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Abstract

The behaviour of stochastic programming problems is studied in case of the un-
derlying probability distribution being perturbed and approximated, respectively.
Most of the theoretical results provide continuity properties of optimal values and
solution sets relative to changes of the original probability distribution, varying in
some space of probability measures equipped with some convergence and metric,
respectively. We start by discussing relevant notions of convergence and distances
for probability measures. Then we associate a distance with a stochastic program
in a natural way and derive (quantitative) continuity properties of values and solu-
tions by appealing to general perturbation results for optimization problems. Later
we show how these results relate to stability with respect to weak convergence and
how certain ideal probability metrics may be associated with more specific stochas-
tic programs. In particular, we establish stability results for two-stage and chance
constrained models. Finally, we present some consequences for the asymptotics of
empirical approximations and for the construction of scenario-based approximations
of stochastic programs.

Key words: Stochastic programming, stability, weak convergence, probability
metric, Fortet-Mourier metric, discrepancy, risk measure, two-stage, mixed-integer,
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1 Introduction

Stochastic programming is concerned with models for optimization problems
under stochastic uncertainty that require a decision on the basis of given prob-
abilistic information on random data. Typically, deterministic equivalents of
such models represent finite-dimensional nonlinear programs whose objectives
and/or constraints are given by multivariate integrals with respect to the un-
derlying probability measure. At the modelling stage these probability mea-
sures reflect the available knowledge on the randomness at hand. This fact
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and the numerical challenges when evaluating the high-dimensional integrals
have drawn great attention to the stability analysis of stochastic programs
with respect to changes in the underlying probability measure. In this chap-
ter we present a unified framework for such a stability analysis by regarding
stochastic programs as optimization problems depending on the probability
measure varying in some space of measures endowed with some distance. We
give stability results both for general models and for more specific stochastic
programs like two-stage and chance constrained models and include most of
the proofs. Moreover, we discuss some conclusions about specific approxima-
tion procedures for stochastic programs.

To specify the stochastic programming models for our analysis, we recall that
many deterministic equivalents of such models are of the form

min{/Fo(x,f)dP(f) Lz e X,/Fj(x,g)dP(ﬁ) <0j=1..d), (1)

where the set X C R™ is closed, = is a closed subset of R®, the functions
F; from R™ x E to the extended reals R are random lower semicontinuous
functions for 7 =0, ..., d, and P is a Borel probability measure on =.

The set X is used to describe all constraints not depending on P, and the set
= contains the supports of the relevant measures and provides some flexibil-
ity for formulating the models and the corresponding assumptions. We recall
that F} is a random lower semicontinuous function if its epigraphical mapping
¢ — epi Fj(-,§) == {(z,r) € R" xR : Fj(z,§) < r} is closed-valued and
measurable, which implies, in particular, that Fj(-,§) is lower semicontinuous
for each ¢ € E and Fj(z, ) is measurable for each x € R™.

Although our stability analysis mainly concerns model (1) and its specifica-
tions, we also provide an approach to the stability of more general models that
contain risk functionals and are of the form

min {F (P[Fo(z, )] ") 12 € X, F;(P[Fy(x, )] ) < 0,5 =1,..d},  (2)

where the risk functionals F;, j = 0,...,d, map from suitable subsets of the
set P(R) of all probability measures on R to R. In general, the functionals
F; depend on a measure in P(R) in a more involved way than the expecta-
tion functional F,(G) := [z rdG(r), for which we have F,(P[Fy(z,-)]!) =
JerdP[Fy(z,)] Y(r) = [z Fo(z,&)dP(€). Another example is the variance
functional F,(G) = [ r2dG(r) — (fzrdG(r))?. We also refer to the value-
at-risk functional in Example 1 and to the examples in Section 2.4.

We illustrate the abstract models by the classical newsboy example (see e.g.
Dupacovd (1994), Example 1 in Ruszczyniski and Shapiro (2003)).

Example 1 (newsboy problem)
A newsboy must place a daily order for a number z of copies of a newspaper.



He has to pay r dollars for each copy and sells a copy at ¢ dollars, where 0 <
r < c¢. The daily demand ¢ is random with (discrete) probability distribution
P € P(N) and the remaining copies y(§) = max{0, z — £} have to be removed.
The newsboy might wish that the decision x maximizes his expected profit or,
equivalently, minimizes his expected costs, i.e.,

/Fg(x, £)dP(¢) = /[(r — &)z + emax{0,z — £}]dP(€)

R
=(r—c)z+c) mmax{0,z — k}
keN
:rx—chﬂk—cZﬂkk
keN keN
k>z k<z

where 7 is the probability of demand & € N. The unique integer solution is
the maximal £ € N such that 32, m; > . Another possibility is that the
newsboy wishes to maximize his profit and, at the same time, to minimize
his risk costs cs where s bounds the number y(&) of copies that remain with
probability p. The minimal s corresponds to his value-at-risk at level p. The
resulting stochastic program reads

min {(r —c)z+cinf{s e Ry : P(y(§) <s) > p}}

zeRy

The latter program is equivalent to the chance constrained model

min r—c)r+cs: E T > D 3
(2,5)€R?. {( ) ps k } ( )
z—s<k

whose unique integral solution is (k,0) with the maximal &£ € N such that
Yo, m > p. Hence, the minimum risk solution is more pessimistic than the
minimal expected cost solution if £ < p < 1, i.e., if the newsboy wants to be
sure with high probability that no copies of the newspaper remain.

However, the inherent difficulty of all these approaches is that the newsboy
does not know the probability distribution P of the demand and has to use
some approximation instead. Hence, he is interested in the stability of his deci-
sion which means that it doesn’t vary too much for small perturbations of the
data. For instance, his decision might be based on n independent identically
distributed observations &, i = 1,...,n, of the demand, i.e., on approximat-
ing P by the empirical measure P, (cf. Section 4.1) and, in case of minimal
expected costs, on solving the approximate problem

min {(r—c)x—i—%imax{o,x—fi}}. (4)

zeRy i—1



Of course, this approach is only justified if some optimal solution x, of the
approximate problem (4) is close to some original solution for sufficiently large
n. Both variants of the newsboy problem represent specific two-stage and
chance constrained stochastic programs, respectively. Their discussion will be
continued in the Examples 15, 19 and 54.

Throughout we will denote the set of all Borel probability measures on = by
P(Z), the feasible set of (1) by X(P), the optimal value by J(P) and the
(e-approximate) solution set of (1) by X*(P) and X*(P), respectively, i.e.,

X(P):={reX !F](x,g)dp(g) <0.j=1,..d}. (5)
9(P) :mf{_/FO?m,g)dP(g) .z € X(P)}. (6)
X:(P):={a e:X(P) !Fo(x,g)dp(g) < O(P)+<} (e 2 0). (7)
X*(P):=X;(P) = {x ; X(P): /Fo(m, JAP(&) = 9(P)} (8)

In this chapter, stability mostly refers to continuity properties of the optimal
value function 9(-) and the (e-approximate) solution-set mapping X7 (-) at P,
where both J(-) and X*(-) are regarded as mappings given on a set of probabil-
ity measures endowed with a suitable distance. The distance has to be selected
such that it allows to estimate differences of objective and constraint function
values, and, that it is optimum adapted to the model at hand. Fortunately,
there exists a diversity of convergence notions and metrics in probability theory
and statistics that address different goals and are based on various construc-
tions (see, e.g., Rachev (1991), van der Vaart (1998)). We will use so-called
distances with (-structure that are given as uniform distances of expectations
of functions taken from a class F of measurable functions from = to R, i.e.,

dr(P,Q) = sup| [ F()aP(e) — [ F(£)dQ(©)] )

FeF

In a first step we choose the class F as the set {Fj(z,:) 1z € X N clld,j =
0,...,d}, where U is a properly chosen open subset of R™, and derive some
(qualitative and quantitative) stability results in the Sections 2.2 and 2.3. Such
a distance forms a kind of minimal information (m.i.) metric for the stability
of (1). Some of the corresponding results (e.g. the Theorems 5 and 9) work
under quite weak assumptions on the underlying data of (1). In particular,
if possible differentiability or even continuity assumptions on the functions
z — [z Fj(z,§)dP(&) are avoided for the sake of generality. The approach is
inspired by general perturbation results for optimization problems in Klatte



(1987,1994), Attouch and Wets (1993) and in the monographs by Bank et al.
(1982), Rockafellar and Wets (1998) and Bonnans and Shapiro (2000).

Since the m.i. metrics are often rather involved and difficult to handle, we
look, on the one hand, for implications of the general qualitative result on sta-
bility with respect to the topology of weak convergence. On the other hand,
we look for another metric having (-structure by enlarging the class F and,
hence, bounding the m.i. metric from above. Our strategy for controlling this
enlargement procedure consists in adding functions to the enlarged class that
share the essential analytical properties with some of the functions Fj(z, ). As
a result of this process we obtain ideal metrics that are optimum adjusted to
the model (1) or to a whole class of models and that enjoy pleasant properties
(e.g., a duality and convergence theory). In Section 3, we show for three types
of stochastic programs how such ideal metrics come to light in a natural way
by revealing the analytical properties of the relevant functions Fj(x,-). At the
same time, we obtain quantitative stability results for all models.

For two-stage models containing integer variables and for chance constrained
models, the relevant functions are discontinuous and their ideal classes contain
products of (locally) Lipschitzian functions and of characteristic functions of
sets describing regions of continuity (see Sections 3.2 and 3.3).

When using stability results for designing or analyzing approximation schemes
or estimation procedures, further properties of the function classes F and of
the metrics may become important. For example, we derive covering num-
bers of certain function classes and discuss their implications on probabilistic
bounds for empirical optimal values and solution sets.

The chapter is organized as follows. First Section 2 contains some prerequisites
on convergences and metric distances of probability measures. This is followed
by our main qualitative stability result (Theorem 5) and its conclusions on the
stability with respect to weak convergence of probability measures. We con-
tinue with the quantitative stability results for solution sets of (1) (Theorems
9 and 12) and a Lipschitz continuity result (Theorem 13) for e-approximate
solution sets of convex models. We add a discussion of how to associate ideal
metrics with more specific stochastic programs. Section 2 is finished by dis-
cussing the challenges and by presenting first results of a perturbation analysis
for stochastic programs containing risk functionals (2). In Section 3 we con-
sider linear two-stage, mixed-integer two-stage and linear chance constrained
stochastic programs and present various perturbation results for such models.
The potential of our general perturbation analysis is explained in Section 4 for
two types of approximations of the underlying probability measure P. First,
we consider empirical measures as nonparametric estimators of P and derive
asymptotic statistical properties of values and solutions by using empirical pro-
cess theory. Secondly, we discuss the optimal construction of finitely discrete
measures based on probability metrics and sketch some results and heuristic
algorithms for the optimal reduction of discrete measures. We conclude the
chapter with some bibliographical notes on the relevant literature.



2 General Stability Results
2.1 Convergences and Metrics of Probability Measures

Let us consider the set P(Z) of all Borel probability measures with support
contained in a closed subset = of R*. We will endow the set P(Z) or some of
its subsets with different convergences and distances, which are adapted to the
underlying stochastic program or to a whole class of stochastic programs. The
classical convergence concept in probability theory is the weak convergence of
measures in P(Z) (see e.g. Billingsley (1968) and Dudley (1989)). A sequence
(P,) in P(2) is said to converge weakly to P € P(Z), shortly P, - P, if

n—oo

lim [ g(&)aP.(&) = [ 9(€)dP(¢) (10)

holds for each ¢ in the space Cy,(Z) of bounded continuous functions from =
to R. It is well known that the topology 7, of weak convergence is metrizable
(e.g. by the bounded Lipschitz metric (11)) and that P, — P holds iff the
sequence of probability distribution functions of P, converges pointwise to
the distribution function Fp of P at all continuity points of Fp. Another
important property of weak convergence is the continuous mapping theorem:
If P, =5 P and g : £ — R is measurable, bounded and P-continuous, i.e.,
P({{ € E: g is not continuous at {}) = 0, we have (10).

Most of the distances on (subsets of) P(Z) that will be considered are of the
form dx in (9), where F is a class of measurable functions from Z to R, and are
defined on the set Pr := {Q € P(E) : suppcr| Jz F(§)dQ(§)| < oo}, where
dr is finite. A uniform distance of the form (9) is called a distance having
¢-structure (see Zolotarev (1983) and Rachev (1991)). Clearly, dr does not
change if the set F is replaced by its convex hull. It is nonnegative, symmetric
and satisfies the triangle inequality, i.e., a pseudometric on Pz. dr is a metric
if the class F is rich enough to preserve that dz(P, Q) = 0 implies P = Q.
Next we list some important examples of distances having (-structure, where
the classes F range from (locally) Lipschitz continuous functions to piecewise
constant functions with a prescribed structure of discontinuity sets.

Example 2 (metrics with (-structure)

(a) For p = 0 and p > 1 we introduce classes F,(E) of locally Lipschitz
continuous functions that increase with p

(1]

Tl

)i ={F:E=R:|F() - F(E)| < (&6 — ||, v, & € B,
Fol 1

)i=F1(E)N{F e Cy(3): sup [P <1},

(1]



Here, || - || denotes some norm on R® and ¢, (€. €) := max{1, |||, ||€] }?~!
for all £, € = and p > 1 describes the growth of the local Lipschitz
constants. The corresponding distance with (-structure for p = 0 is the
bounded Lipschitz metric (Section 11.3 of Dudley (1989))

BP.Q) = s | / P©dPE) - [F©dQ©|

F€.7:o

and metrizes the weak convergence on P(Z). For p = 1 we arrive at the
Kantorovich metric

G(P.Q) = s | / F©aP) - [ F©dQe) (12

FG]—'

and for p > 1 at the p-th order Fortet-Mourier metrics (see Fortet and
Mourier (1953) and Rachev (1991))

G(P.Q)i= sup_| / F©aPe) - [ F©aQe)  (13)
 FeR -

on the set P,(E) = {Q € P(E) : [2]|&|[PdQ({) < oo} of probability
measures having finite p-th order absolute moments. It is known that a
sequence (P,) converges to P in (P,(Z),(,) iff it converges weakly and

lim [ lglrar.©) = [ Ielrap(e)
holds. Furthermore, the estimate

| [lirap(e) - [li€lrdQe)] < 6 (P.Q)

is valid for each p > 1 and all P, € P,(Z) (Section 6 in Rachev (1991)).
Hence, closeness with respect to (, implies the closeness of g-th order
absolute moments for ¢ € [1, p].

Let B denote a set of Borel subsets of = and consider the class Fpz :=
{xB : B € B} of their characteristic functions x  taking the value 1 if the
argument belongs to B and 0 otherwise. The distance with (-structure
generated by Fp is defined on P(E). It takes the form

ap(P, Q) := dry(P,Q) = sup |P(B) — Q(B)|
BeB
and is called B-discrepancy. The following instances play a special role in
the context of stability in stochastic programming:
(b1) Let = be convex and B.(Z) the set of all closed convex subsets of =.
(b2) Let = be polyhedral and By, (Z) the set of all polyhedra being sub-
sets of = and having at most & faces.



(b3) Let 2 =R* and By(Z) be the set of all closed half-spaces in R®.
(b4) Let 2 =R* and Bk (Z) := {(—00,] : £ € R*} be the set of all cells.
The corresponding distances are the isotrope discrepancy a., the polyhe-
dral discrepancy oy, , the half-space discrepancy oy, and the Kolmogorov
metric. The latter metric coincides with the uniform distance of distribu-
tion functions on R* and is denoted by dx, i.e.,

dK(P7 Q) - aBK(P’ Q) = sup |P((—OO,§]) - Q((_Ooaf]”

€ERs

A sequence (P,) converges to P in P(Z) with respect to agp, where B is
a class of closed convex subsets of Z, iff (P,) converges weakly to P and
P(bd B) = 0 holds for each B € B (with bd B denoting the boundary of
the set B).

The examples reveal some relations between the weak convergence of proba-
bility measures and their convergence with respect to a uniform metric dz for
some classes F. Such relations have already been explored more systematically
in the literature. A class F of measurable functions from = to R is called a
P-uniformity class if

lim dz(P,, P) =0 (14)

n—oo

holds for each sequence (P,) that converges weakly to P. Necessary conditions
for F to be a P-uniformity class are that F is uniformly bounded and that
every function in F is P-continuous. Sufficient conditions are given in Billings-
ley and Topsge (1967), Topsge (1967,1977) and Lucchetti et al. (1994). For
example, F is a P-uniformity class if it is uniformly bounded and it holds that
P({¢ € E: F is not equicontinuous at {}) = 0 (Topsge (1967)). Unless F is
uniformly bounded, condition (14) cannot be valid for any sequence (P,) that
converges weakly to P. In that case, a uniform integrability condition with
respect to the set {P, : n € N} has to be additionally imposed on F. The set
F is called uniformly integrable with respect to {P, : n € N} if

Jim supsup [ |F(©)[dP.(€) = 0. (15)
—00 neN FG}-F(g)>R

Note that condition (15) is satisfied if the moment condition

sup sup [ |[F(&)['TdP,(£) < oo (16)
neN Fer )

holds for some £ > 0 (Section 5 in Billingsley (1968)). Then the condition
(14) is valid for any sequence (P,) that converges weakly to P in Pz and has



the property that F is uniformly integrable with respect to {P, : n € N}
if the set F* := {[F]|r(:) := max{—R,min{F(-),R}} : F € F} of trun-
cated functions of F is a P-uniformity class for large R > 0. Since the
class F® is uniformly bounded, it is a P-uniformity class if P({¢{ € = :
F® is not equicontinuous at £}) = 0. Sufficient conditions for classes of char-
acteristic functions of convex sets to be P-uniformity classes are mentioned in
Example 2(b).

2.2 Qualitative Stability

Together with the original stochastic programming problem (1) we consider a
perturbation @@ € P(Z) of the probability distribution P and the perturbed
model

min{ [ Fo(z,)dQ(€) v € X, [ Fj(2,)dQ(§) <0, =1....d}  (17)

under the general assumptions imposed in Section 1. To fix our setting, let
|| - || denote the Euclidean norm and (-, -) the corresponding inner product. By
B we denote the Euclidean unit ball and by d(z, D) the distance of z € R™
to the set D C R™. For any nonempty and open subset ¢/ of R™ we consider
the following sets of functions, elements and probability measures

Fu:=A{Fj(z,"):xe XnNncl,j=0,..4d},
%(Q)={r e X0 dl: [ Fiz,8dQ€) <0.j=1,...d} (QePr(3)),

Pr,(E):= {Q €EPE): —0 < /xel)?rgrlBF (x,€)dQ(&) for each r > 0 and

sup [ Fj(z,€)dQ(£) < oo for each j =0, ..., d},

zeXnelld S

and the pseudometric on Pg, := Px,(E)

dr (P.Q)= swp | [ F(©)(P - Q)(d¢)| = swp_

rery ' 2 j=0,.,

Fy(w, €)(P - Q)(dg) .

Thus, dz, is a distance of probability measures having (-structure. It is non-
negative, symmetric and satisfies the triangle inequality (see also Section 2.1).
Our general assumptions and the Fatou Lemma imply that the objective func-
tion and the constraint set of (17) are lower semicontinuous on X and closed



in R™, respectively, for each @ € Pz, (Z). Our first results provide further
basic properties of the model (17).

Proposition 3 Let U be a nonempty open subset of R™. Then the mapping
(z,Q) — [z Fj(z,£)dQ(&) from (X N clU) x (Pg,,dx,) to R is sequentially
lower semicontinuous for each j =0, ...,d.

Proof: Let j =0,....d, z € XN clU, Q € Pg,, (x,) be a sequence in X N clU
such that z,, — =z, and (Q,) be a sequence converging to @ in (Pg,.dgz,).
Then the lower semicontinuity of Fj(-, ) for each £ € E and the Fatou Lemma
imply the estimate

[ Fy(.€)dQ(€) < lim inf / Fy (2, €)dQ(€)

<11m1nf {d}'u Q Qn xn,f Qn dé.)}

m \

= lim inf Fj(2,, §)Qn(dE). -

Proposition 4 Let U be a nonempty open subset of R™. Then the graph of
the set-valued mapping Q — Xy (Q) from (Pg,,dg,) into R™ is sequentially
closed.

Proof: Let (Q,) be a sequence converging to @ in (Pg,,dg,) and (z,) be a
sequence converging to x in R™ and such that z,, € & (Q,) for each n € N.
Clearly, we have z € X N clU. For j € {1, ..., d} we obtain from Proposition 3
that the estimate

[ Fi(.6)dQ(€) < limint [ F(e,,©)Qu(d€) <0

and, thus, z € A,(Q) holds. O

To obtain perturbation results for (1), a stability property of the constraint
set X'(P) when perturbing the probabilistic constraints is needed. Consistently
with the general definition of metric regularity for multifunctions (see, e.g.,
Rockafellar and Wets (1998)), we consider the set-valued mapping y — X, (P)
from R? to R™, where

X,(P) = {ze X [Fie.aPE) <yj.j=1...d}

and say that its inverse z — X, 1(P) = {y e R? : x € X,(P)} from R™ to R?
is metrically reqular at some pair (7,0) € R™ x R? with 7 € X(P) = X,(P)

10



if there are constants a > 0 and ¢ > 0 such that it holds for all z € X and

.....

d(z, X,(P)) < a max maX{O,/Fj(x,f)dP(f) - yj} .

.7:17"'7d

To state our results we will need localized versions of optimal values and
solution sets. We follow the concept proposed in Robinson (1987) and Klatte
(1987), and set for any nonempty open set A/ C R™ and any @) € Pz,

9u(Q) =inf { [ Fo(.£)dQ(¢) 1w € Xu(Q)},
X(@) ={z € 2u(Q): [ Rl ©)dQ(€) = u(Q)}.

A nonempty set S C R™ is called a complete local minimizing (CLM) set of
(17) relative to U if Y C R™ is open and S = X;(Q) C U. Clearly, CLM sets
are sets of local minimizers, and the set X*(Q) of global minimizers is a CLM
set with X*(Q) = X}5(Q) if X*(Q) C U.

Now, we are ready to state the main qualitative stability result.

Theorem 5 Let P € Pr, and assume that

(i) X*(P) is nonempty and U C R™ is an open bounded neighbourhood of
X*(P),
(ii) if d > 1, the function x — [z Fy(z,&)dP(§) is Lipschitz continuous on
XnNcll,
(iii) the mapping x — X, *(P) is metrically reqular at each pair (z,0) with
z € X*(P).

Then the multifunction X}, from (Pg,,dx,) to R™ is upper semicontinuous at

P, i.e., for any open set O 2 Xj;(P) it holds that X};(Q) C O if dg,(P,Q) is
sufficiently small. Furthermore, there are positive constants L and é such that

[9(P) = 0u(Q)| < Ldz, (P, Q) (18)

holds and X;,(Q) is a CLM set of (17) relative to U whenever @ € Px, and
dr,(P,Q) < §. In case d = 0, the estimate (18) is valid with L = 1 and for

any Q € Pg,.

Proof: We consider the (localized) parametric optimization problem

min {/(z,Q) = [ Fulz,€)dQ(&) : @ € 4(Q)}.

11



where the probability measure @) is regarded as a parameter varying in the
pseudometric space (Px,,dz,). Proposition 4 says that the graph of the mul-
tifunction Ay, from Pz, to R™ is sequentially closed. Hence, A, is upper semi-
continuous on Py, , since clUf is compact. Furthermore, we know by Proposi-
tion 3 that the function f from (XN clU)x P, to R is sequentially lower semi-
continuous and finite. Let us first consider the case of d = 0. Since f(+,Q) is
lower semicontinuous, X7, (Q) is nonempty for each @ € Pz,. Let 2, € X*(P),
Q) € Pg, and & € X};(Q). Then the estimate

S d.7-'u (Pa Q)

holds. This implies that the multifunction X}, from (Px,,dz,) to R™ is closed
at P and, thus, upper semicontinuous at P.

In case d > 1, condition (ii) implies that the function f is even continuous
on (X N clU) x Pr,. Then we use Berge’s classical stability analysis (see
Berge (1963) for topological parameter spaces and Theorem 4.2.1 in Bank et
al. (1982) for metric parameter spaces) and conclude that X}, is upper semi-
continuous at P if Ay, satisfies the following (lower semicontinuity) property
at some pair (z, P) with Z € X*(P):

Xy(P)N B(z,¢) C Ay(Q) + adg,(P,Q)B whenever dg,(P,Q) <&, (19)

where a > 0 is the corresponding constant in condition (iii), and & > 0 is
sufficiently small. To establish property (19), let Z € X*(P), and a = a(Z) > 0,
e = (&) > 0 be the metric regularity constants from (iii). First we observe that
the estimate [z F;(z,£)(Q — P)(d) < dx, (P, Q) holds for any z € X N clU,
j€{l,...,d} and Q € Pz,. Next we choose & = &(z) such that 0 < & < ¢ and
T+ (a+ 1)eB C U. Hence, we have x + aéB C U for any € T + ¢B. Let
Q) € P, be such that dg, (P, Q) < &. Putting y; = —dg,(P,Q), j = 1,....d,
the above estimate implies that X} (P)N cli C Ay (Q). Due to the choice of &
we have d(z, X,(P)N clU) = d(z, X,(P)) for any z € Ay (P)N (T +£B), and,
hence, the metric regularity condition (iii) yields the estimate

d(z, X(Q)) < d(z, X,(P) N clUd) = d(z. X, (P))
<a ‘maxdmaX{O,/Fj(x,ﬁ)dP(ﬁ) +dg, (P, Q)}

Jj=1,..,
S a d]-'u (P7 Q)a

which is equivalent to the property (19). Hence, Xj; is sequentially upper
semicontinuous at P and there exists a constant 0 > 0 such that X7,(Q) C U
for any Q € Pg, with dg, (P, Q) < ¢. Thus X};(Q) is a CLM set of (17) relative

12



to U for each such Q.
Moreover, for any = € &, (Q) N (Z + £B) (iii) implies the estimate

d(z, Xy(P)) =d(z, Xo(P) N clLl) = d(z, Xy (P))
<a max max /F z,€) dP(f)}

j=1,...,

<a max max {0,
j=1,...d

m \ m

Fy(2,)aP(E) - [ Fi(x,€)dQ(¢)}

Sadfu(PaQ)a

which is equivalent to the inclusion

X (Q)N (T +€B) C Ay (P)+adg,(P,Q)B.

Since X*(P) is compact, we employ a finite covering argument and arrive
at two analogues of both inclusions, where a neighbourhood N of X*(P)
appears instead of the balls Z 4+ ZB in their left-hand sides, and a uniform
constant a appears instead of a in their right-hand sides. Moreover, there
exists a uniform constant é > 0 such that the (new) inclusions are valid
whenever dz, (P, Q) < é. Now, we choose § > 0 such that § < min{é, ¢} and
X3 (Q) C N whenever dz,(P,Q) < 0.

Let @ € Pg, be such that dg,(P,Q) < ¢ and & € X};(Q) C A(Q) N
Then there exists an element & € Ay, (P) satisfying ||z — Z|| < ad]:u( Q)
obtain

I(P) < f(z.P)< f(z.Q) + |f(z,P) — f(7,Q)]

<Vu(Q) +f(z, P) — f(z, P)|+ |[f (2, P) = f(2,Q)]
<0u(Q) + Lyl|7 — 7| + dz, (P, Q)
<0u(Q) + (Lya+1)dz, (P, Q),

where Ly > 0 denotes a Lipschitz constant of f(., P) on X N clU. For the
converse estimate, let Z € X*(P) and ) € Pg, be such that dz, (P, Q) < d.
Then there exists 7 € X,(Q) such that ||z — z|| < adg, (P, Q). We conclude

Ju(Q) < f(7,Q) <I(P) +[f(%.Q) — f(z, P)|

and arrive analogously at the desired continuity property of 9, by putting
L=~Lia+1. O

The above proof partly parallels arguments in Klatte (1987). The most re-
strictive requirement in the above result is the metric regularity condition
(iii). Example 40 in Section 3.3 provides some insight into the necessity of
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condition (iii) in the context of chance constrained models. Criteria for the
metric regularity of multifunctions are given e.g. in Section 9G of Rockafellar
and Wets (1998) and in Mordukhovich (1994b). Here, we do not intend to
provide a specific sufficient condition for (iii), but recall that the constraint
functions [z F;(-,£)dP(€¢) (j = 1,...,d) are often nondifferentiable or even
discontinuous in stochastic programming. In Section 3.3 we show how metric
regularity is verified in case of chance constrained programs.

Although Theorem 5 also asserts a quantitative continuity property for opti-
mal values, its essence consists in a continuity result for optimal values and
solution sets. As a first conclusion we derive consequences for the stability of
(1) with respect to the weak convergence of probability measures (cf. Section
2.1). To state our main stability result for (1) with respect to the topology
of weak convergence, we need the classes FF of truncated functions of JF, for
R > 0 and the uniform integrability property of F, (see Section 2.1).

Theorem 6 Let the assumptions of Theorem 5 for (1) be satisfied. Further-
more, let F be a P-uniformity class for large R > 0 and (P,) be a sequence
in Pr, that is weakly convergent to P.

Then the sequence (Uy(P,)) converges to 9(P), the sets X};(P,) are CLM sets
relative to U for sufficiently large n € N and

lim sup d(z,X*(P)))=0

"0 pe X, (Pn)

holds if Fy is uniformly integrable with respect to {P, : n € N}.

Proof: Let (P,) be a sequence in Px, that converges weakly to P and has the
property that F, is uniformly integrable with respect to {P, : n € N}. Then
the assumption implies (see Section 2.1)

lim dg, (P,, P) =0

n—oo

and, hence, the result is an immediate consequence of Theorem 5. O

Compared to Theorem 5, the stability of (1) with respect to weakly conver-
gent perturbations of P requires additional conditions on Fy. The previous
theorem provides the sufficient conditions that its truncated class FF has the
P-uniformity property for large R > 0 and that F;, is uniformly integrable
with respect to the set of perturbations. The first condition is satisfied if F
is P-almost surely equicontinuous on Z (cf. Section 2.1). It implies, in partic-
ular, the P-continuity of Fj(x,-) for each j =0,....d and x € X N clY. The
uniform integrability condition

lim sup max su / Fi(x,€)|dP,(€) = 0 20
R—00 neg =0, xemeclu [ Fj(x, ) |dPy(€) (20)
Fj(z,8)|>R
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is satisfied if the moment condition

Sup max  sup |Fj(x, €)' T°d P, (€) < o0 (21)
neN J=0sdgeXnelts L

holds for some ¢ > 0. Assume, for example, that the functions Fj satisfy an
estimate of the form

(2, )| < ClEN®,  ¥(w,8) € (X N elld) x B,

for some positive constants C, k and all j =0,...,d (see e.g. Sections 3.1 and
3.2). In this case, the uniform integrability condition (20) is satisfied if

lim sup [ ¢]/“ap, (¢) = 0.
[[€]|>R

The corresponding sufficient moment condition reads

sup [ [|§1*+dP, (¢) < o0
nENE

for some ¢ > 0. The latter condition is often imposed in stability studies with
respect to weak convergence.

The P-continuity property of each function Fj(z,:) and condition (20) are
not needed in Theorem 5. However, the following examples show that both
conditions are indispensable for stability with respect to weak convergence.

Example 7 Let m=s=1,d=0,2=R X =R, F;(2,£) = —X(-00.21(§)
for (z,£) € R x Z and P = dy, where d; denotes the measure that places unit
mass at {. Then J(P) = 1 and X*(P) = {0}. The sequence (61) converges
weakly to P in P(Z), but it holds that J(P,) = 0 for each n € N. This is due to
the fact that, for some neighbourhood ¢ of 0, the set {x(—s021(+) : © € XN clU}
is not a P-uniformity class since P(bd (—o0,0]) = P({0}) = 1.

Example 8 Let m = s = 1,d = 0, 2 = R,, X = [-1,1], Fo(x,§) =
max{{—=z,0} for (z,{) € RxE and P = ¢y. Then J(P) = 0 and X*(P) = [0, 1].
Consider the sequence P, = (1 — %)(50 + %(571, n € N, which converges weakly
to P. It holds that J(P,) = 1 — < and X*(P,) = {1} for each n € N and,
thus, (¥(P,)) does not converge to J(P). Here, the reason is that the class
{max{- — z,0} : = € [—1,1]} is not uniformly integrable with respect to
{P, :n € N}.

Indeed, the weak convergence of measures is a very weak condition on se-
quences and, hence, requires strong conditions on (1) to be stable. Many ap-
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proximations of P (e.g., in Section 4.1), however, have much stronger proper-
ties than weak convergence and, hence, work under weaker assumptions than
Theorem 6. To give an example, we recall that the P-continuity property of
each function Fj(z,-) is an indispensable assumption in case of stability with
respect to weak convergence, but this property is not needed when working
with dz, and with specifically adjusted ideal metrics (and the corresponding
convergences of measures) in case of (mixed-integer) two-stage and chance
constrained models (see Sections 3.1, 3.2 and 3.3). Consequently, we prefer to
work with these distances, having in mind their relations to the topology of
weak convergence.

2.3  Quantitative Stability

The main result in the previous section claims that the multifunction X3 ()
is nonempty near P and upper semicontinuous at P. In order to quantify the
upper semicontinuity property, a growth condition on the objective function
in a neighbourhood of the solution set to the original problem (1) is needed.
Instead of imposing a specific growth condition (as e.g. quadratic growth), we
consider the growth function ¢¥p defined on Ry by

p(r) = min { /Fo(x,f)dp(f) — 9(P) :d(z, X*(P)) > 7.z € Xu(P)} (22)

of problem (1) on clU, i.e., near its solution set X*(P), and the associated
function

Up(n) :=n+vp'(2n) (neRy), (23)

where we set 1p'(t) := sup{T € R, : ¢p(7) < t}. Both functions, 1p and
Up, depend on the data of (1) and, in particular, on P. They are lower semi-
continuous on R, ; ¥p is nondecreasing, ¥Up increasing and both vanish at 0
(cf. Theorem 7.64 in Rockafellar and Wets (1998)). The second main stability
result establishes a quantitative upper semicontinuity property of (localized)
solution sets and identifies the function ¥p as modulus of semicontinuity. In
the convex case, it also provides continuity moduli of countable dense families
of selections to solution sets.

Theorem 9 Let the assumptions of Theorem 5 be satisfied and P € Px,.
Then there exists a constant L > 1 such that

0 # X;(Q) € X*(P) + Up(Ldg, (P.Q))B (24)
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holds for any Q € P, with dx,(P,Q) < 0. Here, 0 is the constant in Theorem
5 and Up is given by (23). In case d = 0, the estimate (24) is valid with L =1
and for any Q € Px,.

Proof: Let L > 0, 6 > 0 be the constants in Theorem 5, ) € Pz, with
dr,(P,Q) < 0 and & € X;(Q). As argued in the proof of Theorem 5, there
exists an element 7 € &y(P) such that |7 — z|| < ad, where 0 := dz, (P, Q).
Let Lp > 0 denote a Lipschitz constant of the function x — [z Fy(xz, &)dP(§)
on X N clU. Then the definition of ¢ and Theorem 5 imply that

S(1+ Lpa+ L) >0(1 + Lpa) + 9 (Q) — 9(P)
=3(1+ Lpa) + [ Fo(#.€)dQ(€) = D(P)

a0 + Y5 (0(1 + Lpa + L)) < Ld + ¢5' (2L3) = Up(L9),

where L := max{a, $(1+Lpa+ L)} > 1. In case d = 0, we may choose & = ,
a=1,L =1, Lp =0 and an arbitrary 0. This completes the proof. O

Parts of the proof are similar to arguments of Theorem 7.64 in Rockafellar
and Wets (1998). Next, we briefly comment on some aspects of the general
stability theorems, namely, specific growth conditions and localization issues.

Remark 10 Problem (1) is said to have k-th order growth at the solution set
for some k > 1 if ¢p(7) > y7* for each small 7 € Ry and some v > 0, i.e., if

| Falw. )dP() > 0(P) + yd(x, X" (P))!

holds for each feasible z close to X*(P). Then Up(n) < n+ (%1)% < CnF for

some constant C' > 0 and sufficiently small n € R,. In this case, Theorem
9 provides the Holder continuity of X}, at P with rate % Important special
cases are the linear and quadratic growth for £ = 1 and k£ = 2, respectively.
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Remark 11 In the Theorems 5 and 9 the localized optimal values 9 (Q)
and solution sets X};(Q) of the (perturbed) model (17) may be replaced by
their global versions 9¥(Q) and X*(Q) if there exists a constant d; > 0 such
that for each Q € Pr, with dg, (P, Q) < dy either of the following conditions
is satisfied: (a) The model (17) is convex and X};(Q) is a CLM set, (b) the
constraint set of (17) is contained in some bounded set ¥V C R™ not depending
on (), and it holds that V C U.

In case of a fixed constraint set, i.e., d = 0, we derive an extension of Theorem 9
by using a probability distance that is based on divided differences of the
functions x — [z Fy(z,£)d(P — Q)(&) around the solution set of (1). For some
nonempty, bounded, open subset &/ of R™ we consider the following set of
probability measures

Fo(l'jf) - Fo(.’i,&-)

[ — 2|

Pr, = {Q € Px,:3Cq > 0 such that dQ(¢) < Co,

—

Vo,7 € XN U,z 7Aa:~}
and the distance

FO(IE,&-) - Fo(j',&-)

[l — 2|

CZ]:U(P,Q) = sup{ d(P—Q)(f):x,ieXﬂclL{,x#i}

U] \

which is well defined and finite on Py,. The following result has been inspired
by Section 4.4.1 in Bonnans and Shapiro (2000).

Theorem 12 Let d = 0, P € 757.-u, X*(P) be nonempty and U C R™ be a
bounded and open neighbourhood of X*(P). Then the estimate

e d(z, X*(P)) < (¥}) “(dg,(P.Q))

is valid for any @ € 75;“, where Pp(0) = 0, Yh(T) = pr(T) for each 7 > 0
and YPp(-) is the growth function given by (22).

If, moreover, (V)1 is continuous at T = 0, there exists a constant 6 > 0 such
that X},(Q) is a CLM set relative to U whenever dz, (P, Q) < 4.

If, in particular, the original problem (1) has quadratic growth, i.e., 1p(T) >
72 for some v > 0, there exists a constant 6 > 0 such that the inclusion

0+ X;(Q) € X*(P) + %d@(a Q)B

holds whenever CZ}'U(P, Q) <o.
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Proof: Let Q € Pr,, © € X;(Q) and T € X*(P) be such that ||z — Z| =
d(z, X*(P)) > 0. We denote fq(y) := [z Fo(y,&)dQ(§) for each y € X, and
have fo(x) < fol#) and fp(x) — fo(7) > bp(dz, X*(P))) = vp(z — 7).
This leads to the following estimate

il = #l) = =l = 71) < = Ue(e) = (7))
< g Ur(@) = fol) + fol@) = ()
= (U = fa)@) = (fr = o) )
S CZ]—'u(Pa Q)a

which completes the first part. Since U is open, there exists an ¢ > 0 such
that the e-enlargement {z € R™ : d(x, X*(P)) < ¢} of X*(P) is contained in
U. Let § > 0 be chosen such that (¢5)7!(6) < e. Then d(z, X*(P)) < € and,
thus, € U holds for each z € X};(Q), completing the second part.

Finally, it remains to remark that quadratic growth implies ¢ (1) > 7 for
any 7 > 0 and some v > 0. O

Compared to the estimate in Theorem 9 based on function values of the func-
tion Fy, the above bound uses divided difference information of Fj relative to
x and leads to Lipschitz-type results in case of quadratic growth.

While the growth behaviour of the objective function is important for the
quantitative stability of solution sets even for convex models, the situation is
much more advantageous for e-approximate solution sets. For convex models
(1) with a fixed constraint set (i.e., d = 0), we will see that the latter sets
behave Lipschitz continuously with respect to changes of probability distribu-
tions measured in terms of the distance dz,. but for a larger set ¢ compared
with stability results for solution sets. To state the result, let

D,(C,D):=inf{n >0:CNpB C D+nB, D NpB C C+nB} (25)
Dy (C,D):=inf{n >0:C C D+nB,D C C +nB} (26)

denote the p-distance (p > 0) and the Pompeiu-Hausdorff distance, respec-
tively, of nonempty closed subsets C', D of R™.

Theorem 13 Let d = 0, Fy be a random lower semicontinuous convex func-

tion, X be closed convex, P € P, and X*(P) be nonempty and bounded.
Then there exist constants p > 0 and € > 0 such that the estimate

€

Do (X2(P). X2(Q)) < L, (P,Q)
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holds for U == (p+¢é)B and any ¢ € (0,¢), Q € Pg, such that dg,(P,Q) < e.

Proof: First we choose py > 0 such that X*(P) is contained in the open ball
U,, around the origin in R™ with radius py and that J(P) > —py+1. Applying
Theorem 5 with U, as the bounded open neighbourhood of X*(P), we obtain
some constant g > 0 such that X*(Q) is nonempty and contained in ,, and
¥(Q) > po holds whenever @ € P}'Mpo and dfupo (P, Q) < eg. Now, let p > py,
£ :=min{eg, p — po, 1} and U := (p + £)B.

For any Q) € Pg, we set again fq(z) := [z Fyo(z,§)dQ(&) for each x € R™. Fur-
thermore, we denote by cff; the auxiliary epi-distance of fp and fg introduced
in Proposition 7.61 in Rockafellar and Wets (1998):

dy(fp fo)=int{n>0: inf fo(y) < max{fp(x),—p}+n,

inf fP(y) < maX{fQ(x)v _P} + 777V5U € pIB}
yex+nB
From Theorem 7.69 in Rockafellar and Wets (1998) we conclude that the
estimate

-~

2
D, (X:(P). X:(Q)) < Ldf..(fr fo)

is valid for ¢ € (0,8) if d¥,.
the auxiliary epi-distance (/i\:;rg(fp,f@) from above by the uniform distance
dr, (P, Q) (cf. also Example 7.62 in Rockafellar and Wets (1998)).

It remains to note that the level sets X*(P) and X*(Q) are also bounded,
since fp and fq are lower semicontinuous and convex, and their solution sets
are nonempty and bounded, respectively. Hence, we may choose the constant p
large enough such that the equality D, (X*(P), X}(Q)) = Do (X2 (P), X2(Q))
holds. This completes the proof. O

(fp. fo) < e. Furthermore, we may estimate

Most of the results in this and the previous section illuminate the role of
the distance dz, as a minimal information (m.i.) pseudometric for stability,
i.e., as a pseudometric processing the minimal information of problem (1)
and implying quantitative stability of its optimal values and solution sets.
Furthermore, notice that all results remain valid when enlarging the set F,
and, thus, bounding dz, from above by another distance, and when reducing
the set Pz, to a subset on which such a distance is defined and finite.

Such a distance diq bounding dz, from above will be called an ideal probability
metric associated with (1) if it has (-structure (9) generated by some class of
functions F = Fiq from = to R such that Fiq contains the functions C'Fj(z, -)
foreachz € XNclld, j =0,...,d, and some normalizing constant C' > 0, and
such that any function in Fjq shares typical analytical properties with some
function Fj(z, ).
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In our applications of the general analysis in Section 3 we clarify such typical
analytical properties. Here, we only mention that typical functions Fj(z,-)
in stochastic programming are nondifferentiable, but piecewise locally Lip-
schitz continuous with discontinuities at boundaries of polyhedral sets. More
precisely, function classes F contained in

span {Fxp: F € F,B € B}, (27)

where F C F,(E), B C By, (E) for some p > 1 and k € N, are candidates for
an ideal class Fiq. The extremal cases, namely, F,(Z) and Fp, are discussed in
Section 2.1. To get an idea of how to associate an ideal metric with a stochastic
program, we consider the p-th order Fortet-Mourier metric ¢, introduced in
Section 2.1. Then the following result is an immediate consequence of the
general ones.

Corollary 14 Let d = 0 and assume that

(i) X*(P) is nonempty and U is an open, bounded neighbourhood of X*(P),
(ii) X is convex and Fy(-, &) is convex on R™ for each & € E,

(iti) there exist constants L > 0, p > 1 such that $Fy(z,-) € F,(E) for each
reXnecll.

Then there ezists a constant § > 0 such that

[9(P) —9(Q)| < LG(P, Q) and
0 # X*(Q)C X*(P)+ Up(L(,(P.Q))B

whenever Q € P,(E) and (,(P, Q) < §. Here, the function ¥p is given by (23).

Proof: The assumptions of Theorem 5 are satisfied. Hence, the result is a
consequence of the Theorems 5 and 9 and the fact that (iii) is equivalent to

|Fo(x,€) = Fo(w, )] < Lmax{L.|[¢]]. [|€][}7|€ — €|

for each &,€ € Eand z € XN clU, and, thus, it implies d, (P, Q) < L(, (P, Q)
for all P,@Q € P,(E). Furthermore, due to the convexity assumption (ii) the
localized optimal values ¥, and solution sets X}, may be replaced by 1 and
X*, respectively, if @ is close to P (see Remark 11). O

Example 15 (newsboy continued)

In case of minimal expected costs the set F;, is a specific class of piecewise
linear functions of the form {(r — ¢)z + cmax{0,z — -} : =z € X N clU}.
Furthermore, [Z Fy(z,§)dP(§) is also piecewise linear and Corollary 14 applies
with L := ¢, p := 1 and a linear function Wp. Hence, the solution set X*(-)
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behaves upper Lipschitzian at P € P;(N) with respect to (1, i.e.,

sup d(z, X*(P)) <c(1(P,Q) = c/ |Ep(r) — Fo(r)|dr=c_ ‘Z(m — ;)

re€X*(Q) keN  i=1

Here, we made use of an explicit representation of the Kantorovich metric
on P(R) (Section 5.4 in Rachev (1991)), and Fp and Fy are the probability
distribution functions of the measures P = Y .oy 70 and Q = > pcn Tr0r,
respectively.

2.4  Mean-Risk Models

The expectation functional appearing in the basic model (1) is certainly not
the only statistical parameter of interest of the (real-valued) cost or constraint
functions Fj, j = 0,...,d, with respect to P. Risk functionals or risk mea-
sures are regarded as statistical parameters of probability measures in P(R),
i.e., they are mappings from subsets of P(R) to R. When risk functionals are
used in the context of the model (1), they are evaluated at the probability
distributions P[Fj(z,-)]™' for € X and j = 0,...,d. Practical risk man-
agement in decision making under uncertainty often requires to minimize or
bound several risk functionals of the underlying distributions. Typical exam-
ples for risk functionals are (standard semi-) deviations, excess probabilities,
value-at-risk, conditional value-at-risk etc. Some risk measures are defined as
infima of certain (simple) stochastic optimization models (e.g. value-at-risk,
conditional value-at-risk). Other measures are given as the expectation of a
nonlinear function and, hence, their optimization fits into the framework of
model (1) (e.g. expected utility functions, excess probabilities).

We refer to Section 4 of Pflug (2003) for an introduction to risk functionals and
various examples, to Artzner et al. (1999), Delbaen (2002), Féllmer and Schied
(2002) for a theory of coherent and convex risk measures, to Ogryczak and
Ruszezyniski (1999) for the relations to stochastic dominance and to Rocka-
fellar and Uryasev (2002) for the role of the conditional value-at-risk.

Now, we assume that risk functionals F;, j = 0,...,d are given. In addition
to the mean-risk model (2) we denote by @ a perturbation of the original
probability measure P and consider the perturbed model

min{Fo (Q[Fo(z,)]™") 1 v € X. Fj(Q[Fj(x,1)] ") <0.5=1,..d}.  (28)

To have all risk functionals F; well defined, we assume for simplicity that
they are given on the subset Py, (R) of all probability measures in P(R) having
bounded support. Then both models, (2) and (28), are well defined if we
assume that all functions Fj(z,-) are bounded. Furthermore, we will need a
continuity property of risk functionals.
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A risk functional F on Py(R) is called Lipschitz continuous w.r.t. to a class H
of measurable functions from R to R if the estimate

F(G) — F(G)| < sup \/H G)(r) (29)

HeH

is valid for all G,G € P,(R). The following examples and Proposition 8 in
Pflug (2003) show that many risk functionals satisfy such a Lipschitz property.

Example 16 We consider the conditional value-at-risk of a probability dis-
tribution G € P, (R) at level p € (0,1), which is defined by

CVaR, (@) := inf {r + %/max{(],g —r}dG(&) :r € R}.
R

Hence, CVaR,(G) is the optimal value of a stochastic program with recourse
(see Section 3.1). Clearly, the estimate

[CVaR, (G) ~ OVaR, ()] < - ip sup, / max{0, ¢ - r}d(G — G)(©)

is valid for all G, G € P,(R). Hence, the conditional value-at-risk is Lipschitz
continuous w.r.t. the class H := {max{0,- —r} :r € R}.
The value-at-risk of G € Py(R) at level p € (0,1) is given by

VaR,(G) :=inf{r e R: G({ <r) > p}.

Thus, VaR,(G) is the optimal value of a chance constrained stochastic pro-
gram. In Section 3.3 it is shown that the metric regularity of the mapping
r—{yeR:GE<r)>p—y}at pairs (7,0) with ¥ € X*(G) is indispenable
for Lipschitz continuity properties of the optimal value. If the metric regular-
ity property is satisfied for the measure G and the level p, we obtain, from
Theorem 39, the estimate

IVaR,(G) — VaR,(G)| < Ldx (G, G) —Sup‘/LX e (€)d(G ~ G)(€)]

reR

for some constant I > 0 and sufficiently small Kolmogorov distance dk (G, G).
Hence, the corresponding class of functions is % := {Lx(—ac, : 7 € R}. We
note that the metric regularity requirement may lead to serious complica-
tions when using the value-at-risk in stochastic programming models because
VaR,,(-) has to be evaluated at measures depending on z.
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Example 17 The upper semi-deviation sdy(G) of a measure G € P,(R),
which is defined by

sd (@) ;:/max{o,g—/uda(u)}da(g),

R

is Lipschitz continuous w.r.t. the class H := {max{0,- —r} +-:r € R}.

The examples indicate that typical Lipschitz continuity classes H of risk func-
tionals contain products of some functions in Fi(R) for some k£ € N and
of characteristic functions x(_, for some r € R. Hence, their structure is
strongly related to that of the ideal function classes (27) for stability.

To state our main stability result for the model (2), let X' (P), J(P), X*(P)
denote the following more general quantities in this section:

X(P)={z € X :F;(P[Fj(z.))] ) <0,j=1,....d},
O(P) =inf{Fy (P[Fy(z.-)] ") : w € X(P)},
X*(P):={z € X(P) : Fy(P[Fy(w,)] ") = I(P)}.

The localized notions 9, (P) and X (P) are defined accordingly.

Theorem 18 For each j =0,...,d, let the function F; be uniformly bounded
and the risk functional F; be Lipschitz continuous on Py(R) w.r.t. some class
H; of measurable functions from R to R. Let P € P(E) and assume that

(i) X*(P)# 0 and U C R™ is an open bounded neighbourhood of X*(P),
(ii) if d > 1, the function x — Fy(P[Fy(z,-)]™") is Lipschitz continuous on
XnNcll,
(iii) the mapping v — {y € R? : x € X,F;(P[F;(x,")]!) < Yj- j=1,..d}
from R™ to R is metrically reqular at each pair (%,0) with & € X*(P).

Then there exist constants L > 0 and 6 > 0 such that the estimates
[9(P) ~ 9(Q)| < Ldsy(P,Q)
0 £ X;,(Q) C X*(P) + LUp(dsy (P, Q))B

are valid whenever Q € P(E) and dzy(P,Q) < 6. Here, Wp is given by (23)
and the distance df;{ is defined by

dpy(P.Q):= sup

[ HiFy(a )P - @)(dg)|



Proof: We proceed as in the proofs of Theorems 5 and 9, but now we use the
distance

dIF'(Pa Q) = ._S(}lpd
dexndu

B (P[Fj(x, )] ™) = B (QLFj (x,-)] )]

instead of dz,. In this way we obtain constants L > 0, 6 > 0 and the estimates

[9(P) — 9u(Q)| < Ldr(P, Q)
0 # X;(Q)C X*(P) + LUp(ds(P,Q))B

for each @ € P(E) such that cZ]F(P, @) < 0. It remains to appeal to the estimate

E(P.Q)s swp  sup | / Hy(r)d((P = Q)[Fj(a. )] )(1)] = dry(P.Q).

which is a consequence of the Lipschitz continuity (29) of the risk functionals
Fj,j=0,...,d. O

The result implies that stability properties of the mean-risk model (2) con-
taining risk functionals F; with Lipschitz continuity classes H;, j = 0,....d,
depend on the class

Fif={H;(Fj(z,")):x € XN clU,H; € Hj,j=0,...,d}

instead of F, in case of model (1). Hence, the stability behaviour may change
considerably when replacing the expectation functionals in (1) by other risk
functionals. For example, the newsboy model based on minimal expected costs
behaves stable at all P € P;(N) (Example 15), but the minimum risk variant
of the model (see Example 1) may become unstable.

Example 19 (newsboy continued)

We consider the chance constrained model (3) whose solution set is X*(P) =
{(k,0)} with the maximal &k such that >{°, m; > p in its first component. We
assume that equality Y%, m; = p and 7rk > U holds To establish instability,
we consider the approxnnatlons Pn = Z "6; of P, where 7r( " .= r; for all
i g {k—1,k} and " = me +1 L=, < for sufficiently large n €N
such that m;, — 1 > 0. Then the perturbed solution set is X* (P,) ={(k-1,0)}
for any sufﬁmently large n. On the other hand, we obtain for the Kolmogorov
distance d (P, P,) = +, i.e., weak convergence of (P,) to P. Furthermore, the
model (3) is stable with respect to the metric dy at each P = Y22, m;; € P(N)
such that Y% 7; # 1 — p for each k € N. The latter fact is a consequence of
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Theorem 5 as the metric regularity condition is satisfied (see also Remark 2.5
in Romisch and Schultz (1991b)).

However, if the conditional value-at-risk or the upper semi-deviation are incor-
porated into the objective of (mixed-integer) two-stage stochastic programs,
their ideal function classes and, thus, their ideal metrics (see Sections 3.1 and
3.2) do not change. These observations are immediate consequences of the
following more general conclusion of the previous theorem.

Corollary 20 Let d = 0. We consider the stochastic programming model
min{Fy (P[Fy(z,)]"!) 1 2 € X}, (30)

where Fy is uniformly bounded and the risk functional By is Lipschitz contin-
uous on Py(R) w.r.t. some class Hy.

Let P € P(Z), X*(P) # 0 and U be an open bounded neighbourhood of X*(P).
Assume that {Fy(z,-) : x € X N clU} is contained in some class F. of func-
tions from = to R and H o F' € LyF, holds for all H € Hy, F € F, and some
positive constant Ly.

Then there exist constants L > 0 and 6 > 0 such that the estimates

[9(P) — 9u(Q)| < Ldg, (P, Q)
0 # X;(Q) C X*(P) + L¥p(dz,(P.Q))B

are valid whenever @ € P(Z) and dg, (P, Q) < 0.
Proof: Clearly, we have in that case dfgf(P, Q) < Lodg, (P, Q). O

Important examples for H, and F. are multiples of F;(R) and of F,(E) (for
p>1)and {Fxgp: F € Fi(E), B € B}, respectively.

3 Stability of Two-Stage and Chance Constrained Programs
3.1  Linear Two-Stage Models

We consider the linear two-stage stochastic program with fixed recourse

min {(c.2) + [(a(€). y(€)dP(E): Wy(€) = h(e) - (). (31)

y(§) >0,z € X},
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where ¢ € R™, X C R™ and = C R® are convex polyhedral, W is an (r,m)-
matrix, P € P(Z), and the vectors ¢(§) € R, h(§) € R" and the (r, m)-matrix
T(€) depend affine linearly on & € E. The latter assumption covers many prac-
tical situations. At the same time, it avoids the inclusion of all components
of the recourse costs, the technology matrix and the right-hand side into &,
because this could lead to serious restrictions when imposing additional con-
ditions on P. We define the function F : R x Z — R by

(e, z) + @(q(£), h(&) = T(&)x) ,h(&) = T(§)z € posW ,q(§) € D

400 , otherwise

Fo(xaf) =

where posW = {Wy:y e RT}, D={ueR" : {z e R : W2z < u} # 0}
(with W' denoting the transpose of the matrix W) and ®(u,t) = inf{(u,y) :
Wy =t,y > 0} ((u,t) € R™ x R"). Then problem (31) may be rewritten
equivalently as a minimization problem with respect to the first stage decision
x, namely,

min{/Fg(x,f)dP(f) . re X} (32)

In order to utilize the general stability results of Section 2, we need a char-
acterization of the continuity and growth properties of the function Fj. As a
first step we recall some well-known properties of the function ®, which were
derived in Walkup and Wets (1969a).

Lemma 21 The function ® is finite and continuous on the (M +r)-dimensio-
nal polyhedral cone D x pos W and there exist (r,m)-matrices C; and (T+r)-
dimensional polyhedral cones KC;, j=1,...,N, such that

N
UK;=D xposW , int K; Nint K; =0, i # j,
j=1

®(u,t) =(Cju,t), foreach (u,t)€K;, j=1,..,N.

Moreover, ®(u,-) is convex on posW for each uw € D, and ®(-,t) is concave
on D for each t € posW.

To have problem (32) well defined we introduce the following assumptions:
(A1) For each (z,¢) € X xZ it holds that h(§)—T(£)z € pos W and ¢(¢§) € D.
(A2) P e Py(3), ie, [z[&[FdP() < oo.

Condition (A1) sheds some light on the role of the set =. Due to the affine
linearity of ¢(-), h(-) and T'(-) the polyhedrality assumption on Z is not re-
strictive. (A1) combines the two usual conditions: relatively complete recourse
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and dual feasibility. It implies that X x = C dom Fy .

Proposition 22 Let (A1) be satisfied. Then Fy is a random convex function.
Furthermore, there exist constants L > 0, L > 0 and K > 0 such that the
following holds for all £,& € E and x, & € X with max{||z]|, ||Z||} < r:

|[Fo(x.,€) — Fy(a, )| < Lr max{1, [|¢]l; IEl1HIE = €]l
|Fo(2.€) — Fo(@. )] < Lmax{1, [|]*}]z — 2],
Fo(w, )] < Krmax{1, [[¢]"}.

(=)

Proof: From Lemma 21 and (A1) we conclude that Fj is continuous on dom Fy
and, hence, on X x =. This implies that F{ is a random lower semicontinuous
function (cf. Example 14.31 in Rockafellar and Wets (1998)). It is a random
convex function since the properties of ® in Lemma 21 imply that Fy(-, ) is
convex for each ¢ € Z. In order to verify the Lipschitz property of Fj, let
r € X with ||z]] < r and consider, for each j = 1,..., N, and ¢ € E; the
function

9;(&) := Fo(z,§) = ®(q(£), h(&) = T(&)z) = (Cjq(§), h(§) — T(&)x),

where the sets Z; := {£& € = : (¢(¢),h(§) — T(&)x) € K;} are polyhedral,
and C; and K; are the matrices and the polyhedral cones from Lemma 21,
respectively. Since ¢(-), h(:) and T(:) depend affine linearly on &, the function
g; depends quadratically on ¢ and linearly on z. Hence, there exists a constant
L; > 0 such that g; satisfies the following Lipschitz property:

195(€) = ;(€)| < Lyr max {1, [[€]|. [IEl}1€ — €]l for all &€ € ;.

Now, let &, & € B, assume that & € E; and ¢ € 5, for some i,k €{l,...,N}
and consider the line segment [£,£] = {{(A) = (1 = A+ A A € [0, 1]}

Since [{,&] C E, there exist indices i5,7 = 1,...,[, such that iy =i, i = F,

[£,6]NE;, # 0 foreach j=1,...., 1 and [£,{] C Ué’:1 Ei;. Furthermore, there
exist increasing numbers A;, € [0,1] for j = 0,...,1 — 1 such that {(A;) =
£(0) =&, &(N;) €55, NE; ., and (N) € 5y, if A;; <X < 1. Then we obtain

|Fo(z,€) — Fylz, )| =19:,(€) — 9:,(8)]
< 20 191,01 (€)= G40 (€10

< Z_% Ly max{ 1, €[] [IE1HIEN,) =€)
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-1
< max Lyrmax(L, €[] JE1} 3 1€0,) — €0,

j=0
< max Lyrmax{l, [|g]. IElIHIE €]l

where we have used for the last three estimates that ||£(\)]| < max{||¢|].||€]|}
for each A € [0,1] and | A = X|[|€ = €] = ||E(A) —&(N)]| holds for all X, X € [0,1].
Lipschitz continuity of Fy with respect to x is shown in Theorem 10 of Kall
(1976) and in Theorem 7.7 of Wets (1974). In particular, the second estimate
of the proposition is a consequence of those results. Furthermore, from Lemma
21 we conclude the estimate

B, €)| < sup {1 ) [+ max (Cal€). h(€) = T(€)a) )

|z[|<r

< lleflr + (. max YC D)@+ [IT(E)llr)

for any pair (z,£) € X x E with ||z|| < r. Then the third estimate follows
again from the fact that ¢(-), h(-) and T'(-) depend affine linearly on (. O

The estimate in Proposition 22 implies that, for any r > 0, any nonempty
bounded & C R™ and some p > 0, it holds that

| it Fo(e.)dQ(€) = ~Kr(1+ [ [€]2dQ(€) > oo

= ll=zli<r

sup | [ Fo(w. dQ()| < Kp(1 + [ [€12dQ(€)) < oo,
zeXnNU J £

if @ € P(E) has a finite second order moment. Hence, for any nonempty
bounded & C R™ the set of probability measures Pz, contains the set of
measures on = having finite second order moments, i.e.,

Pr, 2 {Q € PE): [[€12dQ(E) < 0o} = P2(B).

The following stability results for optimal values and solution sets of the two-
stage problem (32) are now a direct consequence of the results of Section 2.

Theorem 23 Let (A1) and (A2) be satisfied and let X*(P) be nonempty and
U be an open, bounded neighbourhood of X*(P).
Then there exist constants L > 0 and 6 > 0 such that

19(P) = 9(Q)| < Lé(P,Q)  and
0+ X*(Q)C X*(P)+ Up(Lé(P,Q))B
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whenever Q € Py(Z) and (P, Q) < 0, where Wp is given by (23).

Proof: The result is a consequence of Corollary 14 with p = 2. The assump-
tions (ii) and (iii) of Corollary 14 are verified in Proposition 22. O

Theorem 24 Let (A1) and (A2) be satisfied and let X*(P) be nonempty and
bounded. Then there exist constants L > 0 and & > 0 such that the estimate

D (X:(P). X:(Q) < Z6(P.Q)

holds for any e € (0,€) and Q € P2(E) such that (3(P,Q) < e. Here, Dy
denotes the Pompeiu-Hausdorff distance (26).

Proof: Since the assumptions of Theorem 13 are satisfied, we conclude that
there exist constants p > 0 and £ > 0 such that

& 3

D (X (P), X1(Q) < Lz, (P.Q)

holds for U := (p+ &)B and any € € (0,¢), @ € Pg, such that dg, (P, Q) < €.
Proposition 22 implies the estimate dg, (P, Q) < L(p + &)(2(P, @), for some
constant L > 0, which completes the proof. O

The theorems establish the quantitative stability of 9(-) and X*(-) and the
Lipschitz stability of X*(-) with respect to ¢y in case of two-stage models
with fixed recourse for fairly general situations. In case that either only the
recourse costs or only the technology matrix and right-hand side are random,
both results are valid for (P;(Z), (1) instead of (P2(Z),(2). We verify this
observation for the corresponding conclusion of Theorem 23.

Corollary 25 Let either only q(-) or only T(-) and h(-) be random and (A1)
be satisfied. Let P € P1(Z), X*(P) be nonempty and U be an open, bounded
neighbourhood of X*(P). Then there exist constants L >0, 6 > 0 such that

[9(P) = 9(Q)| <LG(P,Q)  and
0# X*(Q) S X*(P)+ Vp(LG(P,Q))B
whenever Q) € P1(E) and (1(P, Q) < 0, where Up is given by (23).

Proof: By inspecting the proof of Proposition 22 one observes that now the
function Fp satisfies the following continuity and growth properties for all
£, (€= and z, € X with max{||z|, ||Z||} < r:

|Fo(,€) = Fo(w, &) < Lrllé = €],

30



[Fo(z, &) < Krmax{1, [|¢][}.
Hence, the set Pz, contains P;(=) and Corollary 14 applies with p=1. O

Next we provide some examples of recourse models showing that, in general,
the estimate for solution sets in Theorem 23 is the best possible one and that
X*(+) is not lower semicontinuous at P if X*(P) is not a singleton.

All examples exploit the specific structure provided by the simple recourse
condition, i.e., ™ = 25, ¢ = (¢4, q_) and W = (I, —1I), where ¢,,q_ € R® and
I is the (s,s) identity matrix. Then posW = R® holds and, hence, (Al) is
satisfied iff ¢ € D, which is equivalent to the condition ¢, + ¢_ > 0, and

®(q.t) = sup{{t,u) : —q- <u < g4}

Example 26 Let m =s=r =1,m = 2(::0,W:(1,—1),X
E=R, q& = (1,1), T() =1, h(¢) V¢ € E. Let P € P(R
uniform distribution on the interval [— %] Then J9(P) = 1, X*(P
and quadratic growth

[_17 1]7
be the
= {0},

[\Dh—l ||
~—

~—

/Fo(x,f)dP /|£—x|d§— = g = 9(P) + d(z, X*(P))?

ml»—n

holds for each z € [-1 7 2] Let us consider the following perturbations P, €
P(R) of P for n > 4 given by

1
P, = (5 N 5n)(Bn + Prn) +5n(6*5n + 65")’

where ¢ = n~? , P, and P,, are the uniform distributions on [—%, —e,) and
(€n, 5], respectlvely, and ¢, is the measure placing unit mass at r. Using the
explicit representation of (; in case of probability distributions on R (see
Chapter 5.4 of Rachev (1991)), we obtain
T 1
G(P.P) = [ [P((=00.) = Pul(—o0,€])ldg = = = &2

— 00

Furthermore, it holds that J(P,) = 3(e2 + 1), X*(P,) = [—&n, &,] and, hence,
[9(P)—=9(P,)| = 32 and sup,c - (p,) d(z, X*(P)) = &, for each n € N. Hence,
the estimate in Theorem 23 is best possible.

Next we consider the distribution P = %(5_% + 5%). Then we have 9(P) = 1

and X*(P) = —2, 3] and the linear growth condition
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[1 \

11 |
VdP(¢ / —2dPE) = ~(lr + 2| + |z — =
Pl P(€) = [ It = aldP(©) = 5+ 51+l = 5)

>9(P) + d(z, X*(P))

for each 2 € X. Consider the perturbations P, = (1 — %)]5 + 160 (n € N) of
P. Then

G, B) = [ 1P((~00,€]) = Bal(~00, €] lde = -

holds for each n € N, where we have again used the explicit representa-
tion of (; in case of probability measures on R. Furthermore, it holds that

(P, = (1 - 1)3 and X*(P,) = {0} for each n € N. Hence, we have

SUD, ¢ x+(p) A, X*(P,)) = 3
Next we consider models with a stochastic technology matrix and recourse
costs, respectively, and show that in such cases X*(-) is also not lower semi-
continuous at P, in general.

Example 27 Let m=s=r=1,m=2,¢c=0W = (1,-1), X = [0,1],
= =R,, h(¢) =0, V¢ € E.

In the first case, we set ¢(§) = (1,1) and T(§) = =, V€ € =.

In the second case, we set (&) = (£, &) and T'(&) = —1, V¢ € E.

In both cases (A1) is satisfied. We consider P = dy and P, = 1. i.e., the unit

masses at 0 and %, respectively, for each n € N. Clearly, (P,) converges with
respect to the metric ¢; to P in P;(R). Furthermore, in both cases

T

_/Fo(x,g)dPn(ﬁ) = _/gx dP,(£) = =

holds for each z € X. Then X*(P) = X and X*(P,) = {0} for any n € N,
which implies sup,¢x-(py d(z, X*(F)) = 1.

The examples show that continuity properties of X*(:) at P in terms of the
Pompeiu-Hausdorff distance cannot be achieved in general unless X*(P) is a
singleton. Nevertheless, we finally establish such quantitative stability results
for models where the technology matrix is fixed, i.e., T(§) = T', and a specific
nonuniqueness of X*(P) is admitted. For their derivation we need an argu-
ment that decomposes the original two-stage stochastic program into another
two-stage program with decisions taken from 7T'(X) and a parametric linear
program not depending on P.

Lemma 28 Let (A1) be satisfied and let Q € Po(Z) be such that X*(Q) is
nonempty. Then we have
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2(Q) = inf {7(x) + [ ©(a(€).h(€) = )dQ(E) : x € T(X)}

=m(Tx)+ [ ®(q(§). h(§) — Tx)dQ(&), Yz € X*(Q),

—

X*(Q) =o0(Y*(Q)), where
V(@) = argmin{(x) + [ B(a(€). k(&) ~ X)) : x € T(X)},

m(x):=inf{{c,z) 1z € X, Tz = x},
o(x):=argmin{{c,z) :z € X, Tz = x} (x € T(X)).

Moreover, m is convex polyhedral on T(X) and o is a polyhedral set-valued
mapping which is Lipschitz continuous on T (X) with respect to the Pompeiu-
Hausdorff distance.

Proof: Let z € X*(Q). We set ®o(x) := [ ®(q(&). h(§) — x)dQ(&) and have

Q)= {c, ) + Pgo(Tz) > inf{m(x) + Po(x) : x € T(X)}.

For the converse inequality, let ¢ > 0 and x € T'(X) be such that
_ N £
T(x) + @o(x) < mf{m(x) + Po(x) : x € T(X)} + 5.

Then there exists an & € X such that 7z = x and (¢, Z) < 7(X) + 5. Hence,

_ _ _ €

I(Q) < (e, 7) + @o(T7) < 7(x) + Po(X) + 3
<inf{m(x) + Po(x) : x € T(X)} +e¢.

Since € > 0 is arbitrary, the first statement is verified. In particular, z € o(T'z)

and Tx € Y*(Q) for any x € X*(Q) . Hence, it holds that X*(Q) C o(Y*(Q)).

Conversely, let z € o(Y*(Q)). Then = € o(x) for some x € Y*(Q). Thus
Tx = x and (¢, z) = w(x) = n(Tx), implying

(e,x) + @g(Tx)=7(Tx) + Po(Tx) = inf{m(x) + Po(x) : x € T(X)}
=9(Q) and =z € X*(Q).

Furthermore, 7 is clearly convex and polyhedral, and the properties of o are
well known (cf. Walkup and Wets (1969b)). O

Theorem 29 Let (A1),(A2) be satisfied, X*(P) be nonempty and U be an
open bounded neighbourhood of X*(P). Furthermore, assume that T(X*(P))
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is a singleton. Then there exist constants L > 0 and 6 > 0 such that

Doo (X*(P). X*(Q)) < LUp(LG(P,Q))

whenever Q € Pa2(Z) and (P, Q) < 0, where Up is given by (23) and Dy
denotes the Pompeiu-Hausdorff distance.

Proof: Let x* be the single element belonging to T(X*(P)). We use the
notation of Lemma 28 and conclude that Y*(P) = {x*}. Let V denote a
neighbourhood of x* such that T-!'(V) C U and consider the growth function

Pp(7) == min{m(x) + ®p(x) —=I(P) : [[x = X"l = 7, x € T(X) NV}

and the associated function U%(n) := n+(¥5) (2n) of the stochastic program
inf{m(x) + ®p(x) : x € T(X)}. Applying Corollary 14 to the latter program
yields the estimate

sup d(x,Y*(P)) = sup |[[x — x|l £ Vp(L.G(P,Q))
XEY*(Q) XEY*(Q)

for some L, > 0 and small (;(P, Q). Since X*(P) = o(x*) and X*(Q) =
o(Y*(Q)) hold due to Lemma 28 and the set-valued mapping o is Lipschitz
continuous on T'(X) with respect to Dy, (with some constant L, > 0), we
obtain

Do (X*(P), X*(Q)) =D (0(x7), 0(Y(Q)) < XES;*IEQ)DOO (e(x™), o(x))

S LO’ sup ||X>k - XH S LU\I]*P(L*CQ(Pv Q)) :
XEY*(Q)

It remains to explore the relation between the two growth functions ¢)p and
Yp, and the associated functions ¥p and Wp, respectively. Let 7 € R, and
Xr € T(X)NV such that [|x; — x*|| > 7 and ¥5(7) = 7(x;) + @p(x,) —I(P).
Let z, € X, &, € X*(P) be such that Tz, = x,, 7(x,) = ¢z, and d(x,, X*) =
||z, — Z,||. Hence, we obtain x, € U, Y5 (1) = cx; + ®p(Tx,) — J(P) and

7 <|Ixr = X'l = [[T27 = T || < || T]|d(z-, X7),

where ||T'|| denotes the matrix norm of 7. If ||T'|] # 0, we conclude that
¥p(T) = Yp(gfy) holds for any 7 € Ry and, hence, we have (¢}5)'(n) <

HT||1D131(77) and U%(n) < max{1,||T||}¥p(n) for any n € R, . This implies

Doo (X*(P), X*(Q)) < max{1, || T} Ls ¥ p(L.C2(P, Q)),
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and, thus, the desired estimate. In case of ||T'|| = 0, the solution set X*(P)
is equal to argmin{{(c,z) : x € X} and, consequently, does not change if P is
perturbed. Hence, the result is correct in the latter case, too. O

Theorem 30 Let (A1),(A2) be satisfied, X*(P) be nonempty, U be an open
bounded neighbourhood of X*(P) and T(X*(P)) be a singleton. Assume that
the function (Y}p)~" is continuous at 7 = 0, where Y}(0) = 0, Yp(7) 1= Lpp(7)
for each 7 > 0 and 1p(-) is the growth function given by (22).

Then there ezists constants L > 0 and § > 0 such that the estimate

Dac (X*(P), X*(Q)) < L(vp) " (da, (P. Q) (33)
is valid for each Q € Py(E) with dg, (P, Q) < 8. Here, we denote

@(q(£), h(&) — Tx) — ®(q(§), h(§) — T7)

[ — 2|

s, (P.Q):=sup {| [ AP~ Q)(€):

[m

r, T € XN clu,x#i}.

If the two-stage model (31) has quadratic growth, the estimate (33) asserts
Lipschitz continuity with respect to dg,, .

Proof: Using the same notation as in the previous proof we conclude again
that

Do (X*(P), X (@) < Ty _sup " =l

XEY™*(

If T is the null matrix, the result is true since X*(Q) does not depend on Q.
Otherwise, we denote by ||T'|| the matrix norm of 7', argue as in the proofs of
the Theorems 12 and 29 and arrive at the estimate

%DP(L

T Ix =X < ¥pllx = X7 < @r(x) — Po(x) — (Pr(X") — Po(X"))

for each x € Y*(Q), where ®p(x) := [z P(q(&),h(§) — x)dP(§). The latter
estimate implies (33). O

Remark 31 In all cases, where the original and perturbed solution sets X*(P)
and X*(Q) are convex and an estimate of the form

Dy (X*(P), X*(Q)) < ¢(d(P,Q)) whenever @Q € Py, d(P,Q) <9

is available for some (pseudo) metric d on a set of probability measures P
and some function ¢ from R, to R, , this estimate may be complemented by
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a quantitative continuity property of a countable dense family of selections.
Namely, there exists a family {z}(Q)}ren of selections of X*(Q) such that

X(Q)=d(2(Q)

keN

|2 (P) = 2 (@) < Lr¢(d(P.Q))  whenever Q€ Py, d(P,Q) <0

for some constant L; > 0 and any k£ € N. To derive this conclusion, let us
first recall the notion of a generalized Steiner point of a convex compact set

C C R™ (see Dentcheva (2000)). It is given by St,(C) := [ u(doc(z))a(dz),
B

where o¢(-) is the support function of C, i.e., o¢() := sup,co (7, y), doc(z)
is the convex subdifferential of o¢ at z and p(doc(z)) its norm-minimal ele-
ment. Furthermore, o is a probability measure on B having a C''-density with
respect to the Lebesgue measure. A generalized Steiner selection St (-) is Lip-
schitz continuous (with a Lipschitz constant depending on «) on the set of
all nonempty convex compact subsets of R” equipped with the distance Dy .
Furthermore, there exists a countable family {ay }ren of probability measures
on R, each having a C''-density with respect to the Lebesgue measure, such
that the corresponding family of generalized Steiner selections {St,, (C)}ren
is dense in C. Both results are proved in Dentcheva (2000). By combining
these two arguments for the countable family {z}(Q) := St,, (X*(Q)) }ren of
selections to the convex compact sets X*(Q) the desired result follows.

The previous Theorems 29 and 30 extend the main results of Romisch and
Schultz (1993, 1996) and Shapiro (1994) to the case of a general growth con-
dition. The crucial assumption of both results is that T'(X*(P)) is a singleton.
The latter condition is satisfied, for example, if the expected recourse function
Op(-) = [2P(q(&),h(§) — -)dP(&) is strictly convex on a convex neighbour-
hood of T(X*(P)).

The situation simplifies in case of random right-hand sides only, i.e., ¢(§) = ¢
and h(&) = £. Then the distance ch)u can be bounded above by a discrepancy
w.r.t. certain polyhedral cones. Namely,

CZ@M(P, Q) < ESUP{‘(P_ Q)(Tx—i_BZ(Ri))‘ rx € cUi=1,... 0},

holds, where L > 0 is some constant and B;,i=1,...,¢, are certain nonsin-
gular submatrices of the recourse matrix W (Rémisch and Schultz (1996)). In
this case, verifiable sufficient conditions for the strict and strong convexity of
the expected recourse function ®p are also available (Schultz (1994)). Namely,
the function ®p is strictly convex on any open convex subset of the support of
P if P has a density on R® and the set {z € R* : W'z < ¢} is nonempty. It is
strongly convex if, in addition to the conditions implying strict convexity, the
density of P is bounded away from zero on the corresponding convex neigh-
bourhood. Furthermore, the model (31) has quadratic growth if the function
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®p is strongly convex on some open convex neighbourhood of T'(X*(P)). The
latter fact was proved in Dentcheva and Rémisch (2000) by exploiting the
Lipschitz continuity of the mapping ¢ in Lemma 28. The Lipschitz continuity
result of Theorem 30 in case of quadratic growth forms the basis of the fol-
lowing differential stability result for optimal values and solution sets proved
in Dentcheva and Rémisch (2000).

Theorem 32 Let (A1),(A2) be satisfied, X*(P) be nonempty and bounded,
and T(X*(P)) be a singleton, i.e., T(X*(P)) = {x*}. Let Q € P(E).

Then the function 9 is Gateaux directionally differentiable at P in direction
Q) — P and it holds

9 (PQ~ P) = Jim S0P +1(Q — P)) ~ 9(P)) = Bg(x’) ~ Po(x").

t—0+

If, in addition, model (31) has quadratic growth and ®p is twice continuously
differentiable at {x*}, then the second-order Gateauz directional derivative of
¥ at P in direction () — P exists and we have

" . 1 ’
9 (P:Q— P)i= Jim L((P+HQ ~ P))~ 0(P) ~ 1/ (P:Q - P)
1 '
= inf {§<V2®p(x*)Tx,Tx> +(Pg — @p) (x*;T2) 1w € S(2) },
where S(Z) = {x € Tx(Z) : cx+(VPp(x*),Tx) = 0} and Tx(Z) is the tangent
cone to X at some T € X*(P). The directional derivative (dg — ®p) (x*; Tv)

of g — ®p ewists since both functions are convex and ®p is differentiable.
The first-order Gateauz directional derivative of the set-valued mapping X*(-)

(X*)(P,Z;Q — P) := lim 1(X*(P +t(Q — P)) — )

t—0+ ¢

at the pair (P, %), T € X*(P), in direction Q — P exists and coincides with
argmin{(V2®p(y*)Tz, Tz) + (Bg — ®p) (x*; Tz) : x € S(z)}.

3.2 Mizxed-Integer Two-Stage Models

Next we allow for mixed-integer decisions in both stages and consider the
stochastic program

min{(c, z) + / ®(h(€) — T(¢)z)dP(€) : ¢ € X}, (34)

37



where

®(t) :=min{{q,y) + (7.9) : Wy+Wy=t,yc Z7, g R} (t € R"), (35)

c € R™, X is a closed subset of R”, = a polyhedron in R*, ¢ € R™, § € R™,

W and W are (r,m)- and (7, m)-matrices, respectively, h(¢) € R" and the

(r,m)-matrix T(&) are affine linear functions of £ € R*, and P € P(E).

Basic properties of @ like convexity and continuity on dom ® in the purely

linear case cannot be maintained for reasonable problem classes. Since ® is

discontinuous in general it is interesting to characterize its continuity regions.

Similarly as for the two-stage models without integrality requirements in the

previous section, we need some conditions to have the model (34) well-defined:

(B1) The matrices W and W have only rational elements.

(B2) For each pair (z,£) € X x Z it holds that h(¢) — T'({)x € T, where
T={teR :t=Wy+Wg,ycZ? jeR"}.

(B3) There exists an element u € R" such that W'u < ¢ and W'u < .

(B4) P € Py(2), i.e., [z |[£]|ldP(§) < +oc.

The conditions (B2) and (B3) mean relatively complete recourse and dual

feasibility, respectively. We note that condition (B3) is equivalent to ®(0) = 0,

and that (B2) and (B3) imply ®(¢) to be finite for all ¢ € T (see Proposition 1

in Louveaux and Schultz (2003)). In the context of this section, the following

properties of the value function ® on 7 are important.

Lemma 33 Assume (B1)-(B3). Then there exists a countable partition of T
into Borel subsets B;, i.e., T = U;en Bi such that

(1) each of the sets has a representation B; = {b;+pos W H\U2; {b;;+pos W},
where b;, b;; € R" fori € N and j =1,..., Ny. Moreover, there exists an
Ny € N such that for any t € T the ball B(t,1) in R" is intersected by at
most Ny different subsets B;.

(2) the restriction ®|p, of ® to B; is Lipschitz continuous with a constant
Lg > 0 that does not depend on i.

Furthermore, the function ® is lower semicontinuous and piecewise polyhedral
on T and there exist constants a,b > 0 such that it holds for all t, t € T:

|@(t) — @(1)| < allt — 1] +b.

Part (i) of the lemma was proved in Section 5.6 of Bank et al. (1982) and in
Lemma 2.5 of Schultz (1996), (ii) was derived as Lemma 2.3 in Schultz (1996)
and the remaining properties of ® were established in Blair and Jeroslow
(1977). Compared to Lemma 21 for optimal value functions of linear pro-
grams without integrality requirements, the representation of ® is now given
on countably many (possibly unbounded) Borel sets. This requires to incor-
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porate the tail behaviour of P and leads to the following representation of the
function Fy(x,&) := (¢, z) + ®(h(§) — T(&)x) for each pair (z,§) in X x Z.

Proposition 34 Assume (B1)-(B3) and let U be an open bounded subset of
]Rm For each R > 1 and x € X N clU there exist disjoint Borel subsets = HJ » of
2,7 =1,...,v, whose closures are polyhedra with a uniformly bounded number
of faces such that the function

v

Fo(z,€) = > ({e.2) + B(h(¢) = T()7))x=r (§) ((z.£) € X x E)

j=0
18 Lipschitz continuous with respect to & on each = ]x, 7 =1,...,v, with some
uniform Lipschitz constant. Here, :{fx =2\ UL 1:]:C is contained in {{ €

R : ||¢]] > R} and v is bounded by a multiple of R".

Proof: Since h(-) and T'(-) are affine linear functions, there exists a constant
Cy > 0 such that the estimate ||h(§) — T'(§)z||oc < Comax{l1,|&||} holds for
each pair in X N clU. Let R > 0 and Tz := T N RC3B.,, where B, refers to
the closed unit ball in R" with respect to the norm ||+||o. Now, we partition the
ball RC,B,, into disjoint Borel sets whose closures are B, -balls with radius
1, where possible gaps are filled with maximal balls of radius less than 1.
Then the number of elements in this partition of RCsB., is bounded above by
(2RC5)". From Lemma 33 (i) we know that each element of this partition is
intersected by at most N; subsets B; (for some Ny € N). Another consequence
of Lemma 33 (i) is that each B; splits into disjoint Borel subsets whose closures
are polyhedra. Moreover, the number of such subsets can be bounded from
above by a constant not depending on 4. Hence, there exist a number v € N
and disjoint Borel subsets {B; : j = 1,...,v} such that their closures are
polyhedra, their union contains Tz, and v is bounded above by xR", where
the constant x > 0 is independent of R. Now, let x € X N clU and consider
the following disjoint Borel subsets of =:

ER ={¢ €2 - Tz eB;} (j=1.....v)
L_JE € 21 [|A(§) = T(&)lloo > RC2} C{E € E (€]l > R}

i
[I]

‘—‘Ox

For each j =1, ..., v the closures of the sets B; are polyhedra with a number
of faces that is bounded above by some number not depending on j, v and
R. Hence, the same is true for the closures of the sets :N, ie., for {£ € =
h(§) —T(&)x € cl B}, where, moreover, the corresponding number £ € N does
not depend on x € X N clY. Finally, we conclude from Lemma 33 that there
exists a constant L; > 0 (which does not depend onz € XNeclld, j=1,...,v
and R > 0) such that the function Fy(z, )‘Efm = (c,x) + ®|p, (h(-) = T(-)x) is
Lipschitz continuous with constant L;. O ’
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For further structural properties of model (34) we refer to Louveaux and
Schultz (2003). In order to state stability results for model (34), we consider
the following probability metrics with (-structure on P;(Z) for every k € N:

Guon (P Q):=sup{| [ F(€)(P = Q)(d0)]: f € Fi(2), B € By, ()} (30)
= sup{l [ F()xn(&) (P~ Q)(d)]: f € Fi(2), B € By, (D)}

Here, By, (2) and F;(Z) denote the sets of polyhedra in Z and of Lipschitz
continuous functions from = to R introduced in Section 2.1.

Theorem 35 Let the conditions (B1)-(B/) be satisfied, X*(P) be nonempty
and U C R™ be an open bounded neighbourhood of X*(P).
Then there exist constants L > 0, 0 > 0 and k € N such that

[9(P) = 9u(Q)] < Ldp(Crpn, (P, Q)) (37)
0 # X5 (Q) C X™(P) + Vp(Ldp(Crpn, (P.Q)))B,

and X3(Q) is a CLM set of (34) relative to U whenever Q € Pi(Z) and
Ciph, (P, Q) < 0. Here, the function ¢p on Ry is defined by

6p(0) =0 and ¢p(t) = inf {Rt+ [ JelaP©)} (t>0)
a {§€E:([¢]|>R}

and continuous at t = 0, and the function VUp is given by (23).
If P has a finite absolute moment of p-th order for some p > 1, the estimate

op(t) < Ot holds for small t > 0 and some constant C' > 0.

Proof: Since the function ® is lower semicontinuous on 7 (Lemma 33), Fj is
lower semicontinuous on X x = and, hence, a random lower semicontinuous
function (Example 14.31 in Rockafellar and Wets (1998)). Using Lemma 33
we obtain the estimate

|Fo(z, )| < llellll=ll + a(lREI + 1Tl + b

for each pair (z,£) € X x =. Since h(§) and T'(§) depend affine linearly on &,
there exists a constant Cy > 0 such that |Fy(z, )| < Cy max{1, ||£]|} holds for
each pair (z,§) € (X N clU) x E. Hence, Px,(E) D P1(E) and Theorems 5
and 9 apply with d = 0 and the distance dg, on P;(E).

From Proposition 34 we know that, for each R > 1 and x € X N clUd, there
exist Borel subsets Efw j=1...,v. gf E such that the function f;%(-) :=

Fy(z,-) |E§2 is Lipschitz continuous on =, with some Lipschitz constant L; > 0
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(not depending on z, j and R). We extend each function f(-) to the whole
of = by preserving the Lipschitz constant L;. Proposition 34 also implies that
the closures of Zf, are contained in By, (Z) for some k € N, that the number
v is bounded above by kR", where the constant x > 0 is independent on R,
and that Z¢f, := 2\ U/_,EF is a subset of {¢ € Z: [|£]| > R}.

For each @ € Py(E) and 2 € X N clU we obtain

| [ Role.0)d(P - Q@)=Y [ Folw.0)d(P - Q)

<Y [ FR©dP - QO]+ IF(P.Q)
<vy swp | [ F(€)xzp d(P QO]+ IH(P.Q)

where I7(P, Q) := HE& Fo(z. )d(P — Q)(&)].

For each Zf, we now consider a sequence of polyhedra Bf,, which are con-
tained in =5, and belong to By, (Z), such that their characteristic functions

XpRr ~converge pointwise to the characteristic function PELR Then the se-
qué,nce consisting of the elements | [z f(& )XBR (&)d(P — Q)J(f)| converges to
| = f(& )X—R (&)d(P — Q)(&)] while each element is bounded by Cipn, (P, Q).
Hence, the above estimate may be continued to

| [ Fola ©)d(P = Q)(€)] < KR Gn, (P.Q) + IF(P.Q). (39)

For the term (P, Q) we have

IMP.Q<C [ eldP+Q))

{EeEEl> R}
<o [ P+ Q)
{€e=:[l€]loo> 5}

where we have used the estimate |Fy(z,&)| < C1]|¢]| for each pair (z,€) €
(X Neclld)x{¢eE: ¢ >R} and Cy > 0 is a norming constant such that

1€]| < Cql|€]| holds for each £ € R®. Clearly, the set {€ € = : [|€]|oc > C%} can
be covered by 2° intersections of = by open halfspaces whose closures belong
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to Bpy, (2). Hence, a similar argument as the one above yields the estimate

[ 1614 < 2GR+ [ ligldP().

{eeZ:lelloo> &) {ee=:elloo> £ )

Hence, from the previous estimates we obtain that

A7, (P,Q) S K(LLR +2C)Gan, (P.Q) 420, [ [|¢lldP(¢)

{€€:/l€]loo> &5

SCRGw, (P.Q+ [ 1EldPE)
{¢€E:[¢ll>aR}

for some constants C' > 0 and « € (0, 1), the latter depending on the norming

constants of || - || and || - ||, respectively. Finally, we obtain
A7, (P, Q) < Cp(Cipn, (P.Q)),  where (39)
6p(0):=0 and op(t)=inf {Rt+ [ |¢ldP©} (t>0) (40)
- {eeElgl> R}

with some constant C' > 0. Now, the result is a consequence of the Theo-
rems 5 and 9. If [Z[[§[[PdP(§) < oo, it holds that [z, gspy €I[dP(E) <
RY™P [_[|€||PdP (&) by Markov's inequality. The desired estimate follows by in-

serting R = ¢ 751 for small ¢ > 0 into the function whose infimum w.r.t.
R>1is ¢p(t) O

In case that the underlying distribution P and its perturbations ) have sup-
ports in some bounded subset of R*, the stability result improves slightly.

Corollary 36 Let the conditions (B1)-(B3) be satisfied and = be bounded.
Assume that P € P(E), X*(P) is nonempty and U C R™ is an open bounded
neighbourhood of X*(P).

Then there exist constants L > 0, 0 > 0 and k € N such that

[9(P) = 9u(Q)| < LGypn, (P. Q)
0 # Xu(Q) € X*(P) + Wp(L{1pm, (P.Q))B,

and X};(Q) is a CLM set of (34) relative to U whenever @@ € P(Z) and
Cl,ph;C (Pa Q) < 5

Proof: Since = is bounded, we have P;(Z) = P(Z). Moreover, the function
¢p(t) can be estimated by R"t for some sufficiently large R > 0. Hence, The-
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orem 35 implies the assertion. O

Remark 37 Since = € By, (E) for some k € N, we obtain from (36) by
choosing B := = and f = 1, respectively,

max{G (P, Q), apn, (P, Q)} < Crpn, (P, Q) (41)

for large £ and all P,Q € P;(E). Here, oy, denotes the polyhedral discrepancy
(see Section 2.1). Hence, convergence with respect to (; py, implies weak con-
vergence, convergence of first order absolute moments and convergence with
respect to the polyhedral discrepancy app,. The converse is also true. The
latter observation is a consequence of the estimate

Cipn, (P, Q) < Csap, (P,Q)™T  (P,Q € P(E)) (42)

for some constant C, > 0. It is valid for bounded = C R* and can be derived
by using the technique in the proof of Proposition 3.1 in Schultz (1996). In
view of (41), (42) the metric (y pn, is stronger than ayy,, in general, but in case
of bounded = both metrize the same topology on P(Z).

For more specific models (34), improvements of the above results are pos-
sible. The potential of such improvements consists in exploiting specific re-
course structures, i.e., in additional information on the shape of the sets B; in
Lemma 33 and on the behaviour of the (value) function ® on these sets. These
considerations may lead to stability results with respect to probability metrics
that are (much) weaker than (jpn,. To illustrate such an improvement, let us
consider the case of pure integer recourse where ® is given by

o(t) = min{(q,y) : Wy > t,y € Z"}, (43)

the technology matrix is fixed and the right-hand side is fully stochastic, i.e.,
T(&) = T and h(¢) = €. This situation fits into the general model (34) by
setting ¢ = 0, m = r and W = —I,, with I. denoting the (r,r)-identity
matrix. For such models Schultz (1996) observed that stability holds with
respect to the Kolmogorov metric dx on P(E).

Corollary 38 Let ® be given by (43), T(§) =T, h(§) =& and E be bounded.
Furthermore, let the conditions (B1)-(B3) be satisfied with T = R®. Assume
that P € P(Z), X*(P) is nonempty and U C R™ is an open bounded neigh-
bourhood of X*(P). Then there exist constants L > 0 and 6 > 0 such that

[9(P) — Ju(Q)| < Ldx (P, Q)
0 £ X;(Q) C X*(P) + Up(Ldg(P,Q))B,
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and X};(Q) is a CLM set of (34) relative to U whenever @@ € P(Z) and
dx(P,Q) < 0. Here, the function Up is given by (23).

Proof: The assumptions imply that & is even constant on B; for each i € N
and the continuity regions of ® are rectangular (see Schultz (1996)). Without
loss of generality the set = may be chosen to be rectangular. Then the sets Ef“x
in Proposition 34 are also bounded rectangular sets and Fy(z,-) is constant
on each ZF . Hence, the estimate (38) takes the form

| [ Folw, (P~ Q)(&)| < KL1 R anex (P, Q).

where apex(P, Q) := sup{|P(B) — Q(B)| : B is a box in R*}. Finally, we use
the known estimate
abOX(Pv Q) < CdK(Pv Q)

for some constant C' > 0 and derive the result from Theorem 35. O
3.3 Linear Chance Constrained Programs

In this section, we study consequences of the general stability analysis of Sec-
tion 2 for linear chance constrained stochastic programs of the form

min{(c,z):x € X, P({¢ € 2: T({)x > h(&)}) > p}, (44)

where ¢ € R™, X and = are polyhedra in R™ and R®, respectively, p € (0,1),
P € P(E), and the right-hand side h(¢) € R" and the (r,m)-matrix T'(§)
depend affine linearly on & € =.

We set d = 1, Fy(z,&) = (c,z), Fi(2,§) = p — Xa@) (). where H(z) = {£ €
E: T(§)x > h(€)} and xpg(y) its characteristic function, and observe that the
program (44) is a special case of the general stochastic program (1). We note
that the set H(z) is polyhedral for each x € X. In fact, these sets are given as
the finite intersection of r closed half-spaces. Furthermore, the multifunction H
from R™ to R® has a closed graph and, hence, the mapping (z, &) — x#(@)(§)
from R™ x = to R is upper semicontinuous. This implies that Fj is lower
semicontinuous on R™ x = and, hence, a random lower semicontinuous function
(Example 14.31 in Rockafellar and Wets (1998)). Moreover, we have p — 1 <
Fi(z,&) < p for any pair (z,&). By specifying the general class of probability
measures and the minimal information probability metric in Section 2.2 we
obtain

Pr(E)={QePE): swp max| [ F@.8dQ()| < o} = P(E)

zeXncly 7=0,1
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ds,(P.Q)= suwp max]| [ Fi(z,&)(P = Q)(d)
A

) = Q(H ()]

= sup [P(H
zeXM el

for each P, @ € P(Z) and any nonempty, open and bounded subset U of R™.
Due to the polyhedrality of the sets H(x) for any = € R™, the polyhedral
discrepancies app, on P(Z) for every k € N (see Section 2.1) or related dis-
crepancies appear as natural candidates for suitable probability metrics in
case of model (44). The following result is an immediate consequence of the
general methodology in Section 2.

Theorem 39 Let P € P(E) and assume that

(i) X*(P)# 0 and U C R™ is an open bounded neighbourhood of X*(P),

(i) the mapping & {y € R - P{E € = : T(E)r > h(E)}) > p— ) is
metrically reqular at each pair (Z,0) with & € X*(P).

Then there exist constants L > 0, 0 > 0 and k € N such that

[9(P) — Ju(Q)| < L ap, (P, Q)
0 # X;(Q) S X*(P) + Wp(Lag, (P.Q))B,

and X3;(Q) is a CLM set of (44) relative to U whenever @@ € P(Z) and
aph, (P, Q) < 6. Here, the function Wp is given by (23).

Proof: All sets H(z) are polyhedra in R® given by r linear inequalities. Hence,
the number of faces of H(z) is bounded by some k € N not depending on
x € R™. Since all assumptions of Theorem 5 are satisfied for the special
situation considered here, the result follows from the Theorems 5 and 9 by
taking into account the estimate dz, (P, Q) < apn, (P,Q). O

We show that Theorem 39 applies to many chance constrained models known
from the literature. First we discuss the metric regularity property (ii) of the
original probabilistic constraint in (44). The following example shows that
condition (ii) is indispensable for Theorem 39 to hold.

Example 40 Let P € P(R) have a distribution function F» which is continu-
ously differentiable and satisfies Fip(z) = x2*™! +p for all x in a neighbourhood
of x =0 and some p € (0,1) and s € N. Let us consider the model

min{z : z € R, P({ < x) = Fp(x) > p}.

Then the condition VFp(z) # 0 is necessary and sufficient for the metric
regularity at Z with Fp(Z) = p (Example 9.44 in Rockafellar and Wets (1998)).
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Clearly, this condition is violated at the minimizer £ = 0. To show that the
result gets lost, we consider the measures P, = (1 — %)P + %(5;, n € N. The
sequence (P,) converges weakly to P and, thus, it converges with respect to the

Kolmogorov metric di as P is continuous. Then |J(P)—9(P,)| = (L)ﬁ =:

n—1
When looking for general conditions implying (ii), one has to resort to results
for nonconvex and nondifferentiable situations. The function

g(x) :=P({{ € B:T( )z = h(£)})

from R™ into R is known to be upper semicontinuous (Proposition 3.1 in
Romisch and Schultz (1991c¢)). However, g happens to be nondifferentiable or
even discontinuous not only in cases where the probability distribution P is
discrete, but even if T'(¢) is non-stochastic and P is continuous.

Example 41 Let P be the standard normal distribution with distribution

1
function ®. First let T'(§) = and h(&) = < for each £ € R. Then
1 0

0,z<0

glx)=P{{eR: 2> x>0}) = :
O(z), 2>0

1
Secondly, let T'(§) = and h(¢) = < for each ¢ € R. Then we have
-1 ¢

glx) =P{{eR x> —x>¢}) = O(min{—z, z}).

We also refer to Example 9 in Henrion and Romisch (1999) for a probability
distribution P having a (bounded) continuous density on = = R?, but a prob-
ability distribution function (i.e., g in case of T'({) = I and h(&) = &) that is
not locally Lipschitz continuous.

Hence, one has to go back to tools from nonsmooth analysis in general. For
example, if the function g is locally Lipschitz continuous on R™, condition (ii)
is satisfied if the constraint qualification

9(=9)(7) N (=Nx(z)) =0 (45)

holds at each 7z € X*(P) with g(Z) = p (Corollary 4.2 in Mordukhovich
(1994b)). Here, the symbol 0 stands for the Mordukhovich subdifferential (cf.
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Mordukhovich (1994a)) and Nx(z) := {z* e R" : (z*, 2 — ) < 0,Vz € X} is
the normal cone to the polyhedral set X at z € X.

For more specific structures of probabilistic constraints, even in case of a
stochastic matrix 7'(§), the situation may become much more comfortable if
P is a multivariate normal distribution. To demonstrate this, we consider the

case 2 = R T(&)x = f &x;, ie., T(E) consists of one single row, and
i=1

h(€) = &ny1. Then H(x) takes the form

H(z) = {f e R igimi > fm+1} (46)

i=1

for each x € R™, i.e., the sets H(z) are closed half-spaces in R™*!.

Corollary 42 Let P be a normal distribution on R™ with mean p € R™!
and nonsingular covariance matriz ¥ € RMUX(m+0 [ be given by (46) and
p € (%, 1). Let X*(P) be nonempty and U C R™ be an open bounded neigh-
bourhood of X*(P). Assume that there exists an & € X such that P(H(%)) > p.
Then there are constants L > 0 and 6 > 0 such that

[9(P) — Ju(Q)| < Loy (P,Q)
0+ X (Q)C X*(P)+ Vp(Lap(P,Q))B

holds and X3;(Q) is a CLM set for (44) relative to U for each Q € P(E) with
ap(P,Q) < §. Here, the function ¥p is given by (23) and ay, is the half-space
discrepancy (see Section 2.1).

Proof: For any = € R, we set 2/ := (z1,...,%m, —1) and o(z) := (Sa/, 2')2.
Let ® denote the standard normal distribution function and ¢ the standard
normal density. Then (£, ') is normal with mean (u, z') and standard devia-
tion o(2') > 0 (due to the nonsingularity of ), and

g(z) = PUEER™ - (€,2%) > 0}) = ® (

holds for any x € R™. Further, the function
g(@) = (n.a') = o (p)o(a) = [27 (g(x)) — @' (p)] o (')
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is concave on R™ due to @ '(p) > 0 and continuously differentiable on R™
with gradient

Let z € X be such that g(z) = p and & € X be the element having the
property P(H(&)) > p or, equivalently, §(Z) > 0. Then the concavity of ¢
implies (V§(z),Z — ) > 0 and, thus, V§(z) ¢ Nx(Z). Due to the equation
a( )
0

Vi(z) = j:_c))Vg( ), we conclude Vg(Z) ¢ Nx(%). Hence, the constraint
quahﬁcatlon (45) and, thus, condition (ii) of Theorem 39 are satisfied. O

For the remainder of this section we assume that the technology matrix 7'(-)
is fixed, i.e., T(§) = T. We will show that the constraint qualification of
Corollary 42, i.e., P(H(z)) > p for some Z € X, implies condition (ii) of
Theorem 39 for any r-concave probability distribution.

To recall the notion of r-concavity, we introduce first the generalized mean
function m, on R, x R, x [0,1] for r € [—00, 00| by

(Aa” + (1 = X)b")Y" , r € (0,00) or r € (—00,0),ab > 0,
0,ab=0,r € (—00,0),
my(a,b; N) = a’b = =0, (47)

max{a, b} , r = oo,

| min{a, b} , r = —o0.

A measure P € P(R?) is called r-concave for some r € [—oo, 00| (cf. Prekopa
(1995)) if the inequality

P(AB; + (1 — A)By) > m,(P(By). P(Ba); \)

holds for all A € [0,1] and all convex Borel subsets By, By of R® such that
AB; + (1 — A\)By is Borel. For r = 0 and r = —o0, P is also called logarithmic
concave and quasi-concave, respectively. Since m,.(a,b; \) is increasing in r if
all the other variables are fixed, the sets of all r-concave probability measures
are increasing if r is decreasing. It is known that P € P(R®) is r-concave for
some r € [—00,1/s] if P has a density fp such that

fP()\Z+(1 _/\)2) Z mr(s)(fP(z)afP(g);)‘)a (48)

where r(s) = r(1 —rs)"!, holds for all A € [0,1] and z, Z € R®. Let us mention
that many multivariate probability distributions are r-concave for some r €
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(—00,00], e.g. the uniform distribution (on some bounded convex set), the
(nondegenerate) multivariate normal distribution, the Dirichlet distribution,
the multivariate Student and Pareto distributions (see Prekopa (1995)).

The key observation of r-concave measures in the context of probabilistic
constraints is the following one.

Lemma 43 Let H be a multifunction from R™ to R® with closed convex graph
and P be r-concave for some r € [—o00,00]. Then the function g := P(H(+))
from R™ to R has the property

g(Az + (1= N)F) = m,(g(x), 9(2): A)
for each z,& € R™ and X\ € [0, 1].

Proof: In particular, H(x) is a closed convex subset of R® for any z € R™.
Let z,Z € R™ and A € [0,1]. Then the set AH (z) + (1 — A\)H (%) is also closed
and convex and it holds that AH (z) + (1—A)H(z) C H(Az+ (1 —X)Z). Using
the r-concavity of P this implies

9z + (1 = A7) = m,(P(H(x)), P(H(Z)); A) = my(g(2), g(2); A). O

Corollary 44 Let T({) =T and P be r-concave for some r € (—oo, c0]. Let
X*(P) be nonempty andU C R™ be an open bounded neighbourhood of X*(P).
Assume that there exists an element & € X such that P(H(%)) > p holds.
Then there are constants L > 0, 6 > 0 and k € N such that

[0(P) — 9u(Q)| < L ap, (P, Q)
0 # X (Q) € X*(P) + ¥p(Lap, (P, Q))B,

and X3(Q) is a CLM set for (44) relative to U whenever Q@ € P(Z) and
aph, (P, Q) < 6. Here, the function Wp is given by (23).

Proof: We assume without loss of generality that » < 0. Again we have to
verify the metric regularity condition (ii) of Theorem 39. To this end, we
use the function g(-) := p" — ¢"(-) instead of g(-) := P(H(:)). Since P is
r-concave, the function §(-) is concave on R™. We consider the set-valued
mapping I'(z) :={v € R: 2 € X, §(x) > v} from R™ to R. Its graph is closed
and convex. Let 7 € X with ¢g(z) = p, i.e., §(Z) = p". As there exists an
# € X such that g(z) > p, i.e., §(Z) > 0, the element v = 0 belongs to the
interior of the range of I'. Hence, the Robinson-Ursescu Theorem (Theorem
9.48 in Rockafellar and Wets (1998)) implies the existence of constants a > 0
and € > 0 such that

d(z, T '(v)) < ad(v,T'(z)) < amax{0,v — §(z)}
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holds whenever x € X, ||z — Z|| < e and |v| < e. For z € X with ||z — 7| <e
and sufficiently small |y| we obtain

d(z, X, (P)) = d(z,T ' (p" — (p—y)")) < amax{0,¢"(z) — (p—y)"}

Finally, it remains to use that the function v — v" is locally Lipschitz contin-
uous on (0,4o00). O

The above result improves in case of h({) = ¢ and, hence, g(z) = Fp(Tz),
where F'p is the distribution function of P. Then the polyhedral discrepancy
apn, can be replaced by the Kolmogorov distance dx.

The next result provides a sufficient condition for (ii) in situations where P is
not quasiconcave, but has a density on R?. Here, metric regularity is implied
by a growth condition of g(-) = Fp(T-) (see Henrion and Rémisch (1999)).

Corollary 45 Let T(§) =T, h(¢) =&, P € P(R®) have a density fp, X*(P)
be nonempty and U C R™ be an open bounded neighbourhood of X*(P).
Assume the following two conditions for each & € X*(P):

(i) (TT+bdRS )N {& e R : Fe >0 such that fp(n) > e,V € &+ eB} #0,
(ii) there exists an & € X such that TZ > TT holds componentwise.

Then there are constants L > 0 and § > 0 such that

[9(P) — du(Q)| < Ldg(P.Q)
0 # X (Q) C X*(P) + ¥p(Ldx(P,Q))B,

and X35(Q) is a CLM set of (44) relative to U whenever @@ € P(Z) and
dx(P,Q) < 0. Here, the function Up is given by (23).

The essential condition (i) says that, for each x € T(X*(P)), the boundary
of the cell x + R® meets the strict positivity region of the density of P some-
where. This implies a suitable growth behaviour of the distribution function
Fp at elements of T(X*(P)) and, hence, metric regularity.

Finally, we study the growth function 1p of (44) and derive conditions imply-
ing quadratic growth near solution sets in case of h(¢) = ¢ and a logarithmic
concave measure P. The first step of our analysis consists in a reduction argu-
ment that decomposes problem (44) into two auxiliary problems. The first one
is a stochastic program with modified objective and probabilistic constraints
(with decisions taken in R?) whereas the second one represents a parametric
linear program. The argument is similar to Lemma 28 for two-stage models
and was proved in Henrion and Rémisch (1999).

Lemma 46 Let Q € P(R®) and U C R™ be a nonempty open set such that
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its closure is a polytope. Then we have

Vu(Q) = inf{my(y) : y € T(Xu), Foly) > p} and Xy(Q) = ou(Yu(Q)),
where
Xy=XnN cll,
Yu(Q) = argmin {m,(y) : y € T(Xu), Fol(y) > p},
mu(y) =inf{{c,x) : Te =y, x € Xy},
oy(y) =argmin {{c,z) : Tx =y, x € Xy} (v € T(Xy)).

Here, my is convex polyhedral on T(Xy) and oy is Lipschitz continuous on
T (Xy) with respect to the Pompeiu-Hausdorff distance on R®.

Theorem 47 Let T(§) =T, h(&) =&, P € P(R®) be logarithmic concave and
X*(P) be nonempty and bounded. Assume that

(i) X*(P)Nargmin{{c,z) :z € X} =0;
(ii) there exists an T € X such that Fp(TZT) > p;
(1ii) log Fp is strongly concave on some convex neighbourhood V of T(X*(P)).

Then there exist L > 0 and § > 0 and a neighbourhood U of X*(P) such that

Do (X*(P), X34(Q)) < Ldx (P, Q)"?

holds whenever @ € P(R®) and dx(P, Q) < 0. Here, Dy, denotes the Pompeiu-
Hausdorff distance on subsets of R™ and dx the Kolmogorov metric on P(R?).

Proof: Let Uy C R™ be an open convex set such that X*(P) C U, and
T(Uy) C V. For each x € X*(P) select e(x) > 0 such that the polyhedron
z + £(2)Bs (with B, denoting the closed unit ball w.r.t. the norm || - || on
R™) is contained in Uy. Since X*(P) is compact, finitly many of these balls
cover X*(P). The closed convex hull I of their union is a polyhedron with
X*(P) CU C U C Uy, where U = int U . With the notations of Lemma 46
we consider the problem

min{my (y) : y € T(Xu), §(y) := logp — log Fp(y) < 0}.

According to Lemma 46 the solution set Y;,(P) of this problem fulfils X*(P) =
X (P) = ou(Yu(P)). Let y, € Yy (P) and § = TZ with £ € X from (ii). Then
the logarithmic concavity of P implies for any A € (0, 1]:

gAT+ (1 = Ny.) =logp — log Fp(AF + (1 — A)ys)
<logp — Alog Fp(y) — (1 — A)log Fp(ys)
< A(logp — log Fp(7)) < 0.
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Thus, we may choose A € (0,1] such that § = Ay + (1 — A)y, belongs to
T(Xy) and has the property §(y) < 0. This constraint qualification implies
the existence of a Kuhn-Tucker coefficient A, > 0 such that

mu(y.) = min{my(y) + \g(y) : y € T(Xy)} and  A.g(y.) = 0.

In case A, = 0, this would imply y, € argmin {m,(y) : y € T(Xy)} and, hence,
the existence of some z, € X*(P) with (¢, z,) = my(Tx,) = min{(c,z) : Tx =
Ys, x € Xy }. Hence, condition (i) would be violated due to z* € int. Thus
A > 0 and 7y + A.g is strongly convex on T(Xy). Hence, y, is the unique
minimizer of my + A.g and the growth property

plly = vl < muly) + Xg(y) — muly*) (49)

holds for some p > 0 and all y € T(Xy).

As the assumptions of Corollary 44 are satisfied, the set-valued mapping X} (+)
is upper semicontinuous at P and X};(Q) # 0 is a complete local minimizing
set if dx (P, Q) is sufficiently small. Hence, there exists a 6 > 0 such that
0 # X5(Q) C U for all Q@ € P(R*) with dg(P.Q) < 0. With the notations
from Lemma 46 and using the fact that Y;,(P) = {y.} and X*(P) = X\(P) =
oy/(y«) we obtain

Do (X*(P), X;(@Q)) = D (0u(y2) ou (Yu (@) < L sup_ |y — .,

yEYL(Q)

where I > 0 is the Lipschitz constant of oy (cf. Lemma 46). Using (49) and
Y(Q) C T(Xy), the above chain of inequalities extends to

i/ ~
pl/? esi;l?cz)[ﬁu(y) +A4(y) — mu(y)]'?
ye Yy

L

= W{%(Q) —9(P) + A (logp — log Fp(y))]*/2

~

< %%(Q) — J(P) + A(log Fo(y) — log Fr(y))]'

Do (X*(P), X5(Q)) <

A

L As 1/2
< Sl + ) (P.Q)
where L > 0 is the constant from Theorem 39 and % the Lipschitz constant of
log(+) on [p, 1]. This completes the proof. O

A slightly more general version of the result for r-concave measures was proved

in Henrion and Rémisch (1999). The assumptions (i)—(iii) imposed in Theo-
rem 47 concern the original problem. The conditions (i) and (ii) mean that
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the probability level p is not chosen too low and too high, respectively. Con-
dition (i) expresses the fact that the presence of the probabilistic constraint
Fp(Tx) > p moves the solution set X*(P) away from the one obtained with-
out imposing that constraint. Recent results in Henrion and Romisch (2002)
show that assumption (i) is not necessary for Theorem 47 to hold. Assump-
tion (iii) is decisive for the desired growth condition of the objective function
around X*(P). In contrast to the global concavity of log Fip, (iii) requires the
strong concavity of log Fp as a local property around T'(X*(P)). Since general
sufficient criteria for (iii) are not available so far, we provide a few examples.

Example 48 (strong logarithmic concavity of measures)

Let P be the uniform distribution on some bounded rectangle in R® having
the form D = x5_4[a;, b;]. Then log Fp(§) = 374 log(& — a;), £ € D. Clearly,
log(- — a;) is strongly concave on any closed subinterval of (a;,b;). Hence,
log Fp(+) is strongly concave on any closed convex subset of int D.

Let P be the multivariate normal distribution on R® having a nonsingular
diagonal covariance matrix. A direct computation for the standard normal
distribution function ® on R shows that log ® is strongly concave on any
bounded interval. Since log Fp is equal to the sum of logarithms of the marginal
distribution functions, it is strongly concave on any bounded convex set in R®.

4 Approximations of Stochastic Programs

Many approximations of stochastic programs result from replacing the under-
lying probability distribution by some other measure, which typically leads to
simpler models. Important examples are nonparametric statistical estimates
(e.g. empirical ones) and scenario tree constructions using probability distribu-
tion information. Next we give an idea how the results of the previous sections
may be used to design and to analyse approximations of stochastic programs.
We begin with some glimpses into the analysis of empirical approximations
and the relations to empirical process theory. A more far-reaching analysis is
given in Pflug (2003) and Shapiro (2003).

4.1 A Glimpse of Empirical Approximations

Let P € P(E) and &1, &, ..., &, ... be independent identically distributed Z-
valued random variables on a probability space (€2, A, P) having the common
distribution P, i.e., P = P¢; . We consider the empirical measures

Py(w) == b (weN; neN),
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where d; denotes the unit mass at £ € Z, and the empirical approximations
of the stochastic program (1), i.e., the models that result from replacing P by
P,(-). These take the form

n n

min{ 3" Fo(z.&(-) : 7€ X. Y Fi(2.&() <0, j=1,....d},  (50)

i—=1 i=1

where the factor % in the objective and constraints has been removed. Since

the objective and constraint functions Fj, j = 0,...,d, are assumed to be
random lower semicontinuous functions from R™ x = to R, the constraint set
is closed-valued and measurable from {2 to R™ and, hence, the optimal value
JI(P,(-)) of (50) is measurable from Q to R and the solution set X*(P,(-))
is a closed-valued measurable multifunction from Q to R™ (see Chapter 14
and, in particular, Theorem 14.37 in Rockafellar and Wets (1998)). The same
conclusion is valid for the localized concepts ¥, and X}, for any nonempty
open subset U of R™.

Another measurability question arises when studying uniform convergence
properties of the empirical process

{n3(P.() = P)F =n": ) (F(&() — PF)}Fef’

i=1

indexed by some class F of functions that are integrable with respect to P.
Here, we set QF = [ F(§)dQ(§) for any Q € P(E) and F € F. Since the
suprema dz(P,(+), P) = suppcx |P,(-)F' — PF| may be non-measurable func-
tions from Q to R, we introduce a condition on F that simplifies matters and
is satisfied in most stochastic programming models. A class F of measurable
functions from = to R is called P-permissible for some P € P(Z) if there exists
a countable subset F, of F such that for each function F' € F there exists
a sequence (F,) in Fy converging pointwise to F' and such that the sequence

(PF),) also converges to PF. Then

dr(P,(w), P) = sup |(P,(w) — P)F| = dz,(P,(w), P)

FeF

holds for each n € N and w € 2, i.e., the analysis is reduced to a countable
class and, in particular, d=(P,(:), P) is a measurable function from € to R.
A P-permissible class F is called a P-Glivenko-Cantelli class if the sequence
(dz(P,(-), P)) of random variables converges to 0 P-almost surely. If F is P-
permissible, the empirical process {nz(P,(-) — P)F}rer is called uniformly
bounded in probability with tail Cx(-) if the function C'z(-) is defined on (0, 0o)
and decreasing to 0, and the estimate

P({w : nZds(P,(w), P) > €}) < Cx(e) (51)
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holds for each ¢ > 0 and n € N. Whether a given class F is a P-Glivenko-
Cantelli class or the empirical process is uniformly bounded in probabil-
ity depends on the size of the class F measured in terms of certain cover-
ing numbers or the corresponding metric entropy numbers defined as their
logarithms (e.g., Dudley (1984), Pollard (1990), van der Vaart and Wellner
(1996)). To introduce these concepts, let F be a subset of the normed space
L,(E, P) for some r > 1 equipped with the usual norm ||F||p, = (P|F|")".
The covering number N(e, F, L.(Z, P)) is the minimal number of open balls
{G e L.(E,P):||G— F|pyr < ¢} needed to cover F. A measurable function
Fr from = to R is called an envelope of the class F if |F(€)| < Fx(€) holds for
every £ € 2 and F' € F. The following result provides criteria for the desired
properties in terms of uniform covering numbers.

Theorem 49 Let F be P-permissible with envelope Fr. If PFr < 0o and

sup N(ellFzllga, F, 11(Q)) < oo, (52)

then F is a P-Glivenko-Cantelli class. If F is uniformly bounded and there
exist constants r > 1 and R > 1 such that
R\~
sup N(el| Frllga 7. 12(Q)) < (3) (53)

holds for all ¢ > 0, then the empirical process indexed by F is uniformly
bounded in probability with ezponential tail Cr(e) = (K(R)er )" exp(—2¢2)
with some constant K (R) depending only on R.

The suprema in (52) and (53) are taken over all finitely discrete probability
measures Q with | Frllg1 = QFr > 0 and ||Fx||3 5 = QF# > 0, respectively.

For the proof we refer to Talagrand (1994), van der Vaart and Wellner (1996)
and van der Vaart (1998). For studying entropic sizes of stochastic programs
Pflug (1999, 2003) uses results of this type but with bracketing numbers in-
stead of uniform covering numbers. He also studies situations where F is not
uniformly bounded and shows that the blow-up function nt for n — oo has
to be replaced by some function converging to oo more slowly. Here, we use
the concept of uniform covering numbers since they turn out to be useful for
discontinuous functions.

The stability results of Section 2 directly translate into convergence results
and rates, respectively, for empirical optimal values and solution sets.

Theorem 50 Assume that the conditions (i)-(iii) of Theorem 5 are satisfied
and that Fy 1s P-permissible.
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If Fy 1s a P-Glivenko-Cantelli class, the sequences

(19(P) = 9 (Pa())]) and ( sup d(z, X*(P)))

ze Xy (Pn(-))

converge P-almost surely to 0. Furthermore, the set X};(P,(w)) is a CLM set
of (50) relative to U for sufficiently large n € N and for P-almost all w € Q.
If the empirical process indexed by Fy; is uniformly bounded in probability with
tail Cx,(-), the following estimates hold for each € > 0 and each n € N:

B(|0(P) — du(Pa())] > en™%) < O, (mins, 7). (54)
P(mexs*lzg N d(z, X*(P)) > en™?) < Cr, (min{d, L7U5 ()}). (55)

Proof: Let L >0, L > 0, § > 0 be the constants in Theorems 5 and 9. First,
let Fy; be a P-Glivenko-Cantelli class and A € A be such that P(4) = 0 and
(dg, (Py(w), P)) converges to 0 for every w € Q\ A. Let w € Q\ A. Then
X} (P, (w)) is nonempty, since the objective function [z Fy(-, &)dP(§) is lower
semicontinuous on X and the constraint set Ay(P,(w)) is compact due to
Proposition 3. Let ng(w) € N be such that dg,(P,(w), P) < ¢ holds for each
n > ng(w). Due to the Theorems 5 and 9 the estimates

[9(P) — D (Pu(w))]
sup  d(z, X*(P))

rEX, (P (w))

< Ldz,(P,(w), P)
S\pr(f/d]:u(Pn(w)aP))

hold for n > ng(w). In particular, the sequences (|9(P) — ¥y (P,(w))|) and
(SUPyex (P, (w)) d(®, X*(P))) converge to 0. Hence, X (P, (w)) € U and, thus,
X (Py(w)) is a CLM set relative to U for sufficiently large n € N.

Now, let ¢ > 0 be arbitrary. The Theorems 5 and 9 also imply

P(|9(P) = Ju(FPu(-))] > €)

IN

B(dr (Pu(). P) = min{s, ). (56)
P( sup d(z, X*(P)) >¢) <P(dg,(P,(-), P) > min{d, L 1T (e)}). (57)

r€Xy (Pn(+))

IN

If the empirical process indexed by J;, is uniformly bounded in probability
with tail C'g, (+), the estimates (56) and (57) may be continued by using (51)
and, thus, lead to (54) and (55). O

The estimates (54) and (55) may be used to derive the speed of convergence
in probability of optimal values and solution sets, respectively. Clearly, the
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speed depends on the asymptotic behaviour of the tail C'x, (¢) as ¢ — oo and
of the function ¥p. For the situation of exponential tails, this is elaborated in
Rachev and Rémisch (2002).

Next we show how our analysis applies to two-stage stochastic programs with
and without integrality requirements and to chance constrained models. It
turns out that, under reasonable assumptions on all models, the empirical
process indexed by F, is uniformly bounded in probability with exponential
tails.

Example 51 (linear chance constrained models)

A class B of Borel sets of R® is called a Vapnik-Cervonenkis (VC) class of
index r = r(B) if r is finite and equal to the smallest n € N for which no set
of cardinality n+ 1 is shattered by B. B is said to shatter a subset {{;, ..., &}
of cardinality I in R® if each of its 2! subsets is of the form BN {¢;, ..., &} for
some B € B. For VC classes B it holds that

N(€, {XB B e B},Ll(E,Q)) < Ke™

for any e > 0 and @ € P(Z), and some constant K > 0 depending only on
the index r (Theorem 2.6.4 in van der Vaart and Wellner (1996)).

For any polyhedral set = C R* and k£ € N the class By, (Z) is a VC class,
since the class of all closed half spaces is VC and finite intersections of VC
classes are again VC. The corresponding class of characteristic functions is
permissible for P, since the set of all polyhedra in By, () having vertices at
rational points in R® plays the role of the countable subset in the definition of
permissibility. Hence, Theorem 49 applies and the empirical process indexed
by Fu = {Xu(@) : ® € X N clU}, where U is a bounded open set containing
X*(P), is uniformly bounded in probability with exponential tail Cx, () =
Ker exp(—2¢?) for some index r € N and some constant K > 0. For example,
from Theorem 50 we obtain for each € > 0 and n € N the estimate

P( sup d(z. X*(P))>en"%) < Ke"exp(—2min{s, LT3 () }?).
TEXp (Pn())

Example 52 (two-stage models without integrality)

Let Fp be defined as in Section 3.1 and let (A1) and (A2) be satisfied. Then, for
each nonempty open and bounded subset U of R™, the class Fyy = {Fy(z, ) :
r € X N clU} is a subset of Li(=, P). Fyy is also permissible for P, since
any class {Fy(z,-) : ¢ € X.} with X, being a countable and dense subset of
X N clU may be used as the countable subset of 7, in the definition of permis-
sibility. Proposition 22 implies that the function Fg, (&) := K max{l, ||¢||*}
(¢ € E) is an envelope of Fy for sufficiently large K > 0. Furthermore,
due to the Lipschitz continuity property of Fy(-,&) with Lipschitz constant
Lmax{1,[|€]?} (see Proposition 22), the uniform covering numbers of F, are
bounded by the covering numbers of X N clU (see Theorem 2.7.11 in van der
Vaart and Wellner (1996)). In particular, for each finitely discrete measure
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Q € P(2) and with F(¢) := Lmax{1, ¢||*} (¢ € E) it holds that

N(||Fllgr Fu. Le(E,Q)) < N(e, X N clU,R™) < Ke™™, (58)

for each e > 0, » > 1 and some constant K > 0 depending only on m and
the diameter of X N clU. Using (58) for r = 1, Theorem 49 implies that F,
is a P-Glivenko-Cantelli class. If = is bounded, F, is uniformly bounded and,
using (58) for r = 2, Theorem 49 implies that the empirical process indexed
by Fy is uniformly bounded in probability with exponential tail.

Example 53 (mixed-integer two-stage models)

Let Fy be defined as in Section 3.2 and let (B1)—(B3) be satisfied and = be
bounded. Then, for each nonempty open and bounded subset U of R™, the
class

Fu = {Folw,") = X ((e.a) + (h() = T()w)xzr () 12 € X N clU}

is a subset of L;(Z, P). This representation follows from Proposition 34 if
R > 0 is chosen sufficiently large such that {£ € Z: [|h(§) =T ({)z||co > R} =0
for each z € X N clU. For each X N clUf the sets EF, (j =1...,v) form a
disjoint partition of = into Borel sets whose closures are in By, (Z) for some
k € N. Furthermore, the function ®(h(-) — T'(-)z) is Lipschitz continuous
on each of these sets with a uniform constant L, > 0. Let FJ(z,-) denote
a Lipschitz extension of the function (c,z) + ®(h(-) — T(-)z) from ZF, to
R by preserving the Lipschitz constant L; (j = 1,...,v). Furthermore, let
Fy=AF{(z,") :x € XNnecl} and G}, := {XEfm cx e XNelU} (j=1,...,v).
Now, we use a permanence property of the uniform covering numbers (cf.
Section 2.10.3 in van der Vaart and Wellner (1996)). Let Q € P(Z) be discrete

with finite support. Then the estimate

N(eCo, Fu, L2(E. Q) < [[ N(eCy Ffy La(E. Q;))N(C5. Gif, Lo (2. Qy)) - (59)
j=1

is valid, where Cy, C; > 1, C'j, j =1,...,v, are certain constants and @;, Qj,
j = 1,...,v, certain discrete measures having finite support. The constants

depend on the bounds of the uniformly bounded classes .7-'5, and gg{, ] =
1,...,v. Since the latter classes satisfy the condition (53) (see Examples 51 and
52), the estimate (59) implies that F;, satisfies (53), too. Hence, we obtain the
same estimates for mixed-integer two-stage models as in Example 52 for two-
stage models without integrality requirements and in Example 51 for linear
chance constrained models.
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Example 54 (newsboy continued)

According to Example 15, the class F is of the form Fy = {Fy(z,-) = (r —
c)r+cmax{0,z — -} : x € X N clU} with envelope Fg,(§) = rsupynay || +
c|¢| and a uniform Lipschitz constant c. Hence, Fy, is a subset of Ly(Z, P) if
J= [€]dP (&) = Xpen ik < co. As in Example 52 we obtain

N(ee, Fy, L>(2,Q)) < N(e, X N clU,R™) < Ce™

for each finitely discrete measure ) € P(Z) and, hence, Theorem 50 provides
the rate of convergence of the solution sets X;(P,(-)) of (4) with linear ¥p.

4.2 Scenario Generation and Reduction

Most of the numerical solution approaches for stochastic programs resort to
discrete approximations of the underlying probability measure P. Several ap-
proaches have been developed for the generation or construction of discrete ap-
proximations and are in use for solving applied stochastic programming models
(see the overview by Dupacova et al. (2000) and the references therein). The
quantitative stability results of Section 2.3 suggest another approach, namely,
to construct approximations for the original measure P such that they are
close to P with respect to the corresponding probability (pseudo) metric. Let
F be a set of measurable functions from = to R such that the stochastic
programming model (1) is stable in the sense of the Theorems 5 and 9 with
respect to the (pseudo) metric

#(P.Q) —sup\/F - Q)(©)|

FeF

or some other distance bounding dz(P, @) from above. This means that the
optimal values and the solution sets of (1) behave continuously at P when
perturbing P with respect to dr.

Then it is a natural requirement to construct approximate probability dis-
tributions such that they are best approximations to P in the sense of dr.
For instance, the principle of optimal scenario generation with a prescribed
number of scenarios may be formulated as follows:

Given P € P(E) and M € N, determine a discrete probability measure
Q* € P(E) having M scenarios such that

M M
dr(P,Q*) = min{df(P,quagj) > gi=1,¢,>0&€e3,j=1,.. M}
7j=1 7j=1
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Further constraints could be incorporated into the minimization problem, e.g.,
constraints implying that the scenarios exhibit a tree structure. Unfortunately,
it seems to be hopeless to solve this problem for general measures P, func-
tion classes F, supports =, and large numbers M of scenarios. However, it
is of course a challenging problem to develop approaches for solving the best
approximation problem for more specific situations, like e.g. for the uncon-
strained case £ = R®, discrete measures P (involving very many scenarios)
and function classes that are relevant in Section 3. An approach for solving
the best approximation problem in case of Z = R® and F = F;(R®) is devel-
oped in Pflug (2001).

Another important problem consists in reducing a given discrete probability
measure P = SN | p;de, with a (very) large number N of scenarios to a mea-
sure containing n of the original scenarios with n << N. Similarly as in case
of optimal scenario generation, the problem of optimal scenario reduction may
be formulated in the form

N
min {dr( Y pide,. > qi0) : T C{1.... . N} |J|=nY g5 =1.q; > 0}, (60)

i=1 jeJ jeJ

i.e., as a nonlinear mixed-integer program. Since its objective function is dif-
ficult to compute for general classes F, solution methods for (60) are a chal-
lenging task. However, in the special case that F = F,(E), for some p > 1,
the objective function of (60) turns out to be the dual optimal value of the
standard network flow problem (see Rachev and Riischendorf (1998))

N
min{ S ep& EN&G = &llmig cmiy = 0.D i = > miy = g —pz‘,W,j},

' i=1 jed

s
[

€

<

where ¢,(&, &) = max{1, [|&]], ||&]1}P°F, 4,7 = 1,..., N, and, hence, it is a
polyhedral function of g. Furthermore, in case of F = F;(Z) problem (60)
simplifies considerably.

Proposition 55 Given J C {1,..., N} we have

> aide) - X0y =1.g; 2 0f = Y pimin [l§ — &1

jeJ jeJ igJ

N
min {d]-l(s) ( > pide,
i=1

Moreover, the minimum is attained at g; = p; + > p;, for each 3 € J, where
iEJj

Ji={igJ:5=70)} and j(i) € argljnei}lﬂﬁi —&;|| for each i & J.

The proposition provides an explicit formula for the redistribution of the given
probabilities p;, ¢ = 1,..., N, to the scenarios with indices in J. For its proof
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we refer to Theorem 2 in Dupacova et al. (2003). Due to Proposition 55 the
optimal scenario reduction problem (60) in case of F = F;(E) takes the form:
Given P € P(Z) and n € N, determine a solution of

win{ S pimip e = &l 7 € {1 N} 1) = n (61)

and compute the optimal weights ¢ according to the redistribution rule in
Proposition 55. Notice that problem (61) means that the set {1,..., N} has to
be covered by a subset J of {1,..., N} and by {1,..., N}\J such that |J| =n
and the cover has minimal cost 3=, ; p; minje; [|§ — &;[|. Hence, problem (61)
is of set-covering type and, thus, A"P-hard. However, the specific structure
of the objective function allows the design of fast heuristic algorithms for
its approximate solution (see Dupacova et al. (2003), Heitsch and Rémisch
(2003)). Depending on the size of the number n of remaining scenarios, the
two basic ideas are backward reduction and forward selection, respectively. In
the backward reduction heuristic an index set J = {l,...,[,} is determined
such that

hewg min Y win [G-gl (=L
ZEJTZ kGJii_l]\{l} ngrl \{l}

where JI% = {1,... N}, JI = Ji-U\{;}, i = 1,...,n. In the forward
selection heuristic the index set J = {ly,...,l,} is chosen by an opposite
strategy such that

l; € arg m[i{ll] > ok %11111]1 & =&l (i=1,...,n)
I¢Js kB0 jeJs Uy

holds, where JI% = @, J& = Ji=% U {1}, i = 1,...,n. We refer to Heitsch
and Romisch (2003) for a discussion of the complexity of both heuristics, for
implementation issues and encouraging numerical results.

5 Bibliographical Notes

The beginnings of approximation and estimation results in stochastic pro-
gramming date back to the 1970-ies and the papers by Kall (1974) (see also
the monograph Kall (1976)), Marti (1975, 1979) and Olsen (1976) on ap-
proximations, and the work of Kankova (1977) and Wets (1979) on empirical
estimation in stochastic programming. Surveys on stability were published
by Dupacovd (1990) and Schultz (2000). The notion of stability of stochastic
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programs appeared first in Bereanu (1975), in the context of the distribution
problem, and in Karikovd (1978), where stability of minima of more general
stochastic programming models was studied with respect to weak convergence
of measures for the first time.

Later Dupacova (1984, 1987) and Wang (1985) studied the stability of stochas-
tic programs with respect to changes of finite-dimensional parameters in the
underlying probability distribution. Kall and Stoyan (1982), Salinetti (1983)
and Romisch (1981, 1985) dealt with discrete approximations to stochas-
tic programs. Further early work has been done in the surveys by Wets
(1983, 1989) and in Friedrich and Tammer (1981) (on stability), Birge and
Wets (1986) (on discrete approximation schemes), Rémisch (1986b), Kall
(1987), Robinson and Wets (1987), Romisch and Wakolbinger (1987), Vogel
(1988), Kall, Ruszczynski and Frauendorfer (1988) (on discrete approxima-
tions), Dupacovd and Wets (1988), Shapiro (1989) and Wang (1989). The
landmark papers by Kall (1987) and by Robinson and Wets (1987) address
qualitative stability results for optimal values and solution sets with respect to
weak convergence of measures. This line of research was continued in the im-
portant work by Artstein and Wets (1994) and in Vogel (1992), Schultz (1992,
1995), Lucchetti and Wets (1993), Wang (1995), Wets (1998), Zervos (1999)
and Riis and Schultz (2002). Attempts to quantify such stability results using
distances of probability measures were started in Romisch (1986b), Romisch
and Wakolbinger (1987) and continued in Romisch and Schultz (1991a—c, 1993,
1996), Artstein (1994), Kankova (1994b, 1998), Shapiro (1994), Fiedler and
Roémisch (1995), Schultz (1996), Henrion and Romisch (1999, 2000), Dentcheva
(2000) and Rachev and Rémisch (2002).

Most of the stability studies allow for general perturbations of the underlying
probability measure and develop a general framework for both discrete and sta-
tistical approximations of stochastic programs. Nevertheless, these two kinds
of approximations developed independently by exploiting their specific struc-
tures (e.g. bounding techniques on the one hand and asymptotic statistical
arguments on the other hand). For (discrete) approximations we mention the
work in Birge and Wets (1986), Kall, Ruszczyniski and Frauendorfer (1988),
Lepp (1990), Birge and Qi (1995a-b), Frauendorfer (1992, 1996), Kall (1998).
In parallel, statistical inference in stochastic programming models was stud-
ied intensively. After the early work by Kankovd and Wets, many authors
contributed to this line of research on asymptotic properties of statistical es-
timators, e.g., their consistency, rates of convergence and limit theorems. We
mention, in particular, the work of Dupacovd and Wets (1988), Vogel (1988),
Shapiro (1989, 1990, 1991, 1996, 2000), King (1989), Kankova (1990, 1994),
King and Wets (1991), Wets (1991), Ermoliev and Norkin (1991), Norkin
(1992), King and Rockafellar (1993), Rubinstein and Shapiro (1993), Bouza
(1994), Geyer (1994), Artstein and Wets (1995), Kaniovski, King and Wets
(1995), Lachout (1995), Pflug (1995, 1999), Robinson (1996), Growe (1997),
Pflug, Ruszczyiiski and Schultz (1998a,b), Mak, Morton and Wood (1999),
Shapiro and Homem-de-Mello (2000).
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Another line of research on approximations of stochastic programs is based on
the convergence (almost surely, in probability and in distribution) of measur-
able set-valued mappings and on the epi-convergence of integrands. Here, we
mention the fundamental paper by Salinetti and Wets (1986) and the work of
Salinetti (1981, 1983), Romisch (1986a), Vogel (1988, 1992, 1994, 1995), Wets
(1991), Hess (1996) and the recent papers by Korf and Wets (2000, 2001) and
by Vogel and Lachout (2000).

Much is known on the stability of values and solutions of classical two-stage
stochastic programs (Section 3.1). The situation is already different for the
stability of solutions to chance constrained models and even more to mixed-
integer two-stage models. The stability of multi-stage stochastic programs is
widely open, especially in the mixed-integer case. Another open matter are the
stability effects of incorporating risk functionals into stochastic programming
models (cf. Section 2.4).

The paper by Rachev and Rémisch (2002) provides an important source for
the material presented in this chapter, in particular, for the Sections 2.2, 2.3,
4.1 and parts of the Sections 3.1 and 3.2. Some of the results are directly taken
from that paper, namely, Theorems 5, 9, 23 and 39. Some other results rep-
resent modified or extended versions of those in Rachev and Romisch (2002)
(e.g. Theorems 35 and 50). Theorems 13 and 24 are due to work in preparation
by Romisch and Wets. Corollary 45 and Theorem 47 are taken from Henrion
and Romisch (1999) and the Corollaries 42 and 44 from Rémisch and Schultz
(1991c). The Example 41 is due to Henrion and the notion of a Lipschitz
continuous risk functional goes back to Pflug (2002).
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