t (#(P + t(Q� P ))� #(P )) = �Q(��)� �P (��):If, in addition, model (31) has quadrati growth and �P is twie ontinuouslydi�erentiable at f��g, then the seond-order Gateaux diretional derivative of# at P in diretion Q� P exists and we have#00(P ;Q� P ) := limt!0+ 1t2 (#(P + t(Q� P ))� #(P )� t#0(P ;Q� P ))= inf n12hr2�P (��)Tx; Txi+ (�Q � �P )0(��;Tx) : x 2 S(�x)o;where S(�x) = fx 2 TX(�x) : x+hr�P (��); Txi = 0g and TX(�x) is the tangentone to X at some �x 2 X�(P ). The diretional derivative (�Q��P )0(��;Tx)of �Q � �P exists sine both funtions are onvex and �P is di�erentiable.The �rst-order Gateaux diretional derivative of the set-valued mapping X�(�)(X�)0(P; �x;Q� P ) := limt!0+ 1t (X�(P + t(Q� P ))� �x)at the pair (P; �x), �x 2 X�(P ), in diretion Q � P exists and oinides withargminf12hr2�P (��)Tx; Txi+ (�Q � �P )0(��;Tx) : x 2 S(�x)g.3.2 Mixed-Integer Two-Stage ModelsNext we allow for mixed-integer deisions in both stages and onsider thestohasti programminfh; xi+ Z� �(h(�)� T (�)x)dP (�) : x 2 Xg; (34)37



where�(t) := minfhq; yi+ h�q; �yi : Wy + �W �y = t; y 2 Zm̂+ ; �y 2 R �m+ g (t 2 Rr ); (35) 2 Rm , X is a losed subset of Rm , � a polyhedron in Rs , q 2 Rm̂ , �q 2 R �m ,W and �W are (r; m̂)- and (r; �m)-matries, respetively, h(�) 2 Rr and the(r;m)-matrix T (�) are aÆne linear funtions of � 2 Rs , and P 2 P(�).Basi properties of � like onvexity and ontinuity on dom� in the purelylinear ase annot be maintained for reasonable problem lasses. Sine � isdisontinuous in general it is interesting to haraterize its ontinuity regions.Similarly as for the two-stage models without integrality requirements in theprevious setion, we need some onditions to have the model (34) well-de�ned:(B1) The matries W and �W have only rational elements.(B2) For eah pair (x; �) 2 X � � it holds that h(�)� T (�)x 2 T , whereT := ft 2 Rr : t = Wy + �W �y; y 2 Zm̂+ ; �y 2 R �m+ g.(B3) There exists an element u 2 Rr suh that W 0u � q and �W 0u � �q.(B4) P 2 P1(�), i.e., R� k�kdP (�) < +1.The onditions (B2) and (B3) mean relatively omplete reourse and dualfeasibility, respetively. We note that ondition (B3) is equivalent to �(0) = 0,and that (B2) and (B3) imply �(t) to be �nite for all t 2 T (see Proposition 1in Louveaux and Shultz (2003)). In the ontext of this setion, the followingproperties of the value funtion � on T are important.Lemma 33 Assume (B1){(B3). Then there exists a ountable partition of Tinto Borel subsets Bi, i.e., T = Si2N Bi suh that(1) eah of the sets has a representation Bi = fbi+pos �WgnSN0j=1fbij+pos �Wg,where bi; bij 2 Rr for i 2 N and j = 1; : : : ; N0. Moreover, there exists anN1 2 N suh that for any t 2 T the ball B (t; 1) in Rr is interseted by atmost N1 di�erent subsets Bi.(2) the restrition �jBi of � to Bi is Lipshitz ontinuous with a onstantL� > 0 that does not depend on i.Furthermore, the funtion � is lower semiontinuous and pieewise polyhedralon T and there exist onstants a; b > 0 suh that it holds for all t, ~t 2 T :j�(t)� �(~t)j � akt� ~tk+ b :Part (i) of the lemma was proved in Setion 5.6 of Bank et al. (1982) and inLemma 2.5 of Shultz (1996), (ii) was derived as Lemma 2.3 in Shultz (1996)and the remaining properties of � were established in Blair and Jeroslow(1977). Compared to Lemma 21 for optimal value funtions of linear pro-grams without integrality requirements, the representation of � is now givenon ountably many (possibly unbounded) Borel sets. This requires to inor-38



porate the tail behaviour of P and leads to the following representation of thefuntion F0(x; �) := h; xi+ �(h(�)� T (�)x) for eah pair (x; �) in X � �.Proposition 34 Assume (B1){(B3) and let U be an open bounded subset ofRm . For eah R � 1 and x 2 X \ lU there exist disjoint Borel subsets �Rj;x of�, j = 1; : : : ; �, whose losures are polyhedra with a uniformly bounded numberof faes suh that the funtionF0(x; �) = �Xj=0(h; xi+ �(h(�)� T (�)x))��Rj;x(�) ((x; �) 2 X � �)is Lipshitz ontinuous with respet to � on eah �Rj;x, j = 1; : : : ; �, with someuniform Lipshitz onstant. Here, �R0;x := � n [�j=1�Rj;x is ontained in f� 2Rs : k�k > Rg and � is bounded by a multiple of Rr.Proof: Sine h(�) and T (�) are aÆne linear funtions, there exists a onstantC2 > 0 suh that the estimate kh(�) � T (�)xk1 � C2maxf1; k�kg holds foreah pair in X \ lU . Let R > 0 and TR := T \ RC2B1 , where B1 refers tothe losed unit ball in Rr with respet to the norm k�k1. Now, we partition theball RC2B1 into disjoint Borel sets whose losures are B1 -balls with radius1, where possible gaps are �lled with maximal balls of radius less than 1.Then the number of elements in this partition of RC2B1 is bounded above by(2RC2)r. From Lemma 33 (i) we know that eah element of this partition isinterseted by at most N1 subsets Bi (for some N1 2 N). Another onsequeneof Lemma 33 (i) is that eah Bi splits into disjoint Borel subsets whose losuresare polyhedra. Moreover, the number of suh subsets an be bounded fromabove by a onstant not depending on i. Hene, there exist a number � 2 Nand disjoint Borel subsets fBj : j = 1; : : : ; �g suh that their losures arepolyhedra, their union ontains TR, and � is bounded above by �Rr, wherethe onstant � > 0 is independent of R. Now, let x 2 X \ lU and onsiderthe following disjoint Borel subsets of �:�Rj;x := f� 2 � : h(�)� T (�)x 2 Bjg (j = 1; : : : ; �);�R0;x :=� n �[j=1�Rj;x � f� 2 � : kh(�)� T (�)xk1 > RC2g � f� 2 � : k�k > Rg:For eah j = 1; : : : ; � the losures of the sets Bj are polyhedra with a numberof faes that is bounded above by some number not depending on j, � andR. Hene, the same is true for the losures of the sets �Rj;x, i.e., for f� 2 � :h(�)�T (�)x 2 lBjg, where, moreover, the orresponding number k 2 N doesnot depend on x 2 X \ lU . Finally, we onlude from Lemma 33 that thereexists a onstant L1 > 0 (whih does not depend on x 2 X \ lU , j = 1; : : : ; �and R > 0) suh that the funtion F0(x; �)j�Rj;x = h; xi+�jBj (h(�)� T (�)x) isLipshitz ontinuous with onstant L1. 239



For further strutural properties of model (34) we refer to Louveaux andShultz (2003). In order to state stability results for model (34), we onsiderthe following probability metris with �-struture on P1(�) for every k 2 N :�1;phk(P;Q) := supfj ZB f(�)(P �Q)(d�)j : f 2 F1(�); B 2 Bphk(�)g (36)= supfj Z� f(�)�B(�)(P �Q)(d�)j : f 2 F1(�); B 2 Bphk(�)g:Here, Bphk(�) and F1(�) denote the sets of polyhedra in � and of Lipshitzontinuous funtions from � to R introdued in Setion 2.1.Theorem 35 Let the onditions (B1){(B4) be satis�ed, X�(P ) be nonemptyand U � Rm be an open bounded neighbourhood of X�(P ).Then there exist onstants L > 0, Æ > 0 and k 2 N suh thatj#(P )� #U(Q)j �L�P (�1;phk(P;Q)) (37); 6= X�U(Q)�X�(P ) + 	P (L�P (�1;phk(P;Q)))B ;and X�U(Q) is a CLM set of (34) relative to U whenever Q 2 P1(�) and�1;phk(P;Q) < Æ. Here, the funtion �P on R+ is de�ned by�P (0) = 0 and �P (t) := infR�1 nRrt+ Zf�2�:k�k>Rg k�kdP (�)o (t > 0)and ontinuous at t = 0, and the funtion 	P is given by (23).If P has a �nite absolute moment of p-th order for some p > 1, the estimate�P (t) � Ct p�1p�1+r holds for small t > 0 and some onstant C > 0.Proof: Sine the funtion � is lower semiontinuous on T (Lemma 33), F0 islower semiontinuous on X � � and, hene, a random lower semiontinuousfuntion (Example 14.31 in Rokafellar and Wets (1998)). Using Lemma 33we obtain the estimatejF0(x; �)j � kkkxk+ a(kh(�)k+ kT (�)kkxk) + bfor eah pair (x; �) 2 X � �. Sine h(�) and T (�) depend aÆne linearly on �,there exists a onstant C1 > 0 suh that jF0(x; �)j � C1maxf1; k�kg holds foreah pair (x; �) 2 (X \ lU) � �. Hene, PFU (�) � P1(�) and Theorems 5and 9 apply with d = 0 and the distane dFU on P1(�).From Proposition 34 we know that, for eah R � 1 and x 2 X \ lU , thereexist Borel subsets �Rj;x, j = 1; : : : ; �, of � suh that the funtion fRj;x(�) :=F0(x; �)j�Rj;x is Lipshitz ontinuous on �Rj;x with some Lipshitz onstant L1 > 040



(not depending on x, j and R). We extend eah funtion fRj;x(�) to the wholeof � by preserving the Lipshitz onstant L1. Proposition 34 also implies thatthe losures of �Rj;x are ontained in Bphk(�) for some k 2 N , that the number� is bounded above by �Rr, where the onstant � > 0 is independent on R,and that �R0;x := � n [�j=1�Rj;x is a subset of f� 2 � : k�k > Rg.For eah Q 2 P1(�) and x 2 X \ lU we obtainj Z� F0(x; �)d(P �Q)(�)j= j �Xj=0 Z�Rj;x F0(x; �)d(P �Q)(�)j� �Xj=1 j Z�Rj;x fRj;x(�)d(P �Q)(�)j+ IRx (P;Q)� �L1 supf2F1(�)j=1;:::;� j Z� f(�)��Rj;xd(P �Q)(�)j+ IRx (P;Q);where IRx (P;Q) := j R�R0;x F0(x; �)d(P �Q)(�)j.For eah �Rj;x we now onsider a sequene of polyhedra BRj;x, whih are on-tained in �Rj;x and belong to Bphk(�), suh that their harateristi funtions�BRj;x onverge pointwise to the harateristi funtion ��Rj;x. Then the se-quene onsisting of the elements j R� f(�)�BRj;x(�)d(P � Q)(�)j onverges toj R� f(�)��Rj;x(�)d(P � Q)(�)j while eah element is bounded by �1;phk(P;Q).Hene, the above estimate may be ontinued toj Z� F0(x; �)d(P �Q)(�)j � �L1Rr�1;phk(P;Q) + IRx (P;Q): (38)
For the term IRx (P;Q) we haveIRx (P;Q)�C1 Zf�2�:k�k>Rg k�kd(P +Q)(�)�C1 Zf�2�:k�k1> RC2 g k�kd(P +Q)(�)where we have used the estimate jF0(x; �)j � C1k�k for eah pair (x; �) 2(X \ lU)� f� 2 � : k�k > Rg and C2 > 0 is a norming onstant suh thatk�k � C2k�k1 holds for eah � 2 Rs . Clearly, the set f� 2 � : k�k1 > RC2g anbe overed by 2s intersetions of � by open halfspaes whose losures belong41



to Bphk(�). Hene, a similar argument as the one above yields the estimateZf�2�:k�k1> RC2 g k�kdQ(�) � 2s�1;phk(P;Q) + Zf�2�:k�k1> RC2 g k�kdP (�):Hene, from the previous estimates we obtain thatdFU (P;Q)� �(L1Rr + 2sC1)�1;phk(P;Q) + 2C1 Zf�2�:k�k1> RC2 g k�kdP (�)�CRr�1;phk(P;Q) + Zf�2�:k�k>�Rg k�kdP (�)for some onstants C > 0 and � 2 (0; 1), the latter depending on the normingonstants of k � k and k � k1, respetively. Finally, we obtaindFU (P;Q) � Ĉ�P (�1;phk(P;Q)); where (39)�P (0) := 0 and �P (t) := infR�1 nRrt+ Zf�2�:k�k>Rg k�kdP (�)o (t > 0) (40)with some onstant Ĉ > 0. Now, the result is a onsequene of the Theo-rems 5 and 9. If R� k�kpdP (�) < 1, it holds that Rf�2�:k�k>Rg k�kdP (�) �R1�p R� k�kpdP (�) by Markov's inequality. The desired estimate follows by in-serting R = t� 1p+r�1 for small t > 0 into the funtion whose in�mum w.r.t.R � 1 is �P (t). 2In ase that the underlying distribution P and its perturbations Q have sup-ports in some bounded subset of Rs , the stability result improves slightly.Corollary 36 Let the onditions (B1){(B3) be satis�ed and � be bounded.Assume that P 2 P(�), X�(P ) is nonempty and U � Rm is an open boundedneighbourhood of X�(P ).Then there exist onstants L > 0, Æ > 0 and k 2 N suh thatj#(P )� #U(Q)j �L�1;phk(P;Q); 6= X�U(Q)�X�(P ) + 	P (L�1;phk(P;Q))B ;and X�U(Q) is a CLM set of (34) relative to U whenever Q 2 P(�) and�1;phk(P;Q) < Æ.Proof: Sine � is bounded, we have P1(�) = P(�). Moreover, the funtion�P (t) an be estimated by Rrt for some suÆiently large R > 0. Hene, The-42



orem 35 implies the assertion. 2Remark 37 Sine � 2 Bphk(�) for some k 2 N , we obtain from (36) byhoosing B := � and f � 1, respetively,maxf�1(P;Q); �phk(P;Q)g � �1;phk(P;Q) (41)for large k and all P;Q 2 P1(�). Here, �phk denotes the polyhedral disrepany(see Setion 2.1). Hene, onvergene with respet to �1;phk implies weak on-vergene, onvergene of �rst order absolute moments and onvergene withrespet to the polyhedral disrepany �phk . The onverse is also true. Thelatter observation is a onsequene of the estimate�1;phk(P;Q) � Cs�phk(P;Q) 1s+1 (P;Q 2 P(�)) (42)for some onstant Cs > 0. It is valid for bounded � � Rs and an be derivedby using the tehnique in the proof of Proposition 3.1 in Shultz (1996). Inview of (41), (42) the metri �1;phk is stronger than �phk in general, but in aseof bounded � both metrize the same topology on P(�).For more spei� models (34), improvements of the above results are pos-sible. The potential of suh improvements onsists in exploiting spei� re-ourse strutures, i.e., in additional information on the shape of the sets Bi inLemma 33 and on the behaviour of the (value) funtion � on these sets. Theseonsiderations may lead to stability results with respet to probability metristhat are (muh) weaker than �1;phk . To illustrate suh an improvement, let usonsider the ase of pure integer reourse where � is given by�(t) = minfhq; yi : Wy � t; y 2 Zm̂g; (43)the tehnology matrix is �xed and the right-hand side is fully stohasti, i.e.,T (�) � T and h(�) � �. This situation �ts into the general model (34) bysetting �q = 0, �m = r and �W = �Ir, with Ir denoting the (r; r)-identitymatrix. For suh models Shultz (1996) observed that stability holds withrespet to the Kolmogorov metri dK on P(�).Corollary 38 Let � be given by (43), T (�) � T , h(�) � � and � be bounded.Furthermore, let the onditions (B1){(B3) be satis�ed with T = Rs . Assumethat P 2 P(�), X�(P ) is nonempty and U � Rm is an open bounded neigh-bourhood of X�(P ). Then there exist onstants L > 0 and Æ > 0 suh thatj#(P )� #U(Q)j �LdK(P;Q); 6= X�U(Q)�X�(P ) + 	P (LdK(P;Q))B ;43



and X�U(Q) is a CLM set of (34) relative to U whenever Q 2 P(�) anddK(P;Q) < Æ. Here, the funtion 	P is given by (23).Proof: The assumptions imply that � is even onstant on Bi for eah i 2 Nand the ontinuity regions of � are retangular (see Shultz (1996)). Withoutloss of generality the set � may be hosen to be retangular. Then the sets �Rj;xin Proposition 34 are also bounded retangular sets and F0(x; �) is onstanton eah �Rj;x. Hene, the estimate (38) takes the form��� Z� F0(x; �)d(P �Q)(�)��� � �L1Rs�box(P;Q);where �box(P;Q) := supfjP (B) � Q(B)j : B is a box in Rsg. Finally, we usethe known estimate �box(P;Q) � CdK(P;Q)for some onstant C > 0 and derive the result from Theorem 35. 23.3 Linear Chane Constrained ProgramsIn this setion, we study onsequenes of the general stability analysis of Se-tion 2 for linear hane onstrained stohasti programs of the formminfh; xi : x 2 X;P (f� 2 � : T (�)x � h(�)g) � pg; (44)where  2 Rm , X and � are polyhedra in Rm and Rs , respetively, p 2 (0; 1),P 2 P(�), and the right-hand side h(�) 2 Rr and the (r;m)-matrix T (�)depend aÆne linearly on � 2 �.We set d = 1, F0(x; �) = h; xi, F1(x; �) = p � �H(x)(�), where H(x) = f� 2� : T (�)x � h(�)g and �H(x) its harateristi funtion, and observe that theprogram (44) is a speial ase of the general stohasti program (1). We notethat the set H(x) is polyhedral for eah x 2 X. In fat, these sets are given asthe �nite intersetion of r losed half-spaes. Furthermore, the multifuntionHfrom Rm to Rs has a losed graph and, hene, the mapping (x; �) 7! �H(x)(�)from Rm � � to R is upper semiontinuous. This implies that F1 is lowersemiontinuous on Rm�� and, hene, a random lower semiontinuous funtion(Example 14.31 in Rokafellar and Wets (1998)). Moreover, we have p � 1 �F1(x; �) � p for any pair (x; �). By speifying the general lass of probabilitymeasures and the minimal information probability metri in Setion 2.2 weobtainPFU (�)= nQ 2 P(�) : supx2X\ lUmaxj=0;1 ��� Z� Fj(x; �)dQ(�)��� <1o = P(�)44



dFU (P;Q)= supx2X\ lUmaxj=0;1 ��� Z� Fj(x; �)(P �Q)(d�)���= supx2X\ lU jP (H(x))�Q(H(x))jfor eah P;Q 2 P(�) and any nonempty, open and bounded subset U of Rm .Due to the polyhedrality of the sets H(x) for any x 2 Rm , the polyhedraldisrepanies �phk on P(�) for every k 2 N (see Setion 2.1) or related dis-repanies appear as natural andidates for suitable probability metris inase of model (44). The following result is an immediate onsequene of thegeneral methodology in Setion 2.Theorem 39 Let P 2 P(�) and assume that(i) X�(P ) 6= ; and U � Rm is an open bounded neighbourhood of X�(P ),(ii) the mapping x 7! fy 2 R : P (f� 2 � : T (�)x � h(�)g) � p � yg ismetrially regular at eah pair (�x; 0) with �x 2 X�(P ).Then there exist onstants L > 0, Æ > 0 and k 2 N suh thatj#(P )� #U(Q)j �L�phk(P;Q); 6= X�U(Q)�X�(P ) + 	P (L�phk(P;Q))B ;and X�U(Q) is a CLM set of (44) relative to U whenever Q 2 P(�) and�phk(P;Q) < Æ. Here, the funtion 	P is given by (23).Proof: All sets H(x) are polyhedra in Rs given by r linear inequalities. Hene,the number of faes of H(x) is bounded by some k 2 N not depending onx 2 Rm . Sine all assumptions of Theorem 5 are satis�ed for the speialsituation onsidered here, the result follows from the Theorems 5 and 9 bytaking into aount the estimate dFU (P;Q) � �phk(P;Q). 2We show that Theorem 39 applies to many hane onstrained models knownfrom the literature. First we disuss the metri regularity property (ii) of theoriginal probabilisti onstraint in (44). The following example shows thatondition (ii) is indispensable for Theorem 39 to hold.Example 40 Let P 2 P(R) have a distribution funtion FP whih is ontinu-ously di�erentiable and satis�es FP (x) = x2s+1+p for all x in a neighbourhoodof x = 0 and some p 2 (0; 1) and s 2 N . Let us onsider the modelminfx : x 2 R; P (� � x) = FP (x) � pg:Then the ondition rFP (�x) 6= 0 is neessary and suÆient for the metriregularity at �x with FP (�x) = p (Example 9.44 in Rokafellar and Wets (1998)).45



Clearly, this ondition is violated at the minimizer �x = 0. To show that theresult gets lost, we onsider the measures Pn = (1 � 1n)P + 1nÆ 1n , n 2 N . Thesequene (Pn) onverges weakly to P and, thus, it onverges with respet to theKolmogorov metri dK as P is ontinuous. Then j#(P )�#(Pn)j = ( pn�1) 12s+1 =:xn, but dK(P; Pn) � jFP (xn)� FPn(xn)j = pn�1 .When looking for general onditions implying (ii), one has to resort to resultsfor nononvex and nondi�erentiable situations. The funtiong(x) := P (f� 2 � : T (�)x � h(�)g)from Rm into R is known to be upper semiontinuous (Proposition 3.1 inR�omish and Shultz (1991)). However, g happens to be nondi�erentiable oreven disontinuous not only in ases where the probability distribution P isdisrete, but even if T (�) is non-stohasti and P is ontinuous.Example 41 Let P be the standard normal distribution with distributionfuntion �. First let T (�) = 0B� 111CA and h(�) = 0B� �01CA for eah � 2 R. Theng(x) = P (f� 2 R : x � �; x � 0g) = 8><>: 0; x < 0�(x); x � 0 :Seondly, let T (�) = 0B� 1�11CA and h(�) = 0B� ��1CA for eah � 2 R. Then we haveg(x) = P (f� 2 R : x � �;�x � �g) = �(minf�x; xg):We also refer to Example 9 in Henrion and R�omish (1999) for a probabilitydistribution P having a (bounded) ontinuous density on � = R2 , but a prob-ability distribution funtion (i.e., g in ase of T (�) = I and h(�) = �) that isnot loally Lipshitz ontinuous.Hene, one has to go bak to tools from nonsmooth analysis in general. Forexample, if the funtion g is loally Lipshitz ontinuous on Rm , ondition (ii)is satis�ed if the onstraint quali�ation�(�g)(�x) \ (�NX(�x)) = ; (45)holds at eah �x 2 X�(P ) with g(�x) = p (Corollary 4.2 in Mordukhovih(1994b)). Here, the symbol � stands for the Mordukhovih subdi�erential (f.46



Mordukhovih (1994a)) and NX(�x) := fx� 2 Rm : hx�; x� �xi � 0; 8x 2 Xg isthe normal one to the polyhedral set X at �x 2 X.For more spei� strutures of probabilisti onstraints, even in ase of astohasti matrix T (�), the situation may beome muh more omfortable ifP is a multivariate normal distribution. To demonstrate this, we onsider thease � = Rm+1 , T (�)x = mPi=1 �ixi, i.e., T (�) onsists of one single row, andh(�) = �m+1. Then H(x) takes the formH(x) = n� 2 Rm+1 : mXi=1 �ixi � �m+1o (46)
for eah x 2 Rm , i.e., the sets H(x) are losed half-spaes in Rm+1 .Corollary 42 Let P be a normal distribution on Rm+1 with mean � 2 Rm+1and nonsingular ovariane matrix � 2 R(m+1)�(m+1) , H be given by (46) andp 2 (12 ; 1). Let X�(P ) be nonempty and U � Rm be an open bounded neigh-bourhood of X�(P ). Assume that there exists an x̂ 2 X suh that P (H(x̂)) > p.Then there are onstants L > 0 and Æ > 0 suh thatj#(P )� #U(Q)j �L�h(P;Q); 6= X�U(Q)�X�(P ) + 	P (L�h(P;Q))Bholds and X�U(Q) is a CLM set for (44) relative to U for eah Q 2 P(�) with�h(P;Q) < Æ. Here, the funtion 	P is given by (23) and �h is the half-spaedisrepany (see Setion 2.1).Proof: For any x 2 Rm , we set x0 := (x1; : : : ; xm;�1) and �(x) := h�x0; x0i 12 .Let � denote the standard normal distribution funtion and � the standardnormal density. Then h�; x0i is normal with mean h�; x0i and standard devia-tion �(x0) > 0 (due to the nonsingularity of �), andg(x) = P (f� 2 Rm+1 : h�; x0i � 0g) = � h�; x0i�(x0) !holds for any x 2 Rm . Further, the funtionĝ(x) := h�; x0i � ��1(p)�(x0) = h��1(g(x))� ��1(p)i�(x0)47



is onave on Rm due to ��1(p) > 0 and ontinuously di�erentiable on Rmwith gradientrĝ(x) = �(x0)�(g(x))rg(x) + [��1(g(x))� ��1(p)ir�(x0)0B� Im0 1CA :Let �x 2 X be suh that g(�x) = p and x̂ 2 X be the element having theproperty P (H(x̂)) > p or, equivalently, ĝ(x̂) > 0. Then the onavity of ĝimplies hrĝ(�x); x̂ � �xi > 0 and, thus, rĝ(�x) 62 NX(�x). Due to the equationrĝ(�x) = �(�x0)�(g(�x))rg(�x), we onlude rg(�x) 62 NX(�x). Hene, the onstraintquali�ation (45) and, thus, ondition (ii) of Theorem 39 are satis�ed. 2For the remainder of this setion we assume that the tehnology matrix T (�)is �xed, i.e., T (�) � T . We will show that the onstraint quali�ation ofCorollary 42, i.e., P (H(x̂)) > p for some x̂ 2 X, implies ondition (ii) ofTheorem 39 for any r-onave probability distribution.To reall the notion of r-onavity, we introdue �rst the generalized meanfuntion mr on R+ � R+ � [0; 1℄ for r 2 [�1;1℄ by
mr(a; b;�) := 8>>>>>>>>>>>><>>>>>>>>>>>>:

(�ar + (1� �)br)1=r ; r 2 (0;1) or r 2 (�1; 0); ab > 0;0 ; ab = 0; r 2 (�1; 0);a�b1�� ; r = 0;maxfa; bg ; r =1;minfa; bg ; r = �1: (47)
A measure P 2 P(Rs) is alled r-onave for some r 2 [�1;1℄ (f. Prekopa(1995)) if the inequalityP (�B1 + (1� �)B2) � mr(P (B1); P (B2);�)holds for all � 2 [0; 1℄ and all onvex Borel subsets B1; B2 of Rs suh that�B1 + (1� �)B2 is Borel. For r = 0 and r = �1, P is also alled logarithmionave and quasi-onave, respetively. Sine mr(a; b;�) is inreasing in r ifall the other variables are �xed, the sets of all r-onave probability measuresare inreasing if r is dereasing. It is known that P 2 P(Rs) is r-onave forsome r 2 [�1; 1=s℄ if P has a density fP suh thatfP (�z + (1� �)~z) � mr(s)(fP (z); fP (~z);�); (48)where r(s) = r(1� rs)�1, holds for all � 2 [0; 1℄ and z; ~z 2 Rs . Let us mentionthat many multivariate probability distributions are r-onave for some r 248



(�1;1℄, e.g. the uniform distribution (on some bounded onvex set), the(nondegenerate) multivariate normal distribution, the Dirihlet distribution,the multivariate Student and Pareto distributions (see Prekopa (1995)).The key observation of r-onave measures in the ontext of probabilistionstraints is the following one.Lemma 43 Let H be a multifuntion from Rm to Rs with losed onvex graphand P be r-onave for some r 2 [�1;1℄. Then the funtion g := P (H(�))from Rm to R has the propertyg(�x+ (1� �)~x) � mr(g(x); g(~x);�)for eah x; ~x 2 Rm and � 2 [0; 1℄.Proof: In partiular, H(x) is a losed onvex subset of Rs for any x 2 Rm .Let x; ~x 2 Rm and � 2 [0; 1℄. Then the set �H(x) + (1� �)H(~x) is also losedand onvex and it holds that �H(x)+ (1��)H(~x) � H(�x+(1��)~x). Usingthe r-onavity of P this impliesg(�x+ (1� �)~x) � mr(P (H(x)); P (H(~x));�) = mr(g(x); g(~x);�): 2Corollary 44 Let T (�) � T and P be r-onave for some r 2 (�1;1℄. LetX�(P ) be nonempty and U � Rm be an open bounded neighbourhood of X�(P ).Assume that there exists an element x̂ 2 X suh that P (H(x̂)) > p holds.Then there are onstants L > 0, Æ > 0 and k 2 N suh thatj#(P )� #U(Q)j �L�phk(P;Q); 6= X�U(Q)�X�(P ) + 	P (L�phk(P;Q))B ;and X�U(Q) is a CLM set for (44) relative to U whenever Q 2 P(�) and�phk(P;Q) < Æ. Here, the funtion 	P is given by (23).Proof: We assume without loss of generality that r < 0. Again we have toverify the metri regularity ondition (ii) of Theorem 39. To this end, weuse the funtion ĝ(�) := pr � gr(�) instead of g(�) := P (H(�)). Sine P isr-onave, the funtion ĝ(�) is onave on Rm . We onsider the set-valuedmapping �(x) := fv 2 R : x 2 X; ĝ(x) � vg from Rm to R. Its graph is losedand onvex. Let �x 2 X with g(�x) = p, i.e., ĝ(�x) = pr. As there exists anx̂ 2 X suh that g(x̂) > p, i.e., ĝ(x̂) > 0, the element v = 0 belongs to theinterior of the range of �. Hene, the Robinson-Ursesu Theorem (Theorem9.48 in Rokafellar and Wets (1998)) implies the existene of onstants a > 0and " > 0 suh thatd(x;��1(v)) � ad(v;�(x)) � amaxf0; v � ĝ(x)g49



holds whenever x 2 X, kx� �xk � " and jvj � ". For x 2 X with kx� �xk � "and suÆiently small jyj we obtaind(x;Xy(P )) = d(x;��1(pr � (p� y)r)) � amaxf0; gr(x)� (p� y)rgFinally, it remains to use that the funtion v 7! vr is loally Lipshitz ontin-uous on (0;+1). 2The above result improves in ase of h(�) � � and, hene, g(x) = FP (Tx),where FP is the distribution funtion of P . Then the polyhedral disrepany�phk an be replaed by the Kolmogorov distane dK.The next result provides a suÆient ondition for (ii) in situations where P isnot quasionave, but has a density on Rs . Here, metri regularity is impliedby a growth ondition of g(�) = FP (T �) (see Henrion and R�omish (1999)).Corollary 45 Let T (�) � T , h(�) � �, P 2 P(Rs) have a density fP , X�(P )be nonempty and U � Rm be an open bounded neighbourhood of X�(P ).Assume the following two onditions for eah �x 2 X�(P ):(i) (T �x+ bdRs�) \ f� 2 Rs : 9" > 0 suh that fP (�) � "; 8� 2 � + "B g 6= ;,(ii) there exists an x̂ 2 X suh that T x̂ > T �x holds omponentwise.Then there are onstants L > 0 and Æ > 0 suh thatj#(P )� #U(Q)j �LdK(P;Q); 6= X�U(Q)�X�(P ) + 	P (LdK(P;Q))B ;and X�U(Q) is a CLM set of (44) relative to U whenever Q 2 P(�) anddK(P;Q) < Æ. Here, the funtion 	P is given by (23).The essential ondition (i) says that, for eah � 2 T (X�(P )), the boundaryof the ell �+ Rs� meets the strit positivity region of the density of P some-where. This implies a suitable growth behaviour of the distribution funtionFP at elements of T (X�(P )) and, hene, metri regularity.Finally, we study the growth funtion  P of (44) and derive onditions imply-ing quadrati growth near solution sets in ase of h(�) � � and a logarithmionave measure P . The �rst step of our analysis onsists in a redution argu-ment that deomposes problem (44) into two auxiliary problems. The �rst oneis a stohasti program with modi�ed objetive and probabilisti onstraints(with deisions taken in Rs) whereas the seond one represents a parametrilinear program. The argument is similar to Lemma 28 for two-stage modelsand was proved in Henrion and R�omish (1999).Lemma 46 Let Q 2 P(Rs) and U � Rm be a nonempty open set suh that50



its losure is a polytope. Then we have#U(Q) = inff�U(y) : y 2 T (XU); FQ(y) � pg and X�U(Q) = �U(YU(Q));where XU =X \ lU ;YU(Q)= argminf�U(y) : y 2 T (XU); FQ(y) � pg;�U(y)= inffh; xi : Tx = y; x 2 XUg;�U(y)= argminfh; xi : Tx = y; x 2 XUg (y 2 T (XU)):Here, �U is onvex polyhedral on T (XU) and �U is Lipshitz ontinuous onT (XU) with respet to the Pompeiu-Hausdor� distane on Rs .Theorem 47 Let T (�) � T , h(�) � �, P 2 P(Rs) be logarithmi onave andX�(P ) be nonempty and bounded. Assume that(i) X�(P ) \ argminfh; xi : x 2 Xg = ;;(ii) there exists an �x 2 X suh that FP (T �x) > p;(iii) logFP is strongly onave on some onvex neighbourhood V of T (X�(P )).Then there exist L > 0 and Æ > 0 and a neighbourhood U of X�(P ) suh thatD1(X�(P ); X�U(Q)) � LdK(P;Q)1=2holds whenever Q 2 P(Rs) and dK(P;Q) < Æ. Here, D1 denotes the Pompeiu-Hausdor� distane on subsets of Rm and dK the Kolmogorov metri on P(Rs).Proof: Let U 0 � Rm be an open onvex set suh that X�(P ) � U 0 andT (U 0) � V. For eah x 2 X�(P ) selet "(x) > 0 suh that the polyhedronx + "(x)B1 (with B1 denoting the losed unit ball w.r.t. the norm k � k1 onRm) is ontained in U 0. Sine X�(P ) is ompat, �nitly many of these ballsover X�(P ). The losed onvex hull �U of their union is a polyhedron withX�(P ) � U � �U � U 0, where U = int �U . With the notations of Lemma 46we onsider the problemminf�U(y) : y 2 T (XU); ĝ(y) := log p� logFP (y) � 0g:Aording to Lemma 46 the solution set YU(P ) of this problem ful�ls X�(P ) =X�U(P ) = �U (YU(P )). Let y� 2 YU(P ) and �y = T �x with �x 2 X from (ii). Thenthe logarithmi onavity of P implies for any � 2 (0; 1℄:ĝ(��y + (1� �)y�)= log p� logFP (��y + (1� �)y�)� log p� � logFP (�y)� (1� �) logFP (y�)��(log p� logFP (�y)) < 0:51



Thus, we may hoose �̂ 2 (0; 1℄ suh that ŷ = �̂�y + (1 � �̂)y� belongs toT (XU) and has the property ĝ(ŷ) < 0. This onstraint quali�ation impliesthe existene of a Kuhn-Tuker oeÆient �� � 0 suh that�U (y�) = minf�U(y) + ��ĝ(y) : y 2 T (XU)g and ��ĝ(y�) = 0:In ase �� = 0, this would imply y� 2 argminf�U(y) : y 2 T (XU)g and, hene,the existene of some x� 2 X�(P ) with h; x�i = �U(Tx�) = minfh; xi : Tx =y�; x 2 XUg. Hene, ondition (i) would be violated due to x� 2 intU . Thus�� > 0 and �V + ��ĝ is strongly onvex on T (XU). Hene, y� is the uniqueminimizer of �V + ��ĝ and the growth property�ky � y�k2 � �U(y) + ��ĝ(y)� �U(y�) (49)holds for some � > 0 and all y 2 T (XU).As the assumptions of Corollary 44 are satis�ed, the set-valued mappingX�U(�)is upper semiontinuous at P and X�U(Q) 6= ; is a omplete loal minimizingset if dK(P;Q) is suÆiently small. Hene, there exists a Æ > 0 suh that; 6= X�U(Q) � U for all Q 2 P(Rs) with dK(P:Q) < Æ. With the notationsfrom Lemma 46 and using the fat that YU(P ) = fy�g and X�(P ) = X�U(P ) =�U(y�) we obtainD1(X�(P ); X�U(Q)) = D1(�U(y�); �U(YU(Q))) � L̂ supy2YU (Q) ky � y�k;where L̂ > 0 is the Lipshitz onstant of �U (f. Lemma 46). Using (49) andYU(Q) � T (XU), the above hain of inequalities extends toD1(X�(P ); X�U(Q))� L̂�1=2 supy2YU (Q)[�U(y) + ��ĝ(y)� �U(y�)℄1=2= L̂�1=2 [#U(Q)� #(P ) + ��(log p� logFP (y))℄1=2� L̂�1=2 [#U(Q)� #(P ) + ��(logFQ(y)� logFP (y))℄1=2� L̂�1=2 [(L+ ��p )dK(P;Q)℄1=2;where L > 0 is the onstant from Theorem 39 and 1p the Lipshitz onstant oflog(�) on [p; 1℄. This ompletes the proof. 2A slightly more general version of the result for r-onave measures was provedin Henrion and R�omish (1999). The assumptions (i){(iii) imposed in Theo-rem 47 onern the original problem. The onditions (i) and (ii) mean that52



the probability level p is not hosen too low and too high, respetively. Con-dition (i) expresses the fat that the presene of the probabilisti onstraintFP (Tx) � p moves the solution set X�(P ) away from the one obtained with-out imposing that onstraint. Reent results in Henrion and R�omish (2002)show that assumption (i) is not neessary for Theorem 47 to hold. Assump-tion (iii) is deisive for the desired growth ondition of the objetive funtionaround X�(P ). In ontrast to the global onavity of logFP , (iii) requires thestrong onavity of logFP as a loal property around T (X�(P )). Sine generalsuÆient riteria for (iii) are not available so far, we provide a few examples.Example 48 (strong logarithmi onavity of measures)Let P be the uniform distribution on some bounded retangle in Rs havingthe form D = �si=1[ai; bi℄. Then logFP (�) = Psi=1 log(�i � ai); � 2 D. Clearly,log(� � ai) is strongly onave on any losed subinterval of (ai; bi). Hene,logFP (�) is strongly onave on any losed onvex subset of intD.Let P be the multivariate normal distribution on Rs having a nonsingulardiagonal ovariane matrix. A diret omputation for the standard normaldistribution funtion � on R shows that log� is strongly onave on anybounded interval. Sine logFP is equal to the sum of logarithms of the marginaldistribution funtions, it is strongly onave on any bounded onvex set in Rs .4 Approximations of Stohasti ProgramsMany approximations of stohasti programs result from replaing the under-lying probability distribution by some other measure, whih typially leads tosimpler models. Important examples are nonparametri statistial estimates(e.g. empirial ones) and senario tree onstrutions using probability distribu-tion information. Next we give an idea how the results of the previous setionsmay be used to design and to analyse approximations of stohasti programs.We begin with some glimpses into the analysis of empirial approximationsand the relations to empirial proess theory. A more far-reahing analysis isgiven in Pug (2003) and Shapiro (2003).4.1 A Glimpse of Empirial ApproximationsLet P 2 P(�) and �1; �2; : : : ; �n; : : : be independent identially distributed �-valued random variables on a probability spae (
;A;P) having the ommondistribution P , i.e., P = P��11 . We onsider the empirial measuresPn(!) := 1n nXi=1 Æ�i(!) (! 2 
; n 2 N);53



where Æ� denotes the unit mass at � 2 �, and the empirial approximationsof the stohasti program (1), i.e., the models that result from replaing P byPn(�). These take the formminn nXi=1 F0(x; �i(�)) : x 2 X ; nXi=1 Fj(x; �i(�)) � 0 ; j = 1; : : : ; do; (50)where the fator 1n in the objetive and onstraints has been removed. Sinethe objetive and onstraint funtions Fj, j = 0; : : : ; d, are assumed to berandom lower semiontinuous funtions from Rm � � to R , the onstraint setis losed-valued and measurable from 
 to Rm and, hene, the optimal value#(Pn(�)) of (50) is measurable from 
 to R and the solution set X�(Pn(�))is a losed-valued measurable multifuntion from 
 to Rm (see Chapter 14and, in partiular, Theorem 14.37 in Rokafellar and Wets (1998)). The sameonlusion is valid for the loalized onepts #U and X�U for any nonemptyopen subset U of Rm .Another measurability question arises when studying uniform onvergeneproperties of the empirial proessnn 12 (Pn(�)� P )F = n� 12 nXi=1(F (�i(�))� PF )oF2F ;indexed by some lass F of funtions that are integrable with respet to P .Here, we set QF := R� F (�)dQ(�) for any Q 2 P(�) and F 2 F . Sine thesuprema dF(Pn(�); P ) = supF2F jPn(�)F � PF j may be non-measurable fun-tions from 
 to R , we introdue a ondition on F that simpli�es matters andis satis�ed in most stohasti programming models. A lass F of measurablefuntions from � to R is alled P-permissible for some P 2 P(�) if there existsa ountable subset F0 of F suh that for eah funtion F 2 F there existsa sequene (Fn) in F0 onverging pointwise to F and suh that the sequene(PFn) also onverges to PF . ThendF(Pn(!); P ) = supF2F j(Pn(!)� P )F j = dF0(Pn(!); P )holds for eah n 2 N and ! 2 
, i.e., the analysis is redued to a ountablelass and, in partiular, dF(Pn(�); P ) is a measurable funtion from 
 to R .A P -permissible lass F is alled a P -Glivenko-Cantelli lass if the sequene(dF(Pn(�); P )) of random variables onverges to 0 P-almost surely. If F is P -permissible, the empirial proess fn 12 (Pn(�) � P )FgF2F is alled uniformlybounded in probability with tail CF(�) if the funtion CF(�) is de�ned on (0;1)and dereasing to 0, and the estimateP(f! : n 12dF(Pn(!); P ) � "g) � CF(") (51)54



holds for eah " > 0 and n 2 N . Whether a given lass F is a P -Glivenko-Cantelli lass or the empirial proess is uniformly bounded in probabil-ity depends on the size of the lass F measured in terms of ertain over-ing numbers or the orresponding metri entropy numbers de�ned as theirlogarithms (e.g., Dudley (1984), Pollard (1990), van der Vaart and Wellner(1996)). To introdue these onepts, let F be a subset of the normed spaeLr(�; P ) for some r � 1 equipped with the usual norm kFkP;r = (P jF jr) 1r .The overing number N(";F ; Lr(�; P )) is the minimal number of open ballsfG 2 Lr(�; P ) : kG � FkP;r < "g needed to over F . A measurable funtionFF from � to R is alled an envelope of the lass F if jF (�)j � FF (�) holds forevery � 2 � and F 2 F . The following result provides riteria for the desiredproperties in terms of uniform overing numbers.Theorem 49 Let F be P -permissible with envelope FF . If PFF <1 andsupQ N("kFFkQ;1;F ; L1(Q)) <1; (52)then F is a P -Glivenko-Cantelli lass. If F is uniformly bounded and thereexist onstants r � 1 and R � 1 suh thatsupQ N("kFFkQ;2;F ; L2(Q)) � �R" �r (53)holds for all " > 0, then the empirial proess indexed by F is uniformlybounded in probability with exponential tail CF(") = (K(R)"r� 12 )r exp(�2"2)with some onstant K(R) depending only on R.The suprema in (52) and (53) are taken over all �nitely disrete probabilitymeasures Q with kFFkQ;1 = QFF > 0 and kFFk2Q;2 = QF 2F > 0, respetively.For the proof we refer to Talagrand (1994), van der Vaart and Wellner (1996)and van der Vaart (1998). For studying entropi sizes of stohasti programsPug (1999, 2003) uses results of this type but with braketing numbers in-stead of uniform overing numbers. He also studies situations where F is notuniformly bounded and shows that the blow-up funtion n 12 for n ! 1 hasto be replaed by some funtion onverging to 1 more slowly. Here, we usethe onept of uniform overing numbers sine they turn out to be useful fordisontinuous funtions.The stability results of Setion 2 diretly translate into onvergene resultsand rates, respetively, for empirial optimal values and solution sets.Theorem 50 Assume that the onditions (i){(iii) of Theorem 5 are satis�edand that FU is P -permissible. 55



If FU is a P -Glivenko-Cantelli lass, the sequenes�j#(P )� #U (Pn(�))j� and � supx2X�U (Pn(�)) d(x;X�(P ))�onverge P-almost surely to 0. Furthermore, the set X�U(Pn(!)) is a CLM setof (50) relative to U for suÆiently large n 2 N and for P-almost all ! 2 
.If the empirial proess indexed by FU is uniformly bounded in probability withtail CFU (�), the following estimates hold for eah " > 0 and eah n 2 N:P(j#(P )� #U(Pn(�))j > "n� 12 )�CFU (minfÆ; "Lg); (54)P( supx2X�U (Pn(�)) d(x;X�(P )) > "n� 12 )�CFU (minfÆ; L̂�1	�1P (")g): (55)Proof: Let L > 0, L̂ > 0, Æ > 0 be the onstants in Theorems 5 and 9. First,let FU be a P -Glivenko-Cantelli lass and A 2 A be suh that P(A) = 0 and(dFU (Pn(!); P )) onverges to 0 for every ! 2 
 n A. Let ! 2 
 n A. ThenX�U(Pn(!)) is nonempty, sine the objetive funtion R� F0(�; �)dP (�) is lowersemiontinuous on X and the onstraint set XU(Pn(!)) is ompat due toProposition 3. Let n0(!) 2 N be suh that dFU (Pn(!); P ) < Æ holds for eahn � n0(!). Due to the Theorems 5 and 9 the estimatesj#(P )� #U (Pn(!))j �LdFU (Pn(!); P )supx2X�U (Pn(!)) d(x;X�(P ))�	P (L̂dFU (Pn(!); P ))hold for n � n0(!). In partiular, the sequenes (j#(P ) � #U(Pn(!))j) and(supx2X�U(Pn(!)) d(x;X�(P ))) onverge to 0. Hene, X�U(Pn(!)) � U and, thus,X�U(Pn(!)) is a CLM set relative to U for suÆiently large n 2 N .Now, let " > 0 be arbitrary. The Theorems 5 and 9 also implyP(j#(P )� #U(Pn(�))j > ")�P(dFU (Pn(�); P ) � minfÆ; "Lg); (56)P( supx2X�U (Pn(�)) d(x;X�(P )) > ")�P(dFU (Pn(�); P ) � minfÆ; L̂�1	�1P (")g): (57)If the empirial proess indexed by FU is uniformly bounded in probabilitywith tail CFU (�), the estimates (56) and (57) may be ontinued by using (51)and, thus, lead to (54) and (55). 2The estimates (54) and (55) may be used to derive the speed of onvergenein probability of optimal values and solution sets, respetively. Clearly, the56



speed depends on the asymptoti behaviour of the tail CFU (") as "!1 andof the funtion 	P . For the situation of exponential tails, this is elaborated inRahev and R�omish (2002).Next we show how our analysis applies to two-stage stohasti programs withand without integrality requirements and to hane onstrained models. Itturns out that, under reasonable assumptions on all models, the empirialproess indexed by FU is uniformly bounded in probability with exponentialtails.Example 51 (linear hane onstrained models)A lass B of Borel sets of Rs is alled a Vapnik- �Cervonenkis (VC) lass ofindex r = r(B) if r is �nite and equal to the smallest n 2 N for whih no setof ardinality n+1 is shattered by B. B is said to shatter a subset f�1; : : : ; �lgof ardinality l in Rs if eah of its 2l subsets is of the form B \ f�1; : : : ; �lg forsome B 2 B. For VC lasses B it holds thatN("; f�B : B 2 Bg; L1(�; Q)) � K"�rfor any " > 0 and Q 2 P(�), and some onstant K > 0 depending only onthe index r (Theorem 2.6.4 in van der Vaart and Wellner (1996)).For any polyhedral set � � Rs and k 2 N the lass Bphk(�) is a VC lass,sine the lass of all losed half spaes is VC and �nite intersetions of VClasses are again VC. The orresponding lass of harateristi funtions ispermissible for P , sine the set of all polyhedra in Bphk(�) having verties atrational points in Rs plays the role of the ountable subset in the de�nition ofpermissibility. Hene, Theorem 49 applies and the empirial proess indexedby FU = f�H(x) : x 2 X \ lUg, where U is a bounded open set ontainingX�(P ), is uniformly bounded in probability with exponential tail CFU (") =K̂"r exp(�2"2) for some index r 2 N and some onstant K̂ > 0. For example,from Theorem 50 we obtain for eah " > 0 and n 2 N the estimateP� supx2X�U(Pn(�)) d(x;X�(P )) > "n� 12� � K̂"r exp(�2minfÆ; L̂�1	�1P (")g2):Example 52 (two-stage models without integrality)Let F0 be de�ned as in Setion 3.1 and let (A1) and (A2) be satis�ed. Then, foreah nonempty open and bounded subset U of Rm , the lass FU = fF0(x; �) :x 2 X \ lUg is a subset of L1(�; P ). FU is also permissible for P , sineany lass fF0(x; �) : x 2 Xg with X being a ountable and dense subset ofX\ lU may be used as the ountable subset of FU in the de�nition of permis-sibility. Proposition 22 implies that the funtion FFU (�) := Kmaxf1; k�k2g(� 2 �) is an envelope of FU for suÆiently large K > 0. Furthermore,due to the Lipshitz ontinuity property of F0(�; �) with Lipshitz onstantL̂maxf1; k�k2g (see Proposition 22), the uniform overing numbers of FU arebounded by the overing numbers of X \ lU (see Theorem 2.7.11 in van derVaart and Wellner (1996)). In partiular, for eah �nitely disrete measure57



Q 2 P(�) and with F̂ (�) := L̂maxf1; k�k2g (� 2 �) it holds thatN("kF̂kQ;r;FU ; Lr(�; Q)) � N(";X \ lU ;Rm) � K"�m; (58)for eah " > 0, r � 1 and some onstant K > 0 depending only on m andthe diameter of X \ lU . Using (58) for r = 1, Theorem 49 implies that FUis a P -Glivenko-Cantelli lass. If � is bounded, FU is uniformly bounded and,using (58) for r = 2, Theorem 49 implies that the empirial proess indexedby FU is uniformly bounded in probability with exponential tail.Example 53 (mixed-integer two-stage models)Let F0 be de�ned as in Setion 3.2 and let (B1){(B3) be satis�ed and � bebounded. Then, for eah nonempty open and bounded subset U of Rm , thelass FU = nF0(x; �) = �Xj=1(h; xi+ �(h(�)� T (�)x)��Rj;x(�) : x 2 X \ lUois a subset of L1(�; P ). This representation follows from Proposition 34 ifR > 0 is hosen suÆiently large suh that f� 2 � : kh(�)�T (�)xk1 > Rg = ;for eah x 2 X \ lU . For eah X \ lU the sets �Rj;x (j = 1 : : : ; �) form adisjoint partition of � into Borel sets whose losures are in Bphk(�) for somek 2 N . Furthermore, the funtion �(h(�) � T (�)x) is Lipshitz ontinuouson eah of these sets with a uniform onstant L1 > 0. Let F j0 (x; �) denotea Lipshitz extension of the funtion h; xi + �(h(�) � T (�)x) from �Rj;x toR by preserving the Lipshitz onstant L1 (j = 1; : : : ; �). Furthermore, letF jU := fF j0 (x; �) : x 2 X\ lUg and GjU := f��Rj;x : x 2 X\ lUg (j = 1; : : : ; �).Now, we use a permanene property of the uniform overing numbers (f.Setion 2.10.3 in van der Vaart and Wellner (1996)). Let Q 2 P(�) be disretewith �nite support. Then the estimateN("C0;FU ; L2(�; Q)) � �Yj=1N("Cj;F jU ; L2(�; Qj))N("Ĉj;GjU ; L2(�; Q̂j)) (59)is valid, where C0, Cj > 1, Ĉj, j = 1; : : : ; �, are ertain onstants and Qj, Q̂j,j = 1; : : : ; �, ertain disrete measures having �nite support. The onstantsdepend on the bounds of the uniformly bounded lasses F jU and GjU , j =1; : : : ; �. Sine the latter lasses satisfy the ondition (53) (see Examples 51 and52), the estimate (59) implies that FU satis�es (53), too. Hene, we obtain thesame estimates for mixed-integer two-stage models as in Example 52 for two-stage models without integrality requirements and in Example 51 for linearhane onstrained models. 58



Example 54 (newsboy ontinued)Aording to Example 15, the lass FU is of the form FU = fF0(x; �) = (r �)x+ maxf0; x� �g : x 2 X \ lUg with envelope FFU (�) = r supX\ lU jxj+j�j and a uniform Lipshitz onstant . Hene, FU is a subset of L1(�; P ) ifR� j�jdP (�) = Pk2N �kk <1. As in Example 52 we obtainN(";FU ; L2(�; Q)) � N(";X \ lU ;Rm) � C"�mfor eah �nitely disrete measure Q 2 P(�) and, hene, Theorem 50 providesthe rate of onvergene of the solution sets X�U(Pn(�)) of (4) with linear 	P .4.2 Senario Generation and RedutionMost of the numerial solution approahes for stohasti programs resort todisrete approximations of the underlying probability measure P . Several ap-proahes have been developed for the generation or onstrution of disrete ap-proximations and are in use for solving applied stohasti programming models(see the overview by Dupa�ov�a et al. (2000) and the referenes therein). Thequantitative stability results of Setion 2.3 suggest another approah, namely,to onstrut approximations for the original measure P suh that they arelose to P with respet to the orresponding probability (pseudo) metri. LetF be a set of measurable funtions from � to R suh that the stohastiprogramming model (1) is stable in the sense of the Theorems 5 and 9 withrespet to the (pseudo) metridF(P;Q) = supF2F ��� Z� F (�)d(P �Q)(�)���or some other distane bounding dF(P;Q) from above. This means that theoptimal values and the solution sets of (1) behave ontinuously at P whenperturbing P with respet to dF .Then it is a natural requirement to onstrut approximate probability dis-tributions suh that they are best approximations to P in the sense of dF .For instane, the priniple of optimal senario generation with a presribednumber of senarios may be formulated as follows:Given P 2 P(�) and M 2 N , determine a disrete probability measureQ� 2 P(�) having M senarios suh thatdF(P;Q�) = minndF�P; MXj=1 qjÆ�j� : MXj=1 qj = 1; qj � 0; �j 2 �; j = 1; : : : ;Mo:59



Further onstraints ould be inorporated into the minimization problem, e.g.,onstraints implying that the senarios exhibit a tree struture. Unfortunately,it seems to be hopeless to solve this problem for general measures P , fun-tion lasses F , supports �, and large numbers M of senarios. However, itis of ourse a hallenging problem to develop approahes for solving the bestapproximation problem for more spei� situations, like e.g. for the unon-strained ase � = Rs , disrete measures P (involving very many senarios)and funtion lasses that are relevant in Setion 3. An approah for solvingthe best approximation problem in ase of � = Rs and F = F1(Rs) is devel-oped in Pug (2001).Another important problem onsists in reduing a given disrete probabilitymeasure P = PNi=1 piÆ�i with a (very) large number N of senarios to a mea-sure ontaining n of the original senarios with n << N . Similarly as in aseof optimal senario generation, the problem of optimal senario redution maybe formulated in the formminndF� NXi=1 piÆ�i ;Xj2J qjÆ�j� : J � f1; : : : ; Ng; jJ j = n;Xj2J qj = 1; qj � 0o; (60)i.e., as a nonlinear mixed-integer program. Sine its objetive funtion is dif-�ult to ompute for general lasses F , solution methods for (60) are a hal-lenging task. However, in the speial ase that F = Fp(�), for some p � 1,the objetive funtion of (60) turns out to be the dual optimal value of thestandard network ow problem (see Rahev and R�ushendorf (1998))minn NXi=1j2J p(�i; �j)k�i � �jk�ij : �ij � 0; NXi=1 �ij �Xj2J �ij = qj � pi; 8i; jo;where p(�i; �j) = maxf1; k�ik; k�jkgp�1, i; j = 1; : : : ; N , and, hene, it is apolyhedral funtion of q. Furthermore, in ase of F = F1(�) problem (60)simpli�es onsiderably.Proposition 55 Given J � f1; : : : ; Ng we haveminndF1(�)� NXi=1 piÆ�i ;Xj2J qjÆ�j� :Xj2J qj = 1; qj � 0o =Xi62J piminj2J k�i � �jk:Moreover, the minimum is attained at �qj = pj + Pi2Jj pi; for eah j 2 J, whereJj := fi 62 J : j = j(i)g and j(i) 2 argminj2J k�i � �jk for eah i 62 J.The proposition provides an expliit formula for the redistribution of the givenprobabilities pi, i = 1; : : : ; N , to the senarios with indies in J . For its proof60



we refer to Theorem 2 in Dupa�ov�a et al. (2003). Due to Proposition 55 theoptimal senario redution problem (60) in ase of F = F1(�) takes the form:Given P 2 P(�) and n 2 N , determine a solution ofminnXi62J piminj2J k�i � �jk : J � f1; :::; Ng; jJ j = no (61)and ompute the optimal weights �q aording to the redistribution rule inProposition 55. Notie that problem (61) means that the set f1; : : : ; Ng has tobe overed by a subset J of f1; : : : ; Ng and by f1; : : : ; NgnJ suh that jJ j = nand the over has minimal ost Pi62J piminj2J k�i � �jk. Hene, problem (61)is of set-overing type and, thus, NP-hard. However, the spei� strutureof the objetive funtion allows the design of fast heuristi algorithms forits approximate solution (see Dupa�ov�a et al. (2003), Heitsh and R�omish(2003)). Depending on the size of the number n of remaining senarios, thetwo basi ideas are bakward redution and forward seletion, respetively. Inthe bakward redution heuristi an index set J = fl1; : : : ; lng is determinedsuh that li 2 arg minl2J [i�1℄r Xk2J [i�1℄r nflg pk minj 62J [i�1℄r nflg k�k � �jk (i = 1; : : : ; n);where J [0℄r = f1; : : : ; Ng, J [i℄r = J [i�1℄r n flig, i = 1; : : : ; n. In the forwardseletion heuristi the index set J = fl1; : : : ; lng is hosen by an oppositestrategy suh thatli 2 arg minl 62J [i�1℄s Xk 62J [i�1℄s [flg pk minj2J [i�1℄s [flg k�k � �jk (i = 1; : : : ; n)holds, where J [0℄s = ;, J [i℄s = J [i�1℄s [ flig, i = 1; : : : ; n. We refer to Heitshand R�omish (2003) for a disussion of the omplexity of both heuristis, forimplementation issues and enouraging numerial results.5 Bibliographial NotesThe beginnings of approximation and estimation results in stohasti pro-gramming date bak to the 1970-ies and the papers by Kall (1974) (see alsothe monograph Kall (1976)), Marti (1975, 1979) and Olsen (1976) on ap-proximations, and the work of Ka�nkov�a (1977) and Wets (1979) on empirialestimation in stohasti programming. Surveys on stability were publishedby Dupa�ov�a (1990) and Shultz (2000). The notion of stability of stohasti61
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