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tThe behaviour of sto
hasti
 programming problems is studied in 
ase of the un-derlying probability distribution being perturbed and approximated, respe
tively.Most of the theoreti
al results provide 
ontinuity properties of optimal values andsolution sets relative to 
hanges of the original probability distribution, varying insome spa
e of probability measures equipped with some 
onvergen
e and metri
,respe
tively. We start by dis
ussing relevant notions of 
onvergen
e and distan
esfor probability measures. Then we asso
iate a distan
e with a sto
hasti
 programin a natural way and derive (quantitative) 
ontinuity properties of values and solu-tions by appealing to general perturbation results for optimization problems. Laterwe show how these results relate to stability with respe
t to weak 
onvergen
e andhow 
ertain ideal probability metri
s may be asso
iated with more spe
i�
 sto
has-ti
 programs. In parti
ular, we establish stability results for two-stage and 
han
e
onstrained models. Finally, we present some 
onsequen
es for the asymptoti
s ofempiri
al approximations and for the 
onstru
tion of s
enario-based approximationsof sto
hasti
 programs.Key words: Sto
hasti
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e, probabilitymetri
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tion1 Introdu
tionSto
hasti
 programming is 
on
erned with models for optimization problemsunder sto
hasti
 un
ertainty that require a de
ision on the basis of given prob-abilisti
 information on random data. Typi
ally, deterministi
 equivalents ofsu
h models represent �nite-dimensional nonlinear programs whose obje
tivesand/or 
onstraints are given by multivariate integrals with respe
t to the un-derlying probability measure. At the modelling stage these probability mea-sures re
e
t the available knowledge on the randomness at hand. This fa
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and the numeri
al 
hallenges when evaluating the high-dimensional integralshave drawn great attention to the stability analysis of sto
hasti
 programswith respe
t to 
hanges in the underlying probability measure. In this 
hap-ter we present a uni�ed framework for su
h a stability analysis by regardingsto
hasti
 programs as optimization problems depending on the probabilitymeasure varying in some spa
e of measures endowed with some distan
e. Wegive stability results both for general models and for more spe
i�
 sto
hasti
programs like two-stage and 
han
e 
onstrained models and in
lude most ofthe proofs. Moreover, we dis
uss some 
on
lusions about spe
i�
 approxima-tion pro
edures for sto
hasti
 programs.To spe
ify the sto
hasti
 programming models for our analysis, we re
all thatmany deterministi
 equivalents of su
h models are of the formminn Z� F0(x; �)dP (�) : x 2 X; Z� Fj(x; �)dP (�) � 0; j = 1; :::; do; (1)where the set X � Rm is 
losed, � is a 
losed subset of Rs , the fun
tionsFj from Rm � � to the extended reals R are random lower semi
ontinuousfun
tions for j = 0; :::; d, and P is a Borel probability measure on �.The set X is used to des
ribe all 
onstraints not depending on P , and the set� 
ontains the supports of the relevant measures and provides some 
exibil-ity for formulating the models and the 
orresponding assumptions. We re
allthat Fj is a random lower semi
ontinuous fun
tion if its epigraphi
al mapping� 7! epi Fj(�; �) := f(x; r) 2 Rm � R : Fj(x; �) � rg is 
losed-valued andmeasurable, whi
h implies, in parti
ular, that Fj(�; �) is lower semi
ontinuousfor ea
h � 2 � and Fj(x; �) is measurable for ea
h x 2 Rm .Although our stability analysis mainly 
on
erns model (1) and its spe
i�
a-tions, we also provide an approa
h to the stability of more general models that
ontain risk fun
tionals and are of the formminnF0(P [F0(x; �)℄�1) : x 2 X; Fj (P [Fj(x; �)℄�1) � 0; j = 1; :::; do; (2)where the risk fun
tionals Fj , j = 0; : : : ; d, map from suitable subsets of theset P(R) of all probability measures on R to R. In general, the fun
tionalsFj depend on a measure in P(R) in a more involved way than the expe
ta-tion fun
tional Fe(G) := RR rdG(r), for whi
h we have Fe(P [F0(x; �)℄�1) =RR r dP [F0(x; �)℄�1(r) = R� F0(x; �)dP (�). Another example is the varian
efun
tional Fv (G) := RR r2dG(r) � (RR rdG(r))2. We also refer to the value-at-risk fun
tional in Example 1 and to the examples in Se
tion 2.4.We illustrate the abstra
t models by the 
lassi
al newsboy example (see e.g.Dupa�
ov�a (1994), Example 1 in Rusz
zy�nski and Shapiro (2003)).Example 1 (newsboy problem)A newsboy must pla
e a daily order for a number x of 
opies of a newspaper.2



He has to pay r dollars for ea
h 
opy and sells a 
opy at 
 dollars, where 0 <r < 
. The daily demand � is random with (dis
rete) probability distributionP 2 P(N) and the remaining 
opies y(�) = maxf0; x��g have to be removed.The newsboy might wish that the de
ision x maximizes his expe
ted pro�t or,equivalently, minimizes his expe
ted 
osts, i.e.,ZR F0(x; �)dP (�) := ZR [(r � 
)x+ 
maxf0; x� �g℄dP (�)= (r � 
)x+ 
Xk2N �kmaxf0; x� kg= rx� 
xXk2Nk�x �k � 
Xk2Nk<x �kkwhere �k is the probability of demand k 2 N . The unique integer solution isthe maximal k 2 N su
h that P1i=k �i � r
 . Another possibility is that thenewsboy wishes to maximize his pro�t and, at the same time, to minimizehis risk 
osts 
s where s bounds the number y(�) of 
opies that remain withprobability p. The minimal s 
orresponds to his value-at-risk at level p. Theresulting sto
hasti
 program readsminx2R+ n(r � 
)x+ 
 inf fs 2 R+ : P (y(�) � s) � pgo:The latter program is equivalent to the 
han
e 
onstrained modelmin(x;s)2R2+ n(r � 
)x + 
s : Xk2Nx�s�k �k � po (3)whose unique integral solution is (k; 0) with the maximal k 2 N su
h thatP1i=k �i � p. Hen
e, the minimum risk solution is more pessimisti
 than theminimal expe
ted 
ost solution if r
 < p < 1, i.e., if the newsboy wants to besure with high probability that no 
opies of the newspaper remain.However, the inherent diÆ
ulty of all these approa
hes is that the newsboydoes not know the probability distribution P of the demand and has to usesome approximation instead. Hen
e, he is interested in the stability of his de
i-sion whi
h means that it doesn't vary too mu
h for small perturbations of thedata. For instan
e, his de
ision might be based on n independent identi
allydistributed observations �i, i = 1; : : : ; n, of the demand, i.e., on approximat-ing P by the empiri
al measure Pn (
f. Se
tion 4.1) and, in 
ase of minimalexpe
ted 
osts, on solving the approximate problemminx2R+ n(r � 
)x+ 
n nXi=1maxf0; x� �igo: (4)3



Of 
ourse, this approa
h is only justi�ed if some optimal solution xn of theapproximate problem (4) is 
lose to some original solution for suÆ
iently largen. Both variants of the newsboy problem represent spe
i�
 two-stage and
han
e 
onstrained sto
hasti
 programs, respe
tively. Their dis
ussion will be
ontinued in the Examples 15, 19 and 54.Throughout we will denote the set of all Borel probability measures on � byP(�), the feasible set of (1) by X (P ), the optimal value by #(P ) and the("-approximate) solution set of (1) by X�" (P ) and X�(P ), respe
tively, i.e.,X (P ) := nx 2 X : Z� Fj(x; �)dP (�) � 0; j = 1; :::; do; (5)#(P ) := inf n Z� F0(x; �)dP (�) : x 2 X (P )o; (6)X�" (P ) := nx 2 X (P ) : Z� F0(x; �)dP (�) � #(P ) + "o (" � 0); (7)X�(P ) :=X�0 (P ) = nx 2 X (P ) : Z� F0(x; �)dP (�) = #(P )o: (8)In this 
hapter, stability mostly refers to 
ontinuity properties of the optimalvalue fun
tion #(�) and the ("-approximate) solution-set mapping X�" (�) at P ,where both #(�) and X�" (�) are regarded as mappings given on a set of probabil-ity measures endowed with a suitable distan
e. The distan
e has to be sele
tedsu
h that it allows to estimate di�eren
es of obje
tive and 
onstraint fun
tionvalues, and, that it is optimum adapted to the model at hand. Fortunately,there exists a diversity of 
onvergen
e notions and metri
s in probability theoryand statisti
s that address di�erent goals and are based on various 
onstru
-tions (see, e.g., Ra
hev (1991), van der Vaart (1998)). We will use so-
alleddistan
es with �-stru
ture that are given as uniform distan
es of expe
tationsof fun
tions taken from a 
lass F of measurable fun
tions from � to R, i.e.,dF(P;Q) = supF2F ��� Z� F (�)dP (�)� Z� F (�)dQ(�)���: (9)In a �rst step we 
hoose the 
lass F as the set fFj(x; �) : x 2 X \ 
lU ; j =0; : : : ; dg, where U is a properly 
hosen open subset of Rm , and derive some(qualitative and quantitative) stability results in the Se
tions 2.2 and 2.3. Su
ha distan
e forms a kind of minimal information (m.i.) metri
 for the stabilityof (1). Some of the 
orresponding results (e.g. the Theorems 5 and 9) workunder quite weak assumptions on the underlying data of (1). In parti
ular,if possible di�erentiability or even 
ontinuity assumptions on the fun
tionsx 7! R� Fj(x; �)dP (�) are avoided for the sake of generality. The approa
h isinspired by general perturbation results for optimization problems in Klatte4



(1987,1994), Attou
h and Wets (1993) and in the monographs by Bank et al.(1982), Ro
kafellar and Wets (1998) and Bonnans and Shapiro (2000).Sin
e the m.i. metri
s are often rather involved and diÆ
ult to handle, welook, on the one hand, for impli
ations of the general qualitative result on sta-bility with respe
t to the topology of weak 
onvergen
e. On the other hand,we look for another metri
 having �-stru
ture by enlarging the 
lass F and,hen
e, bounding the m.i. metri
 from above. Our strategy for 
ontrolling thisenlargement pro
edure 
onsists in adding fun
tions to the enlarged 
lass thatshare the essential analyti
al properties with some of the fun
tions Fj(x; �). Asa result of this pro
ess we obtain ideal metri
s that are optimum adjusted tothe model (1) or to a whole 
lass of models and that enjoy pleasant properties(e.g., a duality and 
onvergen
e theory). In Se
tion 3, we show for three typesof sto
hasti
 programs how su
h ideal metri
s 
ome to light in a natural wayby revealing the analyti
al properties of the relevant fun
tions Fj(x; �). At thesame time, we obtain quantitative stability results for all models.For two-stage models 
ontaining integer variables and for 
han
e 
onstrainedmodels, the relevant fun
tions are dis
ontinuous and their ideal 
lasses 
ontainprodu
ts of (lo
ally) Lips
hitzian fun
tions and of 
hara
teristi
 fun
tions ofsets des
ribing regions of 
ontinuity (see Se
tions 3.2 and 3.3).When using stability results for designing or analyzing approximation s
hemesor estimation pro
edures, further properties of the fun
tion 
lasses F and ofthe metri
s may be
ome important. For example, we derive 
overing num-bers of 
ertain fun
tion 
lasses and dis
uss their impli
ations on probabilisti
bounds for empiri
al optimal values and solution sets.The 
hapter is organized as follows. First Se
tion 2 
ontains some prerequisiteson 
onvergen
es and metri
 distan
es of probability measures. This is followedby our main qualitative stability result (Theorem 5) and its 
on
lusions on thestability with respe
t to weak 
onvergen
e of probability measures. We 
on-tinue with the quantitative stability results for solution sets of (1) (Theorems9 and 12) and a Lips
hitz 
ontinuity result (Theorem 13) for "-approximatesolution sets of 
onvex models. We add a dis
ussion of how to asso
iate idealmetri
s with more spe
i�
 sto
hasti
 programs. Se
tion 2 is �nished by dis-
ussing the 
hallenges and by presenting �rst results of a perturbation analysisfor sto
hasti
 programs 
ontaining risk fun
tionals (2). In Se
tion 3 we 
on-sider linear two-stage, mixed-integer two-stage and linear 
han
e 
onstrainedsto
hasti
 programs and present various perturbation results for su
h models.The potential of our general perturbation analysis is explained in Se
tion 4 fortwo types of approximations of the underlying probability measure P . First,we 
onsider empiri
al measures as nonparametri
 estimators of P and deriveasymptoti
 statisti
al properties of values and solutions by using empiri
al pro-
ess theory. Se
ondly, we dis
uss the optimal 
onstru
tion of �nitely dis
retemeasures based on probability metri
s and sket
h some results and heuristi
algorithms for the optimal redu
tion of dis
rete measures. We 
on
lude the
hapter with some bibliographi
al notes on the relevant literature.5



2 General Stability Results2.1 Convergen
es and Metri
s of Probability MeasuresLet us 
onsider the set P(�) of all Borel probability measures with support
ontained in a 
losed subset � of Rs . We will endow the set P(�) or some ofits subsets with di�erent 
onvergen
es and distan
es, whi
h are adapted to theunderlying sto
hasti
 program or to a whole 
lass of sto
hasti
 programs. The
lassi
al 
onvergen
e 
on
ept in probability theory is the weak 
onvergen
e ofmeasures in P(�) (see e.g. Billingsley (1968) and Dudley (1989)). A sequen
e(Pn) in P(�) is said to 
onverge weakly to P 2 P(�), shortly Pn w�! P , iflimn!1 Z� g(�)dPn(�) = Z� g(�)dP (�) (10)holds for ea
h g in the spa
e Cb(�) of bounded 
ontinuous fun
tions from �to R. It is well known that the topology �w of weak 
onvergen
e is metrizable(e.g. by the bounded Lips
hitz metri
 (11)) and that Pn w�! P holds i� thesequen
e of probability distribution fun
tions of Pn 
onverges pointwise tothe distribution fun
tion FP of P at all 
ontinuity points of FP . Anotherimportant property of weak 
onvergen
e is the 
ontinuous mapping theorem:If Pn w�! P and g : � ! R is measurable, bounded and P -
ontinuous, i.e.,P (f� 2 � : g is not 
ontinuous at �g) = 0, we have (10).Most of the distan
es on (subsets of) P(�) that will be 
onsidered are of theform dF in (9), where F is a 
lass of measurable fun
tions from � to R, and arede�ned on the set PF := fQ 2 P(�) : supF2F j R� F (�)dQ(�)j < 1g, wheredF is �nite. A uniform distan
e of the form (9) is 
alled a distan
e having�-stru
ture (see Zolotarev (1983) and Ra
hev (1991)). Clearly, dF does not
hange if the set F is repla
ed by its 
onvex hull. It is nonnegative, symmetri
and satis�es the triangle inequality, i.e., a pseudometri
 on PF . dF is a metri
if the 
lass F is ri
h enough to preserve that dF(P;Q) = 0 implies P = Q.Next we list some important examples of distan
es having �-stru
ture, wherethe 
lasses F range from (lo
ally) Lips
hitz 
ontinuous fun
tions to pie
ewise
onstant fun
tions with a pres
ribed stru
ture of dis
ontinuity sets.Example 2 (metri
s with �-stru
ture)(a) For p = 0 and p � 1 we introdu
e 
lasses Fp(�) of lo
ally Lips
hitz
ontinuous fun
tions that in
rease with pFp(�) := fF : � 7! R : jF (�)� F (~�)j � 
p(�; ~�)k� � ~�k; 8�; ~� 2 �g;F0(�) :=F1(�) \ nF 2 Cb(�) : sup�2� jF (�)j � 1o:6



Here, k � k denotes some norm on Rs and 
p(�; ~�) := maxf1; k�k; k~�kgp�1for all �; ~� 2 � and p � 1 des
ribes the growth of the lo
al Lips
hitz
onstants. The 
orresponding distan
e with �-stru
ture for p = 0 is thebounded Lips
hitz metri
 (Se
tion 11.3 of Dudley (1989))�(P;Q) := supF2F0(�) ��� Z� F (�)dP (�)� Z� F (�)dQ(�)��� (11)and metrizes the weak 
onvergen
e on P(�). For p = 1 we arrive at theKantorovi
h metri
�1(P;Q) := supF2F1(�) ��� Z� F (�)dP (�)� Z� F (�)dQ(�)��� (12)and for p � 1 at the p-th order Fortet-Mourier metri
s (see Fortet andMourier (1953) and Ra
hev (1991))�p(P;Q) := supF2Fp(�) ��� Z� F (�)dP (�)� Z� F (�)dQ(�)��� (13)on the set Pp(�) := fQ 2 P(�) : R� k�kpdQ(�) < 1g of probabilitymeasures having �nite p-th order absolute moments. It is known that asequen
e (Pn) 
onverges to P in (Pp(�); �p) i� it 
onverges weakly andlimn!1 Z� k�kpdPn(�) = Z� k�kpdP (�)holds. Furthermore, the estimate��� Z� k�kpdP (�)� Z� k�kpdQ(�)��� � p�p(P;Q)is valid for ea
h p � 1 and all P;Q 2 Pp(�) (Se
tion 6 in Ra
hev (1991)).Hen
e, 
loseness with respe
t to �p implies the 
loseness of q-th orderabsolute moments for q 2 [1; p℄.(b) Let B denote a set of Borel subsets of � and 
onsider the 
lass FB :=f�B : B 2 Bg of their 
hara
teristi
 fun
tions �B taking the value 1 if theargument belongs to B and 0 otherwise. The distan
e with �-stru
turegenerated by FB is de�ned on P(�). It takes the form�B(P;Q) := dFB(P;Q) = supB2B jP (B)�Q(B)jand is 
alled B-dis
repan
y. The following instan
es play a spe
ial role inthe 
ontext of stability in sto
hasti
 programming:(b1) Let � be 
onvex and B
(�) the set of all 
losed 
onvex subsets of �.(b2) Let � be polyhedral and Bphk(�) the set of all polyhedra being sub-sets of � and having at most k fa
es.7



(b3) Let � = Rs and Bh(�) be the set of all 
losed half-spa
es in Rs .(b4) Let � = Rs and BK(�) := f(�1; �℄ : � 2 Rsg be the set of all 
ells.The 
orresponding distan
es are the isotrope dis
repan
y �
, the polyhe-dral dis
repan
y �phk , the half-spa
e dis
repan
y �h and the Kolmogorovmetri
. The latter metri
 
oin
ides with the uniform distan
e of distribu-tion fun
tions on Rs and is denoted by dK, i.e.,dK(P;Q) = �BK(P;Q) = sup�2Rs jP ((�1; �℄)�Q((�1; �℄)j:A sequen
e (Pn) 
onverges to P in P(�) with respe
t to �B, where B isa 
lass of 
losed 
onvex subsets of �, i� (Pn) 
onverges weakly to P andP (bdB) = 0 holds for ea
h B 2 B (with bdB denoting the boundary ofthe set B).The examples reveal some relations between the weak 
onvergen
e of proba-bility measures and their 
onvergen
e with respe
t to a uniform metri
 dF forsome 
lasses F . Su
h relations have already been explored more systemati
allyin the literature. A 
lass F of measurable fun
tions from � to R is 
alled aP -uniformity 
lass iflimn!1 dF(Pn; P ) = 0 (14)holds for ea
h sequen
e (Pn) that 
onverges weakly to P . Ne
essary 
onditionsfor F to be a P -uniformity 
lass are that F is uniformly bounded and thatevery fun
tion in F is P -
ontinuous. SuÆ
ient 
onditions are given in Billings-ley and Tops�e (1967), Tops�e (1967,1977) and Lu

hetti et al. (1994). Forexample, F is a P-uniformity 
lass if it is uniformly bounded and it holds thatP (f� 2 � : F is not equi
ontinuous at �g) = 0 (Tops�e (1967)). Unless F isuniformly bounded, 
ondition (14) 
annot be valid for any sequen
e (Pn) that
onverges weakly to P . In that 
ase, a uniform integrability 
ondition withrespe
t to the set fPn : n 2 Ng has to be additionally imposed on F . The setF is 
alled uniformly integrable with respe
t to fPn : n 2 Ng iflimR!1 supn2N supF2F ZF (�)>R jF (�)jdPn(�) = 0: (15)Note that 
ondition (15) is satis�ed if the moment 
onditionsupn2N supF2F Z� jF (�)j1+"dPn(�) <1 (16)holds for some " > 0 (Se
tion 5 in Billingsley (1968)). Then the 
ondition(14) is valid for any sequen
e (Pn) that 
onverges weakly to P in PF and has8



the property that F is uniformly integrable with respe
t to fPn : n 2 Ngif the set FR := f[F ℄R(�) := maxf�R;minfF (�); Rgg : F 2 Fg of trun-
ated fun
tions of F is a P -uniformity 
lass for large R > 0. Sin
e the
lass FR is uniformly bounded, it is a P -uniformity 
lass if P (f� 2 � :FR is not equi
ontinuous at �g) = 0. SuÆ
ient 
onditions for 
lasses of 
har-a
teristi
 fun
tions of 
onvex sets to be P -uniformity 
lasses are mentioned inExample 2(b).2.2 Qualitative StabilityTogether with the original sto
hasti
 programming problem (1) we 
onsider aperturbation Q 2 P(�) of the probability distribution P and the perturbedmodelminn Z� F0(x; �)dQ(�) : x 2 X; Z� Fj(x; �)dQ(�) � 0; j = 1; :::; do (17)under the general assumptions imposed in Se
tion 1. To �x our setting, letk � k denote the Eu
lidean norm and h�; �i the 
orresponding inner produ
t. ByB we denote the Eu
lidean unit ball and by d(x;D) the distan
e of x 2 Rmto the set D � Rm . For any nonempty and open subset U of Rm we 
onsiderthe following sets of fun
tions, elements and probability measuresFU := fFj(x; �) : x 2 X \ 
lU ; j = 0; :::; dg;XU(Q) := nx 2 X \ 
lU : Z� Fj(x; �)dQ(�) � 0; j = 1; :::; do (Q 2 PFU (�));PFU (�) := nQ 2 P(�) : �1 < Z� infx2X\ rB Fj(x; �)dQ(�) for ea
h r > 0 andsupx2X\ 
lU Z� Fj(x; �)dQ(�) <1 for ea
h j = 0; :::; do;and the pseudometri
 on PFU := PFU (�)dFU (P;Q) := supF2FU ��� Z� F (�)(P �Q)(d�)��� = supj=0;:::;dx2X\ 
l U ��� Z� Fj(x; �)(P �Q)(d�)���:Thus, dFU is a distan
e of probability measures having �-stru
ture. It is non-negative, symmetri
 and satis�es the triangle inequality (see also Se
tion 2.1).Our general assumptions and the Fatou Lemma imply that the obje
tive fun
-tion and the 
onstraint set of (17) are lower semi
ontinuous on X and 
losed9



in Rm , respe
tively, for ea
h Q 2 PFU (�). Our �rst results provide furtherbasi
 properties of the model (17).Proposition 3 Let U be a nonempty open subset of Rm . Then the mapping(x;Q) 7! R� Fj(x; �)dQ(�) from (X \ 
lU) � (PFU ; dFU ) to R is sequentiallylower semi
ontinuous for ea
h j = 0; :::; d.Proof: Let j = 0; :::; d, x 2 X \ 
lU , Q 2 PFU , (xn) be a sequen
e in X \ 
lUsu
h that xn ! x, and (Qn) be a sequen
e 
onverging to Q in (PFU ; dFU ).Then the lower semi
ontinuity of Fj(�; �) for ea
h � 2 � and the Fatou Lemmaimply the estimateZ� Fj(x; �)dQ(�)� lim infn!1 Z� Fj(xn; �)dQ(�)� lim infn!1 fdFU (Q;Qn) + Z� Fj(xn; �)Qn(d�)g= lim infn!1 Z� Fj(xn; �)Qn(d�): 2Proposition 4 Let U be a nonempty open subset of Rm . Then the graph ofthe set-valued mapping Q 7! XU(Q) from (PFU ; dFU ) into Rm is sequentially
losed.Proof: Let (Qn) be a sequen
e 
onverging to Q in (PFU ; dFU ) and (xn) be asequen
e 
onverging to x in Rm and su
h that xn 2 XU(Qn) for ea
h n 2 N .Clearly, we have x 2 X \ 
lU . For j 2 f1; :::; dg we obtain from Proposition 3that the estimateZ� Fj(x; �)dQ(�) � lim infn!1 Z� Fj(xn; �)Qn(d�) � 0 :and, thus, x 2 XU(Q) holds. 2To obtain perturbation results for (1), a stability property of the 
onstraintset X (P ) when perturbing the probabilisti
 
onstraints is needed. Consistentlywith the general de�nition of metri
 regularity for multifun
tions (see, e.g.,Ro
kafellar and Wets (1998)), we 
onsider the set-valued mapping y 7! Xy(P )from Rd to Rm , whereXy(P ) = nx 2 X : Z� Fj(x; �)dP (�) � yj; j = 1; :::; do;and say that its inverse x 7! X�1x (P ) = fy 2 Rd : x 2 Xy(P )g from Rm to Rdis metri
ally regular at some pair (�x; 0) 2 Rm � Rd with �x 2 X (P ) = X0(P )10



if there are 
onstants a � 0 and " > 0 su
h that it holds for all x 2 X andy 2 Rd with kx� �xk � " and maxj=1;:::;d jyjj � " thatd(x;Xy(P )) � a maxj=1;:::;dmaxn0; Z� Fj(x; �)dP (�)� yjo :To state our results we will need lo
alized versions of optimal values andsolution sets. We follow the 
on
ept proposed in Robinson (1987) and Klatte(1987), and set for any nonempty open set U � Rm and any Q 2 PFU#U(Q)= inf n Z� F0(x; �)dQ(�) : x 2 XU(Q)o;X�U(Q)=nx 2 XU(Q) : Z� F0(x; �)dQ(�) = #U(Q)o:A nonempty set S � Rm is 
alled a 
omplete lo
al minimizing (CLM) set of(17) relative to U if U � Rm is open and S = X�U(Q) � U . Clearly, CLM setsare sets of lo
al minimizers, and the set X�(Q) of global minimizers is a CLMset with X�(Q) = X�U(Q) if X�(Q) � U .Now, we are ready to state the main qualitative stability result.Theorem 5 Let P 2 PFU and assume that(i) X�(P ) is nonempty and U � Rm is an open bounded neighbourhood ofX�(P ),(ii) if d � 1, the fun
tion x 7! R� F0(x; �)dP (�) is Lips
hitz 
ontinuous onX \ 
lU ,(iii) the mapping x 7! X�1x (P ) is metri
ally regular at ea
h pair (�x; 0) with�x 2 X�(P ).Then the multifun
tion X�U from (PFU ; dFU ) to Rm is upper semi
ontinuous atP , i.e., for any open set O � X�U(P ) it holds that X�U(Q) � O if dFU (P;Q) issuÆ
iently small. Furthermore, there are positive 
onstants L and Æ su
h thatj#(P )� #U(Q)j � LdFU (P;Q) (18)holds and X�U(Q) is a CLM set of (17) relative to U whenever Q 2 PFU anddFU (P;Q) < Æ. In 
ase d = 0, the estimate (18) is valid with L = 1 and forany Q 2 PFU .Proof: We 
onsider the (lo
alized) parametri
 optimization problemminnf(x;Q) = Z� F0(x; �)dQ(�) : x 2 XU(Q)o;11



where the probability measure Q is regarded as a parameter varying in thepseudometri
 spa
e (PFU ; dFU ). Proposition 4 says that the graph of the mul-tifun
tion XU from PFU to Rm is sequentially 
losed. Hen
e, XU is upper semi-
ontinuous on PFU , sin
e 
lU is 
ompa
t. Furthermore, we know by Proposi-tion 3 that the fun
tion f from (X\ 
lU)�PFU to R is sequentially lower semi-
ontinuous and �nite. Let us �rst 
onsider the 
ase of d = 0. Sin
e f(�; Q) islower semi
ontinuous, X�U(Q) is nonempty for ea
h Q 2 PFU . Let x� 2 X�(P ),Q 2 PFU and ~x 2 X�U(Q). Then the estimatej#(P )� #U (Q)j �maxn Z� F0(x�; �)(Q� P )(d�); Z� F0(~x; �)(P �Q)(d�)o� dFU (P;Q)holds. This implies that the multifun
tion X�U from (PFU ; dFU ) to Rm is 
losedat P and, thus, upper semi
ontinuous at P .In 
ase d � 1, 
ondition (ii) implies that the fun
tion f is even 
ontinuouson (X \ 
lU) � PFU . Then we use Berge's 
lassi
al stability analysis (seeBerge (1963) for topologi
al parameter spa
es and Theorem 4.2.1 in Bank etal. (1982) for metri
 parameter spa
es) and 
on
lude that X�U is upper semi-
ontinuous at P if XU satis�es the following (lower semi
ontinuity) propertyat some pair (�x; P ) with �x 2 X�(P ):XU(P ) \ B(�x; �") � XU(Q) + a dFU (P;Q)B whenever dFU (P;Q) < �"; (19)where a � 0 is the 
orresponding 
onstant in 
ondition (iii), and �" > 0 issuÆ
iently small. To establish property (19), let �x 2 X�(P ), and a = a(�x) � 0," = "(�x) > 0 be the metri
 regularity 
onstants from (iii). First we observe thatthe estimate R� Fj(x; �)(Q� P )(d�) � dFU (P;Q) holds for any x 2 X \ 
lU ,j 2 f1; :::; dg and Q 2 PFU . Next we 
hoose �" = �"(�x) su
h that 0 < �" < " and�x + (a + 1)�" B � U . Hen
e, we have x + a�" B � U for any x 2 �x + �" B . LetQ 2 PFU be su
h that dFU (P;Q) < �". Putting yj = �dFU (P;Q), j = 1; :::; d,the above estimate implies that Xy(P )\ 
lU � XU(Q). Due to the 
hoi
e of �"we have d(x;Xy(P )\ 
lU) = d(x;Xy(P )) for any x 2 XU(P )\ (�x+ �" B ), and,hen
e, the metri
 regularity 
ondition (iii) yields the estimated(x;XU(Q))� d(x;Xy(P ) \ 
lU) = d(x;Xy(P ))� a maxj=1;:::;dmaxn0; Z� Fj(x; �)dP (�) + dFU (P;Q)o� a dFU (P;Q);whi
h is equivalent to the property (19). Hen
e, X�U is sequentially uppersemi
ontinuous at P and there exists a 
onstant Æ̂ > 0 su
h that X�U(Q) � Ufor any Q 2 PFU with dFU (P;Q) < Æ̂. Thus X�U(Q) is a CLM set of (17) relative12



to U for ea
h su
h Q.Moreover, for any x 2 XU(Q) \ (�x + �" B ) (iii) implies the estimated(x;XU(P ))= d(x;X0(P ) \ 
lU) = d(x;X0(P ))� a maxj=1;:::;dmaxn0; Z� Fj(x; �)dP (�)o� a maxj=1;:::;dmaxn0; Z� Fj(x; �)dP (�)� Z� Fj(x; �)dQ(�)o� a dFU (P;Q) ;whi
h is equivalent to the in
lusionXU(Q) \ (�x + �" B ) � XU(P ) + a dFU (P;Q)B :Sin
e X�(P ) is 
ompa
t, we employ a �nite 
overing argument and arriveat two analogues of both in
lusions, where a neighbourhood N of X�(P )appears instead of the balls �x + �" B in their left-hand sides, and a uniform
onstant â appears instead of a in their right-hand sides. Moreover, thereexists a uniform 
onstant "̂ > 0 su
h that the (new) in
lusions are validwhenever dFU (P;Q) < "̂. Now, we 
hoose Æ > 0 su
h that Æ � minfÆ̂; "̂g andX�U(Q) � N whenever dFU (P;Q) < Æ.Let Q 2 PFU be su
h that dFU (P;Q) < Æ and ~x 2 X�U(Q) � XU(Q) \ N .Then there exists an element �x 2 XU(P ) satisfying k~x� �xk � â dFU (P;Q). Weobtain #(P ) � f(�x; P )� f(~x;Q) + jf(�x; P )� f(~x;Q)j�#U(Q) + jf(�x; P )� f(~x; P )j+ jf(~x; P )� f(~x;Q)j�#U(Q) + Lfk�x� ~xk+ dFU (P;Q)�#U(Q) + (Lf â+ 1)dFU (P;Q) ;where Lf � 0 denotes a Lips
hitz 
onstant of f(:; P ) on X \ 
lU . For the
onverse estimate, let �x 2 X�(P ) and Q 2 PFU be su
h that dFU (P;Q) < Æ.Then there exists ~x 2 XU(Q) su
h that k~x� �xk � â dFU (P;Q). We 
on
lude#U (Q) � f(~x;Q) � #(P ) + jf(~x;Q)� f(�x; P )jand arrive analogously at the desired 
ontinuity property of #U by puttingL = Lf â + 1. 2The above proof partly parallels arguments in Klatte (1987). The most re-stri
tive requirement in the above result is the metri
 regularity 
ondition(iii). Example 40 in Se
tion 3.3 provides some insight into the ne
essity of13




ondition (iii) in the 
ontext of 
han
e 
onstrained models. Criteria for themetri
 regularity of multifun
tions are given e.g. in Se
tion 9G of Ro
kafellarand Wets (1998) and in Mordukhovi
h (1994b). Here, we do not intend toprovide a spe
i�
 suÆ
ient 
ondition for (iii), but re
all that the 
onstraintfun
tions R� Fj(�; �)dP (�) (j = 1; : : : ; d) are often nondi�erentiable or evendis
ontinuous in sto
hasti
 programming. In Se
tion 3.3 we show how metri
regularity is veri�ed in 
ase of 
han
e 
onstrained programs.Although Theorem 5 also asserts a quantitative 
ontinuity property for opti-mal values, its essen
e 
onsists in a 
ontinuity result for optimal values andsolution sets. As a �rst 
on
lusion we derive 
onsequen
es for the stability of(1) with respe
t to the weak 
onvergen
e of probability measures (
f. Se
tion2.1). To state our main stability result for (1) with respe
t to the topologyof weak 
onvergen
e, we need the 
lasses FRU of trun
ated fun
tions of FU forR > 0 and the uniform integrability property of FU (see Se
tion 2.1).Theorem 6 Let the assumptions of Theorem 5 for (1) be satis�ed. Further-more, let FRU be a P-uniformity 
lass for large R > 0 and (Pn) be a sequen
ein PFU that is weakly 
onvergent to P .Then the sequen
e (#U(Pn)) 
onverges to #(P ), the sets X�U(Pn) are CLM setsrelative to U for suÆ
iently large n 2 N andlimn!1 supx2X�U (Pn) d(x;X�(P ))) = 0holds if FU is uniformly integrable with respe
t to fPn : n 2 Ng.Proof: Let (Pn) be a sequen
e in PFU that 
onverges weakly to P and has theproperty that FU is uniformly integrable with respe
t to fPn : n 2 Ng. Thenthe assumption implies (see Se
tion 2.1)limn!1 dFU (Pn; P ) = 0and, hen
e, the result is an immediate 
onsequen
e of Theorem 5. 2Compared to Theorem 5, the stability of (1) with respe
t to weakly 
onver-gent perturbations of P requires additional 
onditions on FU . The previoustheorem provides the suÆ
ient 
onditions that its trun
ated 
lass FRU has theP -uniformity property for large R > 0 and that FU is uniformly integrablewith respe
t to the set of perturbations. The �rst 
ondition is satis�ed if FRUis P -almost surely equi
ontinuous on � (
f. Se
tion 2.1). It implies, in parti
-ular, the P -
ontinuity of Fj(x; �) for ea
h j = 0; : : : ; d and x 2 X \ 
lU . Theuniform integrability 
onditionlimR!1 supn2N maxj=0;:::;d supx2X\ 
lU ZjFj(x;�)j>R jFj(x; �)jdPn(�) = 0 (20)14



is satis�ed if the moment 
onditionsupn2N maxj=0;:::;d supx2X\ 
lU Z� jFj(x; �)j1+"dPn(�) <1 (21)holds for some " > 0. Assume, for example, that the fun
tions Fj satisfy anestimate of the formjFj(x; �)j � Ck�kk; 8(x; �) 2 (X \ 
lU)� �;for some positive 
onstants C; k and all j = 0; : : : ; d (see e.g. Se
tions 3.1 and3.2). In this 
ase, the uniform integrability 
ondition (20) is satis�ed iflimR!1 supn2N Zk�k>R k�kkdPn(�) = 0:The 
orresponding suÆ
ient moment 
ondition readssupn2N Z� k�kk+"dPn(�) <1for some " > 0. The latter 
ondition is often imposed in stability studies withrespe
t to weak 
onvergen
e.The P -
ontinuity property of ea
h fun
tion Fj(x; �) and 
ondition (20) arenot needed in Theorem 5. However, the following examples show that both
onditions are indispensable for stability with respe
t to weak 
onvergen
e.Example 7 Let m = s = 1, d = 0, � = R, X = R� , F0(x; �) = ��(�1;x℄(�)for (x; �) 2 R � � and P = Æ0, where Æ� denotes the measure that pla
es unitmass at �. Then #(P ) = 1 and X�(P ) = f0g. The sequen
e (Æ 1n ) 
onvergesweakly to P in P(�), but it holds that #(Pn) = 0 for ea
h n 2 N . This is due tothe fa
t that, for some neighbourhood U of 0, the set f�(�1;x℄(�) : x 2 X\ 
lUgis not a P-uniformity 
lass sin
e P (bd (�1; 0℄) = P (f0g) = 1.Example 8 Let m = s = 1, d = 0, � = R+ , X = [�1; 1℄, F0(x; �) =maxf��x; 0g for (x; �) 2 R�� and P = Æ0. Then #(P ) = 0 andX�(P ) = [0; 1℄.Consider the sequen
e Pn = (1� 1n)Æ0 + 1nÆn, n 2 N , whi
h 
onverges weaklyto P . It holds that #(Pn) = 1 � 1n and X�(Pn) = f1g for ea
h n 2 N and,thus, (#(Pn)) does not 
onverge to #(P ). Here, the reason is that the 
lassfmaxf� � x; 0g : x 2 [�1; 1℄g is not uniformly integrable with respe
t tofPn : n 2 Ng.Indeed, the weak 
onvergen
e of measures is a very weak 
ondition on se-quen
es and, hen
e, requires strong 
onditions on (1) to be stable. Many ap-15



proximations of P (e.g., in Se
tion 4.1), however, have mu
h stronger proper-ties than weak 
onvergen
e and, hen
e, work under weaker assumptions thanTheorem 6. To give an example, we re
all that the P -
ontinuity property ofea
h fun
tion Fj(x; �) is an indispensable assumption in 
ase of stability withrespe
t to weak 
onvergen
e, but this property is not needed when workingwith dFU and with spe
i�
ally adjusted ideal metri
s (and the 
orresponding
onvergen
es of measures) in 
ase of (mixed-integer) two-stage and 
han
e
onstrained models (see Se
tions 3.1, 3.2 and 3.3). Consequently, we prefer towork with these distan
es, having in mind their relations to the topology ofweak 
onvergen
e.2.3 Quantitative StabilityThe main result in the previous se
tion 
laims that the multifun
tion X�U(�)is nonempty near P and upper semi
ontinuous at P . In order to quantify theupper semi
ontinuity property, a growth 
ondition on the obje
tive fun
tionin a neighbourhood of the solution set to the original problem (1) is needed.Instead of imposing a spe
i�
 growth 
ondition (as e.g. quadrati
 growth), we
onsider the growth fun
tion  P de�ned on R+ by P (�) := minn Z� F0(x; �)dP (�)� #(P ) : d(x;X�(P )) � �; x 2 XU(P )o (22)of problem (1) on 
lU , i.e., near its solution set X�(P ), and the asso
iatedfun
tion 	P (�) := � +  �1P (2�) (� 2 R+); (23)where we set  �1P (t) := supf� 2 R+ :  P (�) � tg. Both fun
tions,  P and	P , depend on the data of (1) and, in parti
ular, on P . They are lower semi-
ontinuous on R+ ;  P is nonde
reasing, 	P in
reasing and both vanish at 0(
f. Theorem 7.64 in Ro
kafellar and Wets (1998)). The se
ond main stabilityresult establishes a quantitative upper semi
ontinuity property of (lo
alized)solution sets and identi�es the fun
tion 	P as modulus of semi
ontinuity. Inthe 
onvex 
ase, it also provides 
ontinuity moduli of 
ountable dense familiesof sele
tions to solution sets.Theorem 9 Let the assumptions of Theorem 5 be satis�ed and P 2 PFU .Then there exists a 
onstant L̂ � 1 su
h that; 6= X�U(Q) � X�(P ) + 	P (L̂dFU (P;Q))B (24)16



holds for any Q 2 PFU with dFU (P;Q) < Æ. Here, Æ is the 
onstant in Theorem5 and 	P is given by (23). In 
ase d = 0, the estimate (24) is valid with L̂ = 1and for any Q 2 PFU .Proof: Let L > 0, Æ > 0 be the 
onstants in Theorem 5, Q 2 PFU withdFU (P;Q) < Æ and ~x 2 X�U(Q). As argued in the proof of Theorem 5, thereexists an element �x 2 XU(P ) su
h that k~x � �xk � âÆ, where Æ := dFU (P;Q).Let LP � 0 denote a Lips
hitz 
onstant of the fun
tion x 7! R� F0(x; �)dP (�)on X \ 
lU . Then the de�nition of  and Theorem 5 imply thatÆ(1 + LP â + L)� Æ(1 + LP â) + #U(Q)� #(P )= Æ(1 + LP â) + Z� F0(~x; �)dQ(�)� #(P )� ÆLP â+ Z� F0(~x; �)dP (�)� #(P )� Z� F0(�x; �)dP (�)� #(P ) �  P (d(�x;X�(P )))� infy2~x+âÆB  P (d(y;X�(P ))) =  P (d(~x;X�(P ) + âÆB )) :Hen
e, we obtaind(~x;X�(P ))� âÆ + d(~x;X�(P ) + âÆB )� âÆ +  �1P (Æ(1 + LP â+ L)) � L̂Æ +  �1P (2L̂Æ) = 	P (L̂Æ);where L̂ := maxfâ; 12(1+LP â+L)g � 1. In 
ase d = 0, we may 
hoose x̂ = ~x,â = 1, L = 1, LP = 0 and an arbitrary Æ. This 
ompletes the proof. 2Parts of the proof are similar to arguments of Theorem 7.64 in Ro
kafellarand Wets (1998). Next, we brie
y 
omment on some aspe
ts of the generalstability theorems, namely, spe
i�
 growth 
onditions and lo
alization issues.Remark 10 Problem (1) is said to have k-th order growth at the solution setfor some k � 1 if  P (�) � 
�k for ea
h small � 2 R+ and some 
 > 0, i.e., ifZ� F0(x; �)dP (�) � #(P ) + 
d(x;X�(P ))kholds for ea
h feasible x 
lose to X�(P ). Then 	P (�) � � + (2�
 ) 1k � C� 1k forsome 
onstant C > 0 and suÆ
iently small � 2 R+ . In this 
ase, Theorem9 provides the H�older 
ontinuity of X�U at P with rate 1k . Important spe
ial
ases are the linear and quadrati
 growth for k = 1 and k = 2, respe
tively.17



Remark 11 In the Theorems 5 and 9 the lo
alized optimal values #U (Q)and solution sets X�U(Q) of the (perturbed) model (17) may be repla
ed bytheir global versions #(Q) and X�(Q) if there exists a 
onstant Æ0 > 0 su
hthat for ea
h Q 2 PFU with dFU (P;Q) < Æ0 either of the following 
onditionsis satis�ed: (a) The model (17) is 
onvex and X�U(Q) is a CLM set, (b) the
onstraint set of (17) is 
ontained in some bounded set V � Rm not dependingon Q, and it holds that V � U .In 
ase of a �xed 
onstraint set, i.e., d = 0, we derive an extension of Theorem 9by using a probability distan
e that is based on divided di�eren
es of thefun
tions x 7! R� F0(x; �)d(P �Q)(�) around the solution set of (1). For somenonempty, bounded, open subset U of Rm we 
onsider the following set ofprobability measuresP̂FU := nQ 2 PFU : 9CQ > 0 su
h that Z� F0(x; �)� F0(�x; �)kx� �xk dQ(�) � CQ;8x; �x 2 X \ 
lU ; x 6= �xoand the distan
ed̂FU (P;Q) := sup n Z� F0(x; �)� F0(�x; �)kx� �xk d(P �Q)(�) : x; �x 2 X \ 
lU ; x 6= �xowhi
h is well de�ned and �nite on P̂FU . The following result has been inspiredby Se
tion 4.4.1 in Bonnans and Shapiro (2000).Theorem 12 Let d = 0, P 2 P̂FU , X�(P ) be nonempty and U � Rm be abounded and open neighbourhood of X�(P ). Then the estimatesupx2X�U (Q) d(x;X�(P )) � ( rP )�1(d̂FU (P;Q))is valid for any Q 2 P̂FU , where  rP (0) = 0,  rP (�) :=  P (�)� for ea
h � > 0and  P (�) is the growth fun
tion given by (22).If, moreover, ( rP )�1 is 
ontinuous at � = 0, there exists a 
onstant Æ > 0 su
hthat X�U(Q) is a CLM set relative to U whenever d̂FU (P;Q) < Æ.If, in parti
ular, the original problem (1) has quadrati
 growth, i.e.,  P (�) �
� 2 for some 
 > 0, there exists a 
onstant Æ > 0 su
h that the in
lusion; 6= X�U(Q) � X�(P ) + 1
 d̂FU (P;Q)Bholds whenever d̂FU (P;Q) < Æ. 18



Proof: Let Q 2 P̂FU , x 2 X�U(Q) and �x 2 X�(P ) be su
h that kx � �xk =d(x;X�(P )) > 0. We denote fQ(y) := R� F0(y; �)dQ(�) for ea
h y 2 X, andhave fQ(x) � fQ(�x) and fP (x)� fP (�x) �  P (d(x;X�(P ))) =  P (kx� �xk).This leads to the following estimate rP (kx� �xk)= 1kx� �xk P (kx� �xk) � 1kx� �xk(fP (x)� fP (�x))� 1kx� �xk(fP (x)� fQ(x) + fQ(�x)� fP (�x))= 1kx� �xk((fP � fQ)(x)� (fP � fQ)(�x))� d̂FU (P;Q);whi
h 
ompletes the �rst part. Sin
e U is open, there exists an " > 0 su
hthat the "-enlargement fx 2 Rm : d(x;X�(P )) � "g of X�(P ) is 
ontained inU . Let Æ > 0 be 
hosen su
h that ( rP )�1(Æ) � ". Then d(x;X�(P )) � " and,thus, x 2 U holds for ea
h x 2 X�U(Q), 
ompleting the se
ond part.Finally, it remains to remark that quadrati
 growth implies  rP (�) � 
� forany � > 0 and some 
 > 0. 2Compared to the estimate in Theorem 9 based on fun
tion values of the fun
-tion F0, the above bound uses divided di�eren
e information of F0 relative tox and leads to Lips
hitz-type results in 
ase of quadrati
 growth.While the growth behaviour of the obje
tive fun
tion is important for thequantitative stability of solution sets even for 
onvex models, the situation ismu
h more advantageous for "-approximate solution sets. For 
onvex models(1) with a �xed 
onstraint set (i.e., d = 0), we will see that the latter setsbehave Lips
hitz 
ontinuously with respe
t to 
hanges of probability distribu-tions measured in terms of the distan
e dFU , but for a larger set U 
omparedwith stability results for solution sets. To state the result, letD �(C;D) := inff� � 0 : C \ �B � D + �B ; D \ �B � C + �Bg (25)D1(C;D) := inff� � 0 : C � D + �B ; D � C + �Bg (26)denote the �-distan
e (� � 0) and the Pompeiu-Hausdor� distan
e, respe
-tively, of nonempty 
losed subsets C, D of Rm .Theorem 13 Let d = 0, F0 be a random lower semi
ontinuous 
onvex fun
-tion, X be 
losed 
onvex, P 2 PFU and X�(P ) be nonempty and bounded.Then there exist 
onstants � > 0 and �" > 0 su
h that the estimateD1(X�" (P ); X�" (Q)) � 2�" dFU (P;Q)19



holds for U := (�+ �")B and any " 2 (0; �"), Q 2 PFU su
h that dFU (P;Q) < ".Proof: First we 
hoose �0 > 0 su
h that X�(P ) is 
ontained in the open ballU�0 around the origin in Rm with radius �0 and that #(P ) � ��0+1. ApplyingTheorem 5 with U�0 as the bounded open neighbourhood of X�(P ), we obtainsome 
onstant "0 > 0 su
h that X�(Q) is nonempty and 
ontained in U�0 and#(Q) � �0 holds whenever Q 2 PFU�0 and dFU�0 (P;Q) < "0. Now, let � > �0,�" := minf"0; �� �0; 1g and U := (�+ �")B .For any Q 2 PFU we set again fQ(x) := R� F0(x; �)dQ(�) for ea
h x 2 Rm . Fur-thermore, we denote by bd+� the auxiliary epi-distan
e of fP and fQ introdu
edin Proposition 7.61 in Ro
kafellar and Wets (1998):bd+� (fP ; fQ) := inff� � 0 : infy2x+�B fQ(y) � maxffP (x);��g + �;infy2x+�B fP (y) � maxffQ(x);��g + �; 8x 2 �B g:From Theorem 7.69 in Ro
kafellar and Wets (1998) we 
on
lude that theestimateD �(X�" (P ); X�" (Q)) � 2�" bd+�+"(fP ; fQ)is valid for " 2 (0; �") if bd+�+"(fP ; fQ) < ". Furthermore, we may estimatethe auxiliary epi-distan
e bd+�+"(fP ; fQ) from above by the uniform distan
edFU (P;Q) (
f. also Example 7.62 in Ro
kafellar and Wets (1998)).It remains to note that the level sets X�" (P ) and X�" (Q) are also bounded,sin
e fP and fQ are lower semi
ontinuous and 
onvex, and their solution setsare nonempty and bounded, respe
tively. Hen
e, we may 
hoose the 
onstant �large enough su
h that the equality D �(X�" (P ); X�" (Q)) = D1(X�" (P ); X�" (Q))holds. This 
ompletes the proof. 2Most of the results in this and the previous se
tion illuminate the role ofthe distan
e dFU as a minimal information (m.i.) pseudometri
 for stability,i.e., as a pseudometri
 pro
essing the minimal information of problem (1)and implying quantitative stability of its optimal values and solution sets.Furthermore, noti
e that all results remain valid when enlarging the set FUand, thus, bounding dFU from above by another distan
e, and when redu
ingthe set PFU to a subset on whi
h su
h a distan
e is de�ned and �nite.Su
h a distan
e did bounding dFU from above will be 
alled an ideal probabilitymetri
 asso
iated with (1) if it has �-stru
ture (9) generated by some 
lass offun
tions F = Fid from � to R su
h that Fid 
ontains the fun
tions CFj(x; �)for ea
h x 2 X\ 
lU , j = 0; : : : ; d, and some normalizing 
onstant C > 0, andsu
h that any fun
tion in Fid shares typi
al analyti
al properties with somefun
tion Fj(x; �). 20



In our appli
ations of the general analysis in Se
tion 3 we 
larify su
h typi
alanalyti
al properties. Here, we only mention that typi
al fun
tions Fj(x; �)in sto
hasti
 programming are nondi�erentiable, but pie
ewise lo
ally Lip-s
hitz 
ontinuous with dis
ontinuities at boundaries of polyhedral sets. Morepre
isely, fun
tion 
lasses F 
ontained inspan fF�B : F 2 F ; B 2 Bg; (27)where F � Fp(�), B � Bphk(�) for some p � 1 and k 2 N , are 
andidates foran ideal 
lass Fid. The extremal 
ases, namely, Fp(�) and FB, are dis
ussed inSe
tion 2.1. To get an idea of how to asso
iate an ideal metri
 with a sto
hasti
program, we 
onsider the p-th order Fortet-Mourier metri
 �p introdu
ed inSe
tion 2.1. Then the following result is an immediate 
onsequen
e of thegeneral ones.Corollary 14 Let d = 0 and assume that(i) X�(P ) is nonempty and U is an open, bounded neighbourhood of X�(P ),(ii) X is 
onvex and F0(�; �) is 
onvex on Rm for ea
h � 2 �,(iii) there exist 
onstants L > 0, p � 1 su
h that 1LF0(x; �) 2 Fp(�) for ea
hx 2 X \ 
lU .Then there exists a 
onstant Æ > 0 su
h thatj#(P )� #(Q)j �L�p(P;Q) and; 6= X�(Q)�X�(P ) + 	P (L�p(P;Q))Bwhenever Q 2 Pp(�) and �p(P;Q) < Æ. Here, the fun
tion 	P is given by (23).Proof: The assumptions of Theorem 5 are satis�ed. Hen
e, the result is a
onsequen
e of the Theorems 5 and 9 and the fa
t that (iii) is equivalent tojF0(x; �)� F0(x; ~�)j � Lmaxf1; k�k; k~�kgp�1k� � ~�kfor ea
h �; ~� 2 � and x 2 X\ 
lU , and, thus, it implies dFU (P;Q) � L�p(P;Q)for all P;Q 2 Pp(�). Furthermore, due to the 
onvexity assumption (ii) thelo
alized optimal values #U and solution sets X�U may be repla
ed by # andX�, respe
tively, if Q is 
lose to P (see Remark 11). 2Example 15 (newsboy 
ontinued)In 
ase of minimal expe
ted 
osts the set FU is a spe
i�
 
lass of pie
ewiselinear fun
tions of the form f(r � 
)x + 
maxf0; x � �g : x 2 X \ 
lUg.Furthermore, R� F0(x; �)dP (�) is also pie
ewise linear and Corollary 14 applieswith L := 
, p := 1 and a linear fun
tion 	P . Hen
e, the solution set X�(�)21



behaves upper Lips
hitzian at P 2 P1(N) with respe
t to �1, i.e.,supx2X�(Q) d(x;X�(P )) � 
�1(P;Q) = 
 ZR jFP (r)�FQ(r)jdr = 
Xk2N ��� kXi=1(�i� ~�i)���:Here, we made use of an expli
it representation of the Kantorovi
h metri
on P(R) (Se
tion 5.4 in Ra
hev (1991)), and FP and FQ are the probabilitydistribution fun
tions of the measures P = Pk2N �kÆk and Q = Pk2N ~�kÆk,respe
tively.2.4 Mean-Risk ModelsThe expe
tation fun
tional appearing in the basi
 model (1) is 
ertainly notthe only statisti
al parameter of interest of the (real-valued) 
ost or 
onstraintfun
tions Fj, j = 0; : : : ; d, with respe
t to P . Risk fun
tionals or risk mea-sures are regarded as statisti
al parameters of probability measures in P(R),i.e., they are mappings from subsets of P(R) to R. When risk fun
tionals areused in the 
ontext of the model (1), they are evaluated at the probabilitydistributions P [Fj(x; �)℄�1 for x 2 X and j = 0; : : : ; d. Pra
ti
al risk man-agement in de
ision making under un
ertainty often requires to minimize orbound several risk fun
tionals of the underlying distributions. Typi
al exam-ples for risk fun
tionals are (standard semi-) deviations, ex
ess probabilities,value-at-risk, 
onditional value-at-risk et
. Some risk measures are de�ned asin�ma of 
ertain (simple) sto
hasti
 optimization models (e.g. value-at-risk,
onditional value-at-risk). Other measures are given as the expe
tation of anonlinear fun
tion and, hen
e, their optimization �ts into the framework ofmodel (1) (e.g. expe
ted utility fun
tions, ex
ess probabilities).We refer to Se
tion 4 of P
ug (2003) for an introdu
tion to risk fun
tionals andvarious examples, to Artzner et al. (1999), Delbaen (2002), F�ollmer and S
hied(2002) for a theory of 
oherent and 
onvex risk measures, to Ogry
zak andRusz
zy�nski (1999) for the relations to sto
hasti
 dominan
e and to Ro
ka-fellar and Uryasev (2002) for the role of the 
onditional value-at-risk.Now, we assume that risk fun
tionals Fj , j = 0; : : : ; d are given. In additionto the mean-risk model (2) we denote by Q a perturbation of the originalprobability measure P and 
onsider the perturbed modelminfF0(Q[F0(x; �)℄�1) : x 2 X; Fj (Q[Fj(x; �)℄�1) � 0; j = 1; :::; dg: (28)To have all risk fun
tionals Fj well de�ned, we assume for simpli
ity thatthey are given on the subset Pb(R) of all probability measures in P(R) havingbounded support. Then both models, (2) and (28), are well de�ned if weassume that all fun
tions Fj(x; �) are bounded. Furthermore, we will need a
ontinuity property of risk fun
tionals.22



A risk fun
tional F on Pb(R) is 
alled Lips
hitz 
ontinuous w.r.t. to a 
lass Hof measurable fun
tions from R to R if the estimatejF(G) � F( ~G)j � supH2H ��� ZR H(r)d(G� ~G)(r)��� (29)is valid for all G; ~G 2 Pb(R). The following examples and Proposition 8 inP
ug (2003) show that many risk fun
tionals satisfy su
h a Lips
hitz property.Example 16 We 
onsider the 
onditional value-at-risk of a probability dis-tribution G 2 Pb(R) at level p 2 (0; 1), whi
h is de�ned byCVaRp(G) := inf nr + 11� p ZR maxf0; � � rgdG(�) : r 2 Ro:Hen
e, CVaRp(G) is the optimal value of a sto
hasti
 program with re
ourse(see Se
tion 3.1). Clearly, the estimatejCVaRp(G)� CVaRp( ~G)j � 11� p supr2R ��� ZR maxf0; � � rgd(G� ~G)(�)���is valid for all G; ~G 2 Pb(R). Hen
e, the 
onditional value-at-risk is Lips
hitz
ontinuous w.r.t. the 
lass H := fmaxf0; � � rg : r 2 Rg.The value-at-risk of G 2 Pb(R) at level p 2 (0; 1) is given byVaRp(G) := inf fr 2 R : G(� � r) � pg:Thus, VaRp(G) is the optimal value of a 
han
e 
onstrained sto
hasti
 pro-gram. In Se
tion 3.3 it is shown that the metri
 regularity of the mappingr 7! fy 2 R : G(� � r) � p�yg at pairs (�r; 0) with �r 2 X�(G) is indispenablefor Lips
hitz 
ontinuity properties of the optimal value. If the metri
 regular-ity property is satis�ed for the measure G and the level p, we obtain, fromTheorem 39, the estimatejVaRp(G)� VaRp( ~G)j � LdK(G; ~G) = supr2R ��� ZR L�(�1;r℄(�)d(G� ~G)(�)���for some 
onstant L > 0 and suÆ
iently small Kolmogorov distan
e dK(G; ~G).Hen
e, the 
orresponding 
lass of fun
tions is H := fL�(�1;r℄ : r 2 Rg. Wenote that the metri
 regularity requirement may lead to serious 
ompli
a-tions when using the value-at-risk in sto
hasti
 programming models be
auseVaRp(�) has to be evaluated at measures depending on x.23



Example 17 The upper semi-deviation sd+(G) of a measure G 2 Pb(R),whi
h is de�ned bysd+(G) := ZR maxn0; � � ZR udG(u)odG(�);is Lips
hitz 
ontinuous w.r.t. the 
lass H := fmaxf0; � � rg+ � : r 2 Rg.The examples indi
ate that typi
al Lips
hitz 
ontinuity 
lasses H of risk fun
-tionals 
ontain produ
ts of some fun
tions in Fk(R) for some k 2 N andof 
hara
teristi
 fun
tions �(�1;r℄ for some r 2 R. Hen
e, their stru
ture isstrongly related to that of the ideal fun
tion 
lasses (27) for stability.To state our main stability result for the model (2), let X (P ), #(P ), X�(P )denote the following more general quantities in this se
tion:X (P ) := fx 2 X : Fj (P [Fj(x; �)℄�1) � 0; j = 1; :::; dg;#(P ) := inffF0(P [F0(x; �)℄�1) : x 2 X (P )g;X�(P ) := fx 2 X (P ) : F0(P [F0(x; �)℄�1) = #(P )g:The lo
alized notions #U(P ) and X�U(P ) are de�ned a

ordingly.Theorem 18 For ea
h j = 0; : : : ; d, let the fun
tion Fj be uniformly boundedand the risk fun
tional Fj be Lips
hitz 
ontinuous on Pb(R) w.r.t. some 
lassHj of measurable fun
tions from R to R. Let P 2 P(�) and assume that(i) X�(P ) 6= ; and U � Rm is an open bounded neighbourhood of X�(P ),(ii) if d � 1, the fun
tion x 7! F0(P [F0(x; �)℄�1) is Lips
hitz 
ontinuous onX \ 
lU ,(iii) the mapping x 7! fy 2 Rd : x 2 X; Fj (P [Fj(x; �)℄�1) � yj; j = 1; :::; dgfrom Rm to Rd is metri
ally regular at ea
h pair (�x; 0) with �x 2 X�(P ).Then there exist 
onstants L > 0 and Æ > 0 su
h that the estimatesj#(P )� #U(Q)j �LdFHU (P;Q); 6= X�U(Q)�X�(P ) + L	P (dFHU (P;Q))Bare valid whenever Q 2 P(�) and dFHU (P;Q) < Æ. Here, 	P is given by (23)and the distan
e dFHU is de�ned bydFHU (P;Q) := supj=0;:::;dx2X\ 
lUHj2Hj ��� Z� Hj(Fj(x; �))(P �Q)(d�)���:
24



Proof: We pro
eed as in the proofs of Theorems 5 and 9, but now we use thedistan
e d̂F(P;Q) := supj=0;:::;dx2X\ 
lU ���Fj (P [Fj(x; �)℄�1)� Fj (Q[Fj(x; �)℄�1)���instead of dFU . In this way we obtain 
onstants L > 0, Æ > 0 and the estimatesj#(P )� #U(Q)j �Ld̂F(P;Q); 6= X�U(Q)�X�(P ) + L	P (d̂F(P;Q))Bfor ea
h Q 2 P(�) su
h that d̂F(P;Q) < Æ. It remains to appeal to the estimated̂F(P;Q)� supj=0;:::;dx2X\ 
l U supHj2Hj ��� ZR Hj(r)d((P �Q)[Fj(x; �)℄�1)(r)��� = dFHU (P;Q);whi
h is a 
onsequen
e of the Lips
hitz 
ontinuity (29) of the risk fun
tionalsFj , j = 0; : : : ; d. 2The result implies that stability properties of the mean-risk model (2) 
on-taining risk fun
tionals Fj with Lips
hitz 
ontinuity 
lasses Hj, j = 0; : : : ; d,depend on the 
lassFHU := fHj(Fj(x; �)) : x 2 X \ 
lU ; Hj 2 Hj; j = 0; : : : ; dginstead of FU in 
ase of model (1). Hen
e, the stability behaviour may 
hange
onsiderably when repla
ing the expe
tation fun
tionals in (1) by other riskfun
tionals. For example, the newsboy model based on minimal expe
ted 
ostsbehaves stable at all P 2 P1(N) (Example 15), but the minimum risk variantof the model (see Example 1) may be
ome unstable.Example 19 (newsboy 
ontinued)We 
onsider the 
han
e 
onstrained model (3) whose solution set is X�(P ) =f(k; 0)g with the maximal k su
h that P1i=k �i � p in its �rst 
omponent. Weassume that equality P1i=k �i = p and �k > 0 holds. To establish instability,we 
onsider the approximations Pn := P1i=1 �(n)i Æi of P , where �(n)i := �i for alli 62 fk� 1; kg and �(n)k�1 := �k�1+ 1n , �(n)k := �k� 1n for suÆ
iently large n 2 Nsu
h that �k� 1n > 0. Then the perturbed solution set is X�(Pn) = f(k�1; 0)gfor any suÆ
iently large n. On the other hand, we obtain for the Kolmogorovdistan
e dK(P; Pn) = 1n , i.e., weak 
onvergen
e of (Pn) to P . Furthermore, themodel (3) is stable with respe
t to the metri
 dK at ea
h P = P1i=1 �iÆi 2 P(N)su
h that Pki=1 �i 6= 1� p for ea
h k 2 N . The latter fa
t is a 
onsequen
e of25



Theorem 5 as the metri
 regularity 
ondition is satis�ed (see also Remark 2.5in R�omis
h and S
hultz (1991b)).However, if the 
onditional value-at-risk or the upper semi-deviation are in
or-porated into the obje
tive of (mixed-integer) two-stage sto
hasti
 programs,their ideal fun
tion 
lasses and, thus, their ideal metri
s (see Se
tions 3.1 and3.2) do not 
hange. These observations are immediate 
onsequen
es of thefollowing more general 
on
lusion of the previous theorem.Corollary 20 Let d = 0. We 
onsider the sto
hasti
 programming modelminfF0(P [F0(x; �)℄�1) : x 2 Xg; (30)where F0 is uniformly bounded and the risk fun
tional F0 is Lips
hitz 
ontin-uous on Pb(R) w.r.t. some 
lass H0.Let P 2 P(�), X�(P ) 6= ; and U be an open bounded neighbourhood of X�(P ).Assume that fF0(x; �) : x 2 X \ 
lUg is 
ontained in some 
lass F
 of fun
-tions from � to R and H Æ F 2 L0F
 holds for all H 2 H0, F 2 F
 and somepositive 
onstant L0.Then there exist 
onstants L > 0 and Æ > 0 su
h that the estimatesj#(P )� #U(Q)j �LdF
(P;Q); 6= X�U(Q)�X�(P ) + L	P (dF
(P;Q))Bare valid whenever Q 2 P(�) and dF
(P;Q) < Æ.Proof: Clearly, we have in that 
ase dFHU (P;Q) � L0dF
(P;Q). 2Important examples for H0 and F
 are multiples of F1(R) and of Fp(�) (forp � 1) and fF�B : F 2 F1(�); B 2 Bg, respe
tively.3 Stability of Two-Stage and Chan
e Constrained Programs3.1 Linear Two-Stage ModelsWe 
onsider the linear two-stage sto
hasti
 program with �xed re
ourseminnh
; xi+ Z� hq(�); y(�)idP (�) :Wy(�) = h(�)� T (�)x; (31)y(�) � 0; x 2 Xo;26



where 
 2 Rm , X � Rm and � � Rs are 
onvex polyhedral, W is an (r;m)-matrix, P 2 P(�), and the ve
tors q(�) 2 Rm , h(�) 2 Rr and the (r;m)-matrixT (�) depend aÆne linearly on � 2 �. The latter assumption 
overs many pra
-ti
al situations. At the same time, it avoids the in
lusion of all 
omponentsof the re
ourse 
osts, the te
hnology matrix and the right-hand side into �,be
ause this 
ould lead to serious restri
tions when imposing additional 
on-ditions on P . We de�ne the fun
tion F0 : Rm � �! R byF0(x; �) = 8><>: h
; xi+ �(q(�); h(�)� T (�)x) ; h(�)� T (�)x 2 posW ; q(�) 2 D+1 ; otherwisewhere posW = fWy : y 2 Rm+ g, D = fu 2 Rm : fz 2 Rr : W 0z � ug 6= ;g(with W 0 denoting the transpose of the matrix W ) and �(u; t) = inffhu; yi :Wy = t; y � 0g ((u; t) 2 Rm � Rr ). Then problem (31) may be rewrittenequivalently as a minimization problem with respe
t to the �rst stage de
isionx, namely, minn Z� F0(x; �)dP (�) : x 2 Xo: (32)In order to utilize the general stability results of Se
tion 2, we need a 
har-a
terization of the 
ontinuity and growth properties of the fun
tion F0. As a�rst step we re
all some well-known properties of the fun
tion �, whi
h werederived in Walkup and Wets (1969a).Lemma 21 The fun
tion � is �nite and 
ontinuous on the (m+r)-dimensio-nal polyhedral 
one D�posW and there exist (r;m)-matri
es Cj and (m+r)-dimensional polyhedral 
ones Kj, j=1,...,N, su
h thatN[j=1Kj =D � posW ; intKi \ intKj = ; ; i 6= j;�(u; t)= hCju; ti; for ea
h (u; t) 2 Kj; j = 1; :::; N:Moreover, �(u; �) is 
onvex on posW for ea
h u 2 D, and �(�; t) is 
on
aveon D for ea
h t 2 posW .To have problem (32) well de�ned we introdu
e the following assumptions:(A1) For ea
h (x; �) 2 X�� it holds that h(�)�T (�)x 2 posW and q(�) 2 D.(A2) P 2 P2(�), i.e., R� k�k2dP (�) <1.Condition (A1) sheds some light on the role of the set �. Due to the aÆnelinearity of q(�), h(�) and T (�) the polyhedrality assumption on � is not re-stri
tive. (A1) 
ombines the two usual 
onditions: relatively 
omplete re
ourse27



and dual feasibility. It implies that X � � � domF0 .Proposition 22 Let (A1) be satis�ed. Then F0 is a random 
onvex fun
tion.Furthermore, there exist 
onstants L > 0, L̂ > 0 and K > 0 su
h that thefollowing holds for all �; ~� 2 � and x; ~x 2 X with maxfkxk; k~xkg � r:jF0(x; �)� F0(x; ~�)j �Lrmaxf1; k�k; k~�kgk� � ~�k;jF0(x; �)� F0(~x; �)j� L̂maxf1; k�k2gkx� ~xk;jF0(x; �)j�Krmaxf1; k�k2g:Proof: From Lemma 21 and (A1) we 
on
lude that F0 is 
ontinuous on domF0and, hen
e, on X ��. This implies that F0 is a random lower semi
ontinuousfun
tion (
f. Example 14.31 in Ro
kafellar and Wets (1998)). It is a random
onvex fun
tion sin
e the properties of � in Lemma 21 imply that F0(�; �) is
onvex for ea
h � 2 �. In order to verify the Lips
hitz property of F0, letx 2 X with kxk � r and 
onsider, for ea
h j = 1; : : : ; N , and � 2 �j thefun
tiongj(�) := F0(x; �) = �(q(�); h(�)� T (�)x) = hCjq(�); h(�)� T (�)xi;where the sets �j := f� 2 � : (q(�); h(�) � T (�)x) 2 Kjg are polyhedral,and Cj and Kj are the matri
es and the polyhedral 
ones from Lemma 21,respe
tively. Sin
e q(�), h(�) and T (�) depend aÆne linearly on �, the fun
tiongj depends quadrati
ally on � and linearly on x. Hen
e, there exists a 
onstantLj > 0 su
h that gj satis�es the following Lips
hitz property:jgj(�)� gj(~�)j � Ljrmaxf1; k�k; k~�kgk� � ~�k for all �; ~� 2 �j:Now, let �; ~� 2 �, assume that � 2 �i and ~� 2 �k for some i; k 2 f1; : : : ; Ngand 
onsider the line segment [�; ~�℄ = f�(�) = (1 � �)� + �~� : � 2 [0; 1℄g.Sin
e [�; ~�℄ � �, there exist indi
es ij; j = 1; : : : ; l, su
h that i1 = i, il = k,[�; ~�℄ \ �ij 6= ; for ea
h j = 1; : : : ; l and [�; ~�℄ � Slj=1 �ij . Furthermore, thereexist in
reasing numbers �ij 2 [0; 1℄ for j = 0; : : : ; l � 1 su
h that �(�i0) =�(0) = �, �(�ij) 2 �ij \ �ij+1 and �(�) 62 �ij if �ij < � � 1. Then we obtainjF0(x; �)� F0(x; ~�)j= jgi1(�)� gil(~�)j� l�1Xj=0 jgij+1(�(�ij))� gij+1(�(�ij+1))j� l�1Xj=0Lij+1rmaxf1; k�k; k~�kgk�(�ij)� �(�ij+1)k28



� maxj=1;:::;N Ljrmaxf1; k�k; k~�kg l�1Xj=0 k�(�ij)� �(�ij+1)k� maxj=1;:::;N Ljrmaxf1; k�k; k~�kgk� � ~�k;where we have used for the last three estimates that k�(�)k � maxfk�k; k~�kgfor ea
h � 2 [0; 1℄ and j�� ~�jk�� ~�k = k�(�)� �(~�)k holds for all �; ~� 2 [0; 1℄.Lips
hitz 
ontinuity of F0 with respe
t to x is shown in Theorem 10 of Kall(1976) and in Theorem 7.7 of Wets (1974). In parti
ular, the se
ond estimateof the proposition is a 
onsequen
e of those results. Furthermore, from Lemma21 we 
on
lude the estimatejF0(x; �)j� supkxk�rfjh
; xij+ maxj=1;:::;N jhCjq(�); h(�)� T (�)xijg� k
kr + ( maxj=1;:::;N kCjk)kq(�)k(kh(�)k+ kT (�)kr)for any pair (x; �) 2 X � � with kxk � r. Then the third estimate followsagain from the fa
t that q(�), h(�) and T (�) depend aÆne linearly on �. 2The estimate in Proposition 22 implies that, for any r > 0, any nonemptybounded U � Rm and some � > 0, it holds thatZ� infx2Xkxk�r F0(x; �)dQ(�)��Kr(1 + Z� k�k2dQ(�)) > �1 ;supx2X\U j Z� F0(x; �)dQ(�)j�K�(1 + Z� k�k2dQ(�)) <1 ;if Q 2 P(�) has a �nite se
ond order moment. Hen
e, for any nonemptybounded U � Rm the set of probability measures PFU 
ontains the set ofmeasures on � having �nite se
ond order moments, i.e.,PFU � nQ 2 P(�) : Z� k�k2dQ(�) <1o = P2(�):The following stability results for optimal values and solution sets of the two-stage problem (32) are now a dire
t 
onsequen
e of the results of Se
tion 2.Theorem 23 Let (A1) and (A2) be satis�ed and let X�(P ) be nonempty andU be an open, bounded neighbourhood of X�(P ).Then there exist 
onstants L > 0 and Æ > 0 su
h thatj#(P )� #(Q)j �L�2(P;Q) and; 6= X�(Q)�X�(P ) + 	P (L�2(P;Q))B29



whenever Q 2 P2(�) and �2(P;Q) < Æ, where 	P is given by (23).Proof: The result is a 
onsequen
e of Corollary 14 with p = 2. The assump-tions (ii) and (iii) of Corollary 14 are veri�ed in Proposition 22. 2Theorem 24 Let (A1) and (A2) be satis�ed and let X�(P ) be nonempty andbounded. Then there exist 
onstants �L > 0 and �" > 0 su
h that the estimateD1(X�" (P ); X�" (Q)) � �L" �2(P;Q)holds for any " 2 (0; �") and Q 2 P2(�) su
h that �2(P;Q) < ". Here, D1denotes the Pompeiu-Hausdor� distan
e (26).Proof: Sin
e the assumptions of Theorem 13 are satis�ed, we 
on
lude thatthere exist 
onstants � > 0 and �" > 0 su
h thatD1(X�" (P ); X�" (Q)) � 2�" dFU (P;Q)holds for U := (�+ �")B and any " 2 (0; �"), Q 2 PFU su
h that dFU (P;Q) < ".Proposition 22 implies the estimate dFU (P;Q) � L(� + �")�2(P;Q), for some
onstant L > 0, whi
h 
ompletes the proof. 2The theorems establish the quantitative stability of #(�) and X�(�) and theLips
hitz stability of X�" (�) with respe
t to �2 in 
ase of two-stage modelswith �xed re
ourse for fairly general situations. In 
ase that either only there
ourse 
osts or only the te
hnology matrix and right-hand side are random,both results are valid for (P1(�); �1) instead of (P2(�); �2). We verify thisobservation for the 
orresponding 
on
lusion of Theorem 23.Corollary 25 Let either only q(�) or only T (�) and h(�) be random and (A1)be satis�ed. Let P 2 P1(�), X�(P ) be nonempty and U be an open, boundedneighbourhood of X�(P ). Then there exist 
onstants L > 0, Æ > 0 su
h thatj#(P )� #(Q)j �L�1(P;Q) and; 6= X�(Q)�X�(P ) + 	P (L�1(P;Q))Bwhenever Q 2 P1(�) and �1(P;Q) < Æ, where 	P is given by (23).Proof: By inspe
ting the proof of Proposition 22 one observes that now thefun
tion F0 satis�es the following 
ontinuity and growth properties for all�; ~� 2 � and x; ~x 2 X with maxfkxk; k~xkg � r:jF0(x; �)� F0(x; ~�)j �Lrk� � ~�k;30



jF0(x; �)j�Krmaxf1; k�kg:Hen
e, the set PFU 
ontains P1(�) and Corollary 14 applies with p = 1. 2Next we provide some examples of re
ourse models showing that, in general,the estimate for solution sets in Theorem 23 is the best possible one and thatX�(�) is not lower semi
ontinuous at P if X�(P ) is not a singleton.All examples exploit the spe
i�
 stru
ture provided by the simple re
ourse
ondition, i.e., m = 2s, q = (q+; q�) and W = (I;�I), where q+; q� 2 Rs andI is the (s; s)-identity matrix. Then posW = Rs holds and, hen
e, (A1) issatis�ed i� q 2 D, whi
h is equivalent to the 
ondition q+ + q� � 0, and�(q; t) = supfht; ui : �q� � u � q+g:Example 26 Let m = s = r = 1, m = 2, 
 = 0, W = (1;�1), X = [�1; 1℄,� = R, q(�) = (1; 1), T (�) = 1, h(�) = �, 8� 2 �. Let P 2 P(R) be theuniform distribution on the interval [�12 ; 12 ℄. Then #(P ) = 1, X�(P ) = f0g,and quadrati
 growthZ� F0(x; �)dP (�) = 12Z� 12 j� � xjd� = 14 + x2 = #(P ) + d(x;X�(P ))2holds for ea
h x 2 [�12 ; 12 ℄. Let us 
onsider the following perturbations Pn 2P(R) of P for n > 4 given byPn = (12 � "n)(Pln + Prn) + "n(Æ�"n + Æ"n);where " = n� 12 , Pln and Prn are the uniform distributions on [�12 ;�"n) and("n; 12 ℄, respe
tively, and Ær is the measure pla
ing unit mass at r. Using theexpli
it representation of �1 in 
ase of probability distributions on R (seeChapter 5.4 of Ra
hev (1991)), we obtain�1(P; Pn) = 1Z�1 jP ((�1; �℄)� Pn((�1; �℄)jd� = 1n = "2n :Furthermore, it holds that #(Pn) = 12("2n+ 14), X�(Pn) = [�"n; "n℄ and, hen
e,j#(P )�#(Pn)j = 12"2n and supx2X�(Pn) d(x;X�(P )) = "n for ea
h n 2 N . Hen
e,the estimate in Theorem 23 is best possible.Next we 
onsider the distribution P̂ = 12(Æ� 12 + Æ 12 ). Then we have #(P̂ ) = 12and X�(P̂ ) = [�12 ; 12 ℄ and the linear growth 
ondition31



Z� F0(x; �)dP̂ (�)= Z� j� � xjdP̂ (�) = 12(jx+ 12 j+ jx� 12 j)�#(P̂ ) + d(x;X�(P̂ ))for ea
h x 2 X. Consider the perturbations P̂n = (1� 1n)P̂ + 1nÆ0 (n 2 N) ofP̂ . Then �1(P̂ ; P̂n) = 1Z�1 jP̂ ((�1; �℄)� P̂n((�1; �℄)jd� = 12n ;holds for ea
h n 2 N , where we have again used the expli
it representa-tion of �1 in 
ase of probability measures on R. Furthermore, it holds that#(P̂n) = (1 � 1n)12 and X�(P̂n) = f0g for ea
h n 2 N . Hen
e, we havesupx2X�(P̂ ) d(x;X�(P̂n)) = 12 .Next we 
onsider models with a sto
hasti
 te
hnology matrix and re
ourse
osts, respe
tively, and show that in su
h 
ases X�(�) is also not lower semi-
ontinuous at P , in general.Example 27 Let m = s = r = 1, m = 2, 
 = 0, W = (1;�1), X = [0; 1℄,� = R+ , h(�) = 0, 8� 2 �.In the �rst 
ase, we set q(�) = (1; 1) and T (�) = ��, 8� 2 �.In the se
ond 
ase, we set q(�) = (�; �) and T (�) = �1, 8� 2 �.In both 
ases (A1) is satis�ed. We 
onsider P = Æ0 and Pn = Æ 1n , i.e., the unitmasses at 0 and 1n , respe
tively, for ea
h n 2 N . Clearly, (Pn) 
onverges withrespe
t to the metri
 �1 to P in P1(R). Furthermore, in both 
asesZ� F0(x; �)dPn(�) = Z� �x dPn(�) = xnholds for ea
h x 2 X. Then X�(P ) = X and X�(Pn) = f0g for any n 2 N ,whi
h implies supx2X�(P ) d(x;X�(Pn)) = 1.The examples show that 
ontinuity properties of X�(�) at P in terms of thePompeiu-Hausdor� distan
e 
annot be a
hieved in general unless X�(P ) is asingleton. Nevertheless, we �nally establish su
h quantitative stability resultsfor models where the te
hnology matrix is �xed, i.e., T (�) � T , and a spe
i�
nonuniqueness of X�(P ) is admitted. For their derivation we need an argu-ment that de
omposes the original two-stage sto
hasti
 program into anothertwo-stage program with de
isions taken from T (X) and a parametri
 linearprogram not depending on P .Lemma 28 Let (A1) be satis�ed and let Q 2 P2(�) be su
h that X�(Q) isnonempty. Then we have 32



#(Q) = inf n�(�) + Z� �(q(�); h(�)� �)dQ(�) : � 2 T (X)o= �(Tx) + Z� �(q(�); h(�)� Tx)dQ(�); 8x 2 X�(Q);X�(Q) = �(Y �(Q)); whereY �(Q) := argminn�(�) + Z� �(q(�); h(�)� �)dQ(�) : � 2 T (X)o;�(�) := inffh
; xi : x 2 X; Tx = �g;�(�) := argminfh
; xi : x 2 X; Tx = �g (� 2 T (X)):Moreover, � is 
onvex polyhedral on T (X) and � is a polyhedral set-valuedmapping whi
h is Lips
hitz 
ontinuous on T (X) with respe
t to the Pompeiu-Hausdor� distan
e.Proof: Let �x 2 X�(Q). We set �Q(�) := R� �(q(�); h(�)� �)dQ(�) and have#(Q) = h
; �xi+ �Q(T �x) � inff�(�) + �Q(�) : � 2 T (X)g:For the 
onverse inequality, let " > 0 and �� 2 T (X) be su
h that�(��) + �Q(��) � inff�(�) + �Q(�) : � 2 T (X)g+ "2 :Then there exists an �x 2 X su
h that T �x = �� and h
; �xi � �(��) + "2 . Hen
e,#(Q)�h
; �xi+ �Q(T �x) � �(��) + �Q(��) + "2� inff�(�) + �Q(�) : � 2 T (X)g+ ":Sin
e " > 0 is arbitrary, the �rst statement is veri�ed. In parti
ular, x 2 �(Tx)and Tx 2 Y �(Q) for any x 2 X�(Q) . Hen
e, it holds that X�(Q) � �(Y �(Q)).Conversely, let x 2 �(Y �(Q)). Then x 2 �(�) for some � 2 Y �(Q). ThusTx = � and h
; xi = �(�) = �(Tx), implyingh
; xi+ �Q(Tx)=�(Tx) + �Q(Tx) = inff�(�) + �Q(�) : � 2 T (X)g=#(Q) and x 2 X�(Q):Furthermore, � is 
learly 
onvex and polyhedral, and the properties of � arewell known (
f. Walkup and Wets (1969b)). 2Theorem 29 Let (A1),(A2) be satis�ed, X�(P ) be nonempty and U be anopen bounded neighbourhood of X�(P ). Furthermore, assume that T (X�(P ))33



is a singleton. Then there exist 
onstants L > 0 and Æ > 0 su
h thatD1(X�(P ); X�(Q)) � L	P (L�2(P;Q))whenever Q 2 P2(�) and �2(P;Q) < Æ, where 	P is given by (23) and D1denotes the Pompeiu-Hausdor� distan
e.Proof: Let �� be the single element belonging to T (X�(P )). We use thenotation of Lemma 28 and 
on
lude that Y �(P ) = f��g. Let V denote aneighbourhood of �� su
h that T�1(V) � U and 
onsider the growth fun
tion �P (�) := minf�(�) + �P (�)� #(P ) : k�� ��k � �; � 2 T (X) \ Vgand the asso
iated fun
tion 	�P (�) := �+( �P )�1(2�) of the sto
hasti
 programinff�(�) + �P (�) : � 2 T (X)g. Applying Corollary 14 to the latter programyields the estimatesup�2Y �(Q) d(�; Y �(P )) = sup�2Y �(Q) k�� ��k � 	�P (L��2(P;Q))for some L� > 0 and small �2(P;Q). Sin
e X�(P ) = �(��) and X�(Q) =�(Y �(Q)) hold due to Lemma 28 and the set-valued mapping � is Lips
hitz
ontinuous on T (X) with respe
t to D1 (with some 
onstant L� > 0), weobtainD1(X�(P ); X�(Q)) = D1(�(��); �(Y �(Q)) � sup�2Y �(Q) D1(�(��); �(�))�L� sup�2Y �(Q) k�� � �k � L�	�P (L��2(P;Q)) :It remains to explore the relation between the two growth fun
tions  P and �P , and the asso
iated fun
tions 	P and 	�P , respe
tively. Let � 2 R+ and�� 2 T (X)\V su
h that k�� ���k � � and  �P (�) = �(�� )+�P (�� )�#(P ).Let x� 2 X, ~x� 2 X�(P ) be su
h that Tx� = �� , �(�� ) = 
x� and d(x� ; X�) =kx� � ~x�k. Hen
e, we obtain x� 2 U ,  �P (�) = 
x� + �P (Tx� )� #(P ) and� � k�� � ��k = kTx� � T ~x�k � kTkd(x� ; X�);where kTk denotes the matrix norm of T . If kTk 6= 0, we 
on
lude that �P (�) �  P ( �kTk) holds for any � 2 R+ and, hen
e, we have ( �P )�1(�) �kTk �1P (�) and 	�P (�) � maxf1; kTkg	P (�) for any � 2 R+ . This impliesD1(X�(P ); X�(Q)) � maxf1; kTkgL�	P (L��2(P;Q));34



and, thus, the desired estimate. In 
ase of kTk = 0, the solution set X�(P )is equal to argminfh
; xi : x 2 Xg and, 
onsequently, does not 
hange if P isperturbed. Hen
e, the result is 
orre
t in the latter 
ase, too. 2Theorem 30 Let (A1),(A2) be satis�ed, X�(P ) be nonempty, U be an openbounded neighbourhood of X�(P ) and T (X�(P )) be a singleton. Assume thatthe fun
tion ( rP )�1 is 
ontinuous at � = 0, where  rP (0) = 0,  rP (�) := 1� P (�)for ea
h � > 0 and  P (�) is the growth fun
tion given by (22).Then there exists 
onstants L > 0 and Æ > 0 su
h that the estimateD1(X�(P ); X�(Q)) � L( rP )�1(d̂�U (P;Q)) (33)is valid for ea
h Q 2 P2(�) with d̂�U (P;Q) < Æ. Here, we denoted̂�U (P;Q) := sup n��� Z� �(q(�); h(�)� Tx)� �(q(�); h(�)� T �x)kx� �xk d(P �Q)(�)��� :x; �x 2 X \ 
lU ; x 6= �xo:If the two-stage model (31) has quadrati
 growth, the estimate (33) assertsLips
hitz 
ontinuity with respe
t to d̂�U .Proof: Using the same notation as in the previous proof we 
on
lude againthat D1(X�(P ); X�(Q)) � L� sup�2Y �(Q) k�� � �k:If T is the null matrix, the result is true sin
e X�(Q) does not depend on Q.Otherwise, we denote by kTk the matrix norm of T , argue as in the proofs ofthe Theorems 12 and 29 and arrive at the estimate P ( 1kTkk�� ��k) �  �P (k�� ��k) � �P (�)� �Q(�)� (�P (��)� �Q(��))for ea
h � 2 Y �(Q), where �P (�) := R� �(q(�); h(�) � �)dP (�). The latterestimate implies (33). 2Remark 31 In all 
ases, where the original and perturbed solution setsX�(P )and X�(Q) are 
onvex and an estimate of the formD1(X�(P ); X�(Q)) � �(d(P;Q)) whenever Q 2 Pd; d(P;Q) < Æis available for some (pseudo) metri
 d on a set of probability measures Pdand some fun
tion � from R+ to R+ , this estimate may be 
omplemented by35



a quantitative 
ontinuity property of a 
ountable dense family of sele
tions.Namely, there exists a family fx�k(Q)gk2N of sele
tions of X�(Q) su
h thatX�(Q) = 
l � [k2N x�k(Q)�kx�k(P )� x�k(Q)k�Lk�(d(P;Q)) whenever Q 2 Pd; d(P;Q) < Æfor some 
onstant Lk > 0 and any k 2 N . To derive this 
on
lusion, let us�rst re
all the notion of a generalized Steiner point of a 
onvex 
ompa
t setC � Rm (see Dent
heva (2000)). It is given by St�(C) := RB �(��C(x))�(dx),where �C(�) is the support fun
tion of C, i.e., �C(x) := supy2Chx; yi, ��C(x)is the 
onvex subdi�erential of �C at x and �(��C(x)) its norm-minimal ele-ment. Furthermore, � is a probability measure on B having a C1-density withrespe
t to the Lebesgue measure. A generalized Steiner sele
tion St�(�) is Lip-s
hitz 
ontinuous (with a Lips
hitz 
onstant depending on �) on the set ofall nonempty 
onvex 
ompa
t subsets of Rm equipped with the distan
e D1 .Furthermore, there exists a 
ountable family f�kgk2N of probability measureson R, ea
h having a C1-density with respe
t to the Lebesgue measure, su
hthat the 
orresponding family of generalized Steiner sele
tions fSt�k(C)gk2Nis dense in C. Both results are proved in Dent
heva (2000). By 
ombiningthese two arguments for the 
ountable family fx�k(Q) := St�k(X�(Q))gk2N ofsele
tions to the 
onvex 
ompa
t sets X�(Q) the desired result follows.The previous Theorems 29 and 30 extend the main results of R�omis
h andS
hultz (1993, 1996) and Shapiro (1994) to the 
ase of a general growth 
on-dition. The 
ru
ial assumption of both results is that T (X�(P )) is a singleton.The latter 
ondition is satis�ed, for example, if the expe
ted re
ourse fun
tion�P (�) := R� �(q(�); h(�) � �)dP (�) is stri
tly 
onvex on a 
onvex neighbour-hood of T (X�(P )).The situation simpli�es in 
ase of random right-hand sides only, i.e., q(�) � qand h(�) = �. Then the distan
e d̂�U 
an be bounded above by a dis
repan
yw.r.t. 
ertain polyhedral 
ones. Namely,d̂�U (P;Q) � L̂ supfj(P �Q)(Tx+Bi(Rs+))j : x 2 
lU ; i = 1; : : : ; `g;holds, where L̂ > 0 is some 
onstant and Bi, i = 1; : : : ; `, are 
ertain nonsin-gular submatri
es of the re
ourse matrix W (R�omis
h and S
hultz (1996)). Inthis 
ase, veri�able suÆ
ient 
onditions for the stri
t and strong 
onvexity ofthe expe
ted re
ourse fun
tion �P are also available (S
hultz (1994)). Namely,the fun
tion �P is stri
tly 
onvex on any open 
onvex subset of the support ofP if P has a density on Rs and the set fz 2 Rs : W 0z < qg is nonempty. It isstrongly 
onvex if, in addition to the 
onditions implying stri
t 
onvexity, thedensity of P is bounded away from zero on the 
orresponding 
onvex neigh-bourhood. Furthermore, the model (31) has quadrati
 growth if the fun
tion36



�P is strongly 
onvex on some open 
onvex neighbourhood of T (X�(P )). Thelatter fa
t was proved in Dent
heva and R�omis
h (2000) by exploiting theLips
hitz 
ontinuity of the mapping � in Lemma 28. The Lips
hitz 
ontinuityresult of Theorem 30 in 
ase of quadrati
 growth forms the basis of the fol-lowing di�erential stability result for optimal values and solution sets provedin Dent
heva and R�omis
h (2000).Theorem 32 Let (A1),(A2) be satis�ed, X�(P ) be nonempty and bounded,and T (X�(P )) be a singleton, i.e., T (X�(P )) = f��g. Let Q 2 P(�).Then the fun
tion # is Gateaux dire
tionally di�erentiable at P in dire
tionQ� P and it holds#0(P ;Q� P ) := limt!0+ 1t (#(P + t(Q� P ))� #(P )) = �Q(��)� �P (��):If, in addition, model (31) has quadrati
 growth and �P is twi
e 
ontinuouslydi�erentiable at f��g, then the se
ond-order Gateaux dire
tional derivative of# at P in dire
tion Q� P exists and we have#00(P ;Q� P ) := limt!0+ 1t2 (#(P + t(Q� P ))� #(P )� t#0(P ;Q� P ))= inf n12hr2�P (��)Tx; Txi+ (�Q � �P )0(��;Tx) : x 2 S(�x)o;where S(�x) = fx 2 TX(�x) : 
x+hr�P (��); Txi = 0g and TX(�x) is the tangent
one to X at some �x 2 X�(P ). The dire
tional derivative (�Q��P )0(��;Tx)of �Q � �P exists sin
e both fun
tions are 
onvex and �P is di�erentiable.The �rst-order Gateaux dire
tional derivative of the set-valued mapping X�(�)(X�)0(P; �x;Q� P ) := limt!0+ 1t (X�(P + t(Q� P ))� �x)at the pair (P; �x), �x 2 X�(P ), in dire
tion Q � P exists and 
oin
ides withargminf12hr2�P (��)Tx; Txi+ (�Q � �P )0(��;Tx) : x 2 S(�x)g.3.2 Mixed-Integer Two-Stage ModelsNext we allow for mixed-integer de
isions in both stages and 
onsider thesto
hasti
 programminfh
; xi+ Z� �(h(�)� T (�)x)dP (�) : x 2 Xg; (34)37



where�(t) := minfhq; yi+ h�q; �yi : Wy + �W �y = t; y 2 Zm̂+ ; �y 2 R �m+ g (t 2 Rr ); (35)
 2 Rm , X is a 
losed subset of Rm , � a polyhedron in Rs , q 2 Rm̂ , �q 2 R �m ,W and �W are (r; m̂)- and (r; �m)-matri
es, respe
tively, h(�) 2 Rr and the(r;m)-matrix T (�) are aÆne linear fun
tions of � 2 Rs , and P 2 P(�).Basi
 properties of � like 
onvexity and 
ontinuity on dom� in the purelylinear 
ase 
annot be maintained for reasonable problem 
lasses. Sin
e � isdis
ontinuous in general it is interesting to 
hara
terize its 
ontinuity regions.Similarly as for the two-stage models without integrality requirements in theprevious se
tion, we need some 
onditions to have the model (34) well-de�ned:(B1) The matri
es W and �W have only rational elements.(B2) For ea
h pair (x; �) 2 X � � it holds that h(�)� T (�)x 2 T , whereT := ft 2 Rr : t = Wy + �W �y; y 2 Zm̂+ ; �y 2 R �m+ g.(B3) There exists an element u 2 Rr su
h that W 0u � q and �W 0u � �q.(B4) P 2 P1(�), i.e., R� k�kdP (�) < +1.The 
onditions (B2) and (B3) mean relatively 
omplete re
ourse and dualfeasibility, respe
tively. We note that 
ondition (B3) is equivalent to �(0) = 0,and that (B2) and (B3) imply �(t) to be �nite for all t 2 T (see Proposition 1in Louveaux and S
hultz (2003)). In the 
ontext of this se
tion, the followingproperties of the value fun
tion � on T are important.Lemma 33 Assume (B1){(B3). Then there exists a 
ountable partition of Tinto Borel subsets Bi, i.e., T = Si2N Bi su
h that(1) ea
h of the sets has a representation Bi = fbi+pos �WgnSN0j=1fbij+pos �Wg,where bi; bij 2 Rr for i 2 N and j = 1; : : : ; N0. Moreover, there exists anN1 2 N su
h that for any t 2 T the ball B (t; 1) in Rr is interse
ted by atmost N1 di�erent subsets Bi.(2) the restri
tion �jBi of � to Bi is Lips
hitz 
ontinuous with a 
onstantL� > 0 that does not depend on i.Furthermore, the fun
tion � is lower semi
ontinuous and pie
ewise polyhedralon T and there exist 
onstants a; b > 0 su
h that it holds for all t, ~t 2 T :j�(t)� �(~t)j � akt� ~tk+ b :Part (i) of the lemma was proved in Se
tion 5.6 of Bank et al. (1982) and inLemma 2.5 of S
hultz (1996), (ii) was derived as Lemma 2.3 in S
hultz (1996)and the remaining properties of � were established in Blair and Jeroslow(1977). Compared to Lemma 21 for optimal value fun
tions of linear pro-grams without integrality requirements, the representation of � is now givenon 
ountably many (possibly unbounded) Borel sets. This requires to in
or-38



porate the tail behaviour of P and leads to the following representation of thefun
tion F0(x; �) := h
; xi+ �(h(�)� T (�)x) for ea
h pair (x; �) in X � �.Proposition 34 Assume (B1){(B3) and let U be an open bounded subset ofRm . For ea
h R � 1 and x 2 X \ 
lU there exist disjoint Borel subsets �Rj;x of�, j = 1; : : : ; �, whose 
losures are polyhedra with a uniformly bounded numberof fa
es su
h that the fun
tionF0(x; �) = �Xj=0(h
; xi+ �(h(�)� T (�)x))��Rj;x(�) ((x; �) 2 X � �)is Lips
hitz 
ontinuous with respe
t to � on ea
h �Rj;x, j = 1; : : : ; �, with someuniform Lips
hitz 
onstant. Here, �R0;x := � n [�j=1�Rj;x is 
ontained in f� 2Rs : k�k > Rg and � is bounded by a multiple of Rr.Proof: Sin
e h(�) and T (�) are aÆne linear fun
tions, there exists a 
onstantC2 > 0 su
h that the estimate kh(�) � T (�)xk1 � C2maxf1; k�kg holds forea
h pair in X \ 
lU . Let R > 0 and TR := T \ RC2B1 , where B1 refers tothe 
losed unit ball in Rr with respe
t to the norm k�k1. Now, we partition theball RC2B1 into disjoint Borel sets whose 
losures are B1 -balls with radius1, where possible gaps are �lled with maximal balls of radius less than 1.Then the number of elements in this partition of RC2B1 is bounded above by(2RC2)r. From Lemma 33 (i) we know that ea
h element of this partition isinterse
ted by at most N1 subsets Bi (for some N1 2 N). Another 
onsequen
eof Lemma 33 (i) is that ea
h Bi splits into disjoint Borel subsets whose 
losuresare polyhedra. Moreover, the number of su
h subsets 
an be bounded fromabove by a 
onstant not depending on i. Hen
e, there exist a number � 2 Nand disjoint Borel subsets fBj : j = 1; : : : ; �g su
h that their 
losures arepolyhedra, their union 
ontains TR, and � is bounded above by �Rr, wherethe 
onstant � > 0 is independent of R. Now, let x 2 X \ 
lU and 
onsiderthe following disjoint Borel subsets of �:�Rj;x := f� 2 � : h(�)� T (�)x 2 Bjg (j = 1; : : : ; �);�R0;x :=� n �[j=1�Rj;x � f� 2 � : kh(�)� T (�)xk1 > RC2g � f� 2 � : k�k > Rg:For ea
h j = 1; : : : ; � the 
losures of the sets Bj are polyhedra with a numberof fa
es that is bounded above by some number not depending on j, � andR. Hen
e, the same is true for the 
losures of the sets �Rj;x, i.e., for f� 2 � :h(�)�T (�)x 2 
lBjg, where, moreover, the 
orresponding number k 2 N doesnot depend on x 2 X \ 
lU . Finally, we 
on
lude from Lemma 33 that thereexists a 
onstant L1 > 0 (whi
h does not depend on x 2 X \ 
lU , j = 1; : : : ; �and R > 0) su
h that the fun
tion F0(x; �)j�Rj;x = h
; xi+�jBj (h(�)� T (�)x) isLips
hitz 
ontinuous with 
onstant L1. 239



For further stru
tural properties of model (34) we refer to Louveaux andS
hultz (2003). In order to state stability results for model (34), we 
onsiderthe following probability metri
s with �-stru
ture on P1(�) for every k 2 N :�1;phk(P;Q) := supfj ZB f(�)(P �Q)(d�)j : f 2 F1(�); B 2 Bphk(�)g (36)= supfj Z� f(�)�B(�)(P �Q)(d�)j : f 2 F1(�); B 2 Bphk(�)g:Here, Bphk(�) and F1(�) denote the sets of polyhedra in � and of Lips
hitz
ontinuous fun
tions from � to R introdu
ed in Se
tion 2.1.Theorem 35 Let the 
onditions (B1){(B4) be satis�ed, X�(P ) be nonemptyand U � Rm be an open bounded neighbourhood of X�(P ).Then there exist 
onstants L > 0, Æ > 0 and k 2 N su
h thatj#(P )� #U(Q)j �L�P (�1;phk(P;Q)) (37); 6= X�U(Q)�X�(P ) + 	P (L�P (�1;phk(P;Q)))B ;and X�U(Q) is a CLM set of (34) relative to U whenever Q 2 P1(�) and�1;phk(P;Q) < Æ. Here, the fun
tion �P on R+ is de�ned by�P (0) = 0 and �P (t) := infR�1 nRrt+ Zf�2�:k�k>Rg k�kdP (�)o (t > 0)and 
ontinuous at t = 0, and the fun
tion 	P is given by (23).If P has a �nite absolute moment of p-th order for some p > 1, the estimate�P (t) � Ct p�1p�1+r holds for small t > 0 and some 
onstant C > 0.Proof: Sin
e the fun
tion � is lower semi
ontinuous on T (Lemma 33), F0 islower semi
ontinuous on X � � and, hen
e, a random lower semi
ontinuousfun
tion (Example 14.31 in Ro
kafellar and Wets (1998)). Using Lemma 33we obtain the estimatejF0(x; �)j � k
kkxk+ a(kh(�)k+ kT (�)kkxk) + bfor ea
h pair (x; �) 2 X � �. Sin
e h(�) and T (�) depend aÆne linearly on �,there exists a 
onstant C1 > 0 su
h that jF0(x; �)j � C1maxf1; k�kg holds forea
h pair (x; �) 2 (X \ 
lU) � �. Hen
e, PFU (�) � P1(�) and Theorems 5and 9 apply with d = 0 and the distan
e dFU on P1(�).From Proposition 34 we know that, for ea
h R � 1 and x 2 X \ 
lU , thereexist Borel subsets �Rj;x, j = 1; : : : ; �, of � su
h that the fun
tion fRj;x(�) :=F0(x; �)j�Rj;x is Lips
hitz 
ontinuous on �Rj;x with some Lips
hitz 
onstant L1 > 040



(not depending on x, j and R). We extend ea
h fun
tion fRj;x(�) to the wholeof � by preserving the Lips
hitz 
onstant L1. Proposition 34 also implies thatthe 
losures of �Rj;x are 
ontained in Bphk(�) for some k 2 N , that the number� is bounded above by �Rr, where the 
onstant � > 0 is independent on R,and that �R0;x := � n [�j=1�Rj;x is a subset of f� 2 � : k�k > Rg.For ea
h Q 2 P1(�) and x 2 X \ 
lU we obtainj Z� F0(x; �)d(P �Q)(�)j= j �Xj=0 Z�Rj;x F0(x; �)d(P �Q)(�)j� �Xj=1 j Z�Rj;x fRj;x(�)d(P �Q)(�)j+ IRx (P;Q)� �L1 supf2F1(�)j=1;:::;� j Z� f(�)��Rj;xd(P �Q)(�)j+ IRx (P;Q);where IRx (P;Q) := j R�R0;x F0(x; �)d(P �Q)(�)j.For ea
h �Rj;x we now 
onsider a sequen
e of polyhedra BRj;x, whi
h are 
on-tained in �Rj;x and belong to Bphk(�), su
h that their 
hara
teristi
 fun
tions�BRj;x 
onverge pointwise to the 
hara
teristi
 fun
tion ��Rj;x. Then the se-quen
e 
onsisting of the elements j R� f(�)�BRj;x(�)d(P � Q)(�)j 
onverges toj R� f(�)��Rj;x(�)d(P � Q)(�)j while ea
h element is bounded by �1;phk(P;Q).Hen
e, the above estimate may be 
ontinued toj Z� F0(x; �)d(P �Q)(�)j � �L1Rr�1;phk(P;Q) + IRx (P;Q): (38)
For the term IRx (P;Q) we haveIRx (P;Q)�C1 Zf�2�:k�k>Rg k�kd(P +Q)(�)�C1 Zf�2�:k�k1> RC2 g k�kd(P +Q)(�)where we have used the estimate jF0(x; �)j � C1k�k for ea
h pair (x; �) 2(X \ 
lU)� f� 2 � : k�k > Rg and C2 > 0 is a norming 
onstant su
h thatk�k � C2k�k1 holds for ea
h � 2 Rs . Clearly, the set f� 2 � : k�k1 > RC2g 
anbe 
overed by 2s interse
tions of � by open halfspa
es whose 
losures belong41



to Bphk(�). Hen
e, a similar argument as the one above yields the estimateZf�2�:k�k1> RC2 g k�kdQ(�) � 2s�1;phk(P;Q) + Zf�2�:k�k1> RC2 g k�kdP (�):Hen
e, from the previous estimates we obtain thatdFU (P;Q)� �(L1Rr + 2sC1)�1;phk(P;Q) + 2C1 Zf�2�:k�k1> RC2 g k�kdP (�)�CRr�1;phk(P;Q) + Zf�2�:k�k>�Rg k�kdP (�)for some 
onstants C > 0 and � 2 (0; 1), the latter depending on the norming
onstants of k � k and k � k1, respe
tively. Finally, we obtaindFU (P;Q) � Ĉ�P (�1;phk(P;Q)); where (39)�P (0) := 0 and �P (t) := infR�1 nRrt+ Zf�2�:k�k>Rg k�kdP (�)o (t > 0) (40)with some 
onstant Ĉ > 0. Now, the result is a 
onsequen
e of the Theo-rems 5 and 9. If R� k�kpdP (�) < 1, it holds that Rf�2�:k�k>Rg k�kdP (�) �R1�p R� k�kpdP (�) by Markov's inequality. The desired estimate follows by in-serting R = t� 1p+r�1 for small t > 0 into the fun
tion whose in�mum w.r.t.R � 1 is �P (t). 2In 
ase that the underlying distribution P and its perturbations Q have sup-ports in some bounded subset of Rs , the stability result improves slightly.Corollary 36 Let the 
onditions (B1){(B3) be satis�ed and � be bounded.Assume that P 2 P(�), X�(P ) is nonempty and U � Rm is an open boundedneighbourhood of X�(P ).Then there exist 
onstants L > 0, Æ > 0 and k 2 N su
h thatj#(P )� #U(Q)j �L�1;phk(P;Q); 6= X�U(Q)�X�(P ) + 	P (L�1;phk(P;Q))B ;and X�U(Q) is a CLM set of (34) relative to U whenever Q 2 P(�) and�1;phk(P;Q) < Æ.Proof: Sin
e � is bounded, we have P1(�) = P(�). Moreover, the fun
tion�P (t) 
an be estimated by Rrt for some suÆ
iently large R > 0. Hen
e, The-42



orem 35 implies the assertion. 2Remark 37 Sin
e � 2 Bphk(�) for some k 2 N , we obtain from (36) by
hoosing B := � and f � 1, respe
tively,maxf�1(P;Q); �phk(P;Q)g � �1;phk(P;Q) (41)for large k and all P;Q 2 P1(�). Here, �phk denotes the polyhedral dis
repan
y(see Se
tion 2.1). Hen
e, 
onvergen
e with respe
t to �1;phk implies weak 
on-vergen
e, 
onvergen
e of �rst order absolute moments and 
onvergen
e withrespe
t to the polyhedral dis
repan
y �phk . The 
onverse is also true. Thelatter observation is a 
onsequen
e of the estimate�1;phk(P;Q) � Cs�phk(P;Q) 1s+1 (P;Q 2 P(�)) (42)for some 
onstant Cs > 0. It is valid for bounded � � Rs and 
an be derivedby using the te
hnique in the proof of Proposition 3.1 in S
hultz (1996). Inview of (41), (42) the metri
 �1;phk is stronger than �phk in general, but in 
aseof bounded � both metrize the same topology on P(�).For more spe
i�
 models (34), improvements of the above results are pos-sible. The potential of su
h improvements 
onsists in exploiting spe
i�
 re-
ourse stru
tures, i.e., in additional information on the shape of the sets Bi inLemma 33 and on the behaviour of the (value) fun
tion � on these sets. These
onsiderations may lead to stability results with respe
t to probability metri
sthat are (mu
h) weaker than �1;phk . To illustrate su
h an improvement, let us
onsider the 
ase of pure integer re
ourse where � is given by�(t) = minfhq; yi : Wy � t; y 2 Zm̂g; (43)the te
hnology matrix is �xed and the right-hand side is fully sto
hasti
, i.e.,T (�) � T and h(�) � �. This situation �ts into the general model (34) bysetting �q = 0, �m = r and �W = �Ir, with Ir denoting the (r; r)-identitymatrix. For su
h models S
hultz (1996) observed that stability holds withrespe
t to the Kolmogorov metri
 dK on P(�).Corollary 38 Let � be given by (43), T (�) � T , h(�) � � and � be bounded.Furthermore, let the 
onditions (B1){(B3) be satis�ed with T = Rs . Assumethat P 2 P(�), X�(P ) is nonempty and U � Rm is an open bounded neigh-bourhood of X�(P ). Then there exist 
onstants L > 0 and Æ > 0 su
h thatj#(P )� #U(Q)j �LdK(P;Q); 6= X�U(Q)�X�(P ) + 	P (LdK(P;Q))B ;43



and X�U(Q) is a CLM set of (34) relative to U whenever Q 2 P(�) anddK(P;Q) < Æ. Here, the fun
tion 	P is given by (23).Proof: The assumptions imply that � is even 
onstant on Bi for ea
h i 2 Nand the 
ontinuity regions of � are re
tangular (see S
hultz (1996)). Withoutloss of generality the set � may be 
hosen to be re
tangular. Then the sets �Rj;xin Proposition 34 are also bounded re
tangular sets and F0(x; �) is 
onstanton ea
h �Rj;x. Hen
e, the estimate (38) takes the form��� Z� F0(x; �)d(P �Q)(�)��� � �L1Rs�box(P;Q);where �box(P;Q) := supfjP (B) � Q(B)j : B is a box in Rsg. Finally, we usethe known estimate �box(P;Q) � CdK(P;Q)for some 
onstant C > 0 and derive the result from Theorem 35. 23.3 Linear Chan
e Constrained ProgramsIn this se
tion, we study 
onsequen
es of the general stability analysis of Se
-tion 2 for linear 
han
e 
onstrained sto
hasti
 programs of the formminfh
; xi : x 2 X;P (f� 2 � : T (�)x � h(�)g) � pg; (44)where 
 2 Rm , X and � are polyhedra in Rm and Rs , respe
tively, p 2 (0; 1),P 2 P(�), and the right-hand side h(�) 2 Rr and the (r;m)-matrix T (�)depend aÆne linearly on � 2 �.We set d = 1, F0(x; �) = h
; xi, F1(x; �) = p � �H(x)(�), where H(x) = f� 2� : T (�)x � h(�)g and �H(x) its 
hara
teristi
 fun
tion, and observe that theprogram (44) is a spe
ial 
ase of the general sto
hasti
 program (1). We notethat the set H(x) is polyhedral for ea
h x 2 X. In fa
t, these sets are given asthe �nite interse
tion of r 
losed half-spa
es. Furthermore, the multifun
tionHfrom Rm to Rs has a 
losed graph and, hen
e, the mapping (x; �) 7! �H(x)(�)from Rm � � to R is upper semi
ontinuous. This implies that F1 is lowersemi
ontinuous on Rm�� and, hen
e, a random lower semi
ontinuous fun
tion(Example 14.31 in Ro
kafellar and Wets (1998)). Moreover, we have p � 1 �F1(x; �) � p for any pair (x; �). By spe
ifying the general 
lass of probabilitymeasures and the minimal information probability metri
 in Se
tion 2.2 weobtainPFU (�)= nQ 2 P(�) : supx2X\ 
lUmaxj=0;1 ��� Z� Fj(x; �)dQ(�)��� <1o = P(�)44



dFU (P;Q)= supx2X\ 
lUmaxj=0;1 ��� Z� Fj(x; �)(P �Q)(d�)���= supx2X\ 
lU jP (H(x))�Q(H(x))jfor ea
h P;Q 2 P(�) and any nonempty, open and bounded subset U of Rm .Due to the polyhedrality of the sets H(x) for any x 2 Rm , the polyhedraldis
repan
ies �phk on P(�) for every k 2 N (see Se
tion 2.1) or related dis-
repan
ies appear as natural 
andidates for suitable probability metri
s in
ase of model (44). The following result is an immediate 
onsequen
e of thegeneral methodology in Se
tion 2.Theorem 39 Let P 2 P(�) and assume that(i) X�(P ) 6= ; and U � Rm is an open bounded neighbourhood of X�(P ),(ii) the mapping x 7! fy 2 R : P (f� 2 � : T (�)x � h(�)g) � p � yg ismetri
ally regular at ea
h pair (�x; 0) with �x 2 X�(P ).Then there exist 
onstants L > 0, Æ > 0 and k 2 N su
h thatj#(P )� #U(Q)j �L�phk(P;Q); 6= X�U(Q)�X�(P ) + 	P (L�phk(P;Q))B ;and X�U(Q) is a CLM set of (44) relative to U whenever Q 2 P(�) and�phk(P;Q) < Æ. Here, the fun
tion 	P is given by (23).Proof: All sets H(x) are polyhedra in Rs given by r linear inequalities. Hen
e,the number of fa
es of H(x) is bounded by some k 2 N not depending onx 2 Rm . Sin
e all assumptions of Theorem 5 are satis�ed for the spe
ialsituation 
onsidered here, the result follows from the Theorems 5 and 9 bytaking into a

ount the estimate dFU (P;Q) � �phk(P;Q). 2We show that Theorem 39 applies to many 
han
e 
onstrained models knownfrom the literature. First we dis
uss the metri
 regularity property (ii) of theoriginal probabilisti
 
onstraint in (44). The following example shows that
ondition (ii) is indispensable for Theorem 39 to hold.Example 40 Let P 2 P(R) have a distribution fun
tion FP whi
h is 
ontinu-ously di�erentiable and satis�es FP (x) = x2s+1+p for all x in a neighbourhoodof x = 0 and some p 2 (0; 1) and s 2 N . Let us 
onsider the modelminfx : x 2 R; P (� � x) = FP (x) � pg:Then the 
ondition rFP (�x) 6= 0 is ne
essary and suÆ
ient for the metri
regularity at �x with FP (�x) = p (Example 9.44 in Ro
kafellar and Wets (1998)).45



Clearly, this 
ondition is violated at the minimizer �x = 0. To show that theresult gets lost, we 
onsider the measures Pn = (1 � 1n)P + 1nÆ 1n , n 2 N . Thesequen
e (Pn) 
onverges weakly to P and, thus, it 
onverges with respe
t to theKolmogorov metri
 dK as P is 
ontinuous. Then j#(P )�#(Pn)j = ( pn�1) 12s+1 =:xn, but dK(P; Pn) � jFP (xn)� FPn(xn)j = pn�1 .When looking for general 
onditions implying (ii), one has to resort to resultsfor non
onvex and nondi�erentiable situations. The fun
tiong(x) := P (f� 2 � : T (�)x � h(�)g)from Rm into R is known to be upper semi
ontinuous (Proposition 3.1 inR�omis
h and S
hultz (1991
)). However, g happens to be nondi�erentiable oreven dis
ontinuous not only in 
ases where the probability distribution P isdis
rete, but even if T (�) is non-sto
hasti
 and P is 
ontinuous.Example 41 Let P be the standard normal distribution with distributionfun
tion �. First let T (�) = 0B� 111CA and h(�) = 0B� �01CA for ea
h � 2 R. Theng(x) = P (f� 2 R : x � �; x � 0g) = 8><>: 0; x < 0�(x); x � 0 :Se
ondly, let T (�) = 0B� 1�11CA and h(�) = 0B� ��1CA for ea
h � 2 R. Then we haveg(x) = P (f� 2 R : x � �;�x � �g) = �(minf�x; xg):We also refer to Example 9 in Henrion and R�omis
h (1999) for a probabilitydistribution P having a (bounded) 
ontinuous density on � = R2 , but a prob-ability distribution fun
tion (i.e., g in 
ase of T (�) = I and h(�) = �) that isnot lo
ally Lips
hitz 
ontinuous.Hen
e, one has to go ba
k to tools from nonsmooth analysis in general. Forexample, if the fun
tion g is lo
ally Lips
hitz 
ontinuous on Rm , 
ondition (ii)is satis�ed if the 
onstraint quali�
ation�(�g)(�x) \ (�NX(�x)) = ; (45)holds at ea
h �x 2 X�(P ) with g(�x) = p (Corollary 4.2 in Mordukhovi
h(1994b)). Here, the symbol � stands for the Mordukhovi
h subdi�erential (
f.46



Mordukhovi
h (1994a)) and NX(�x) := fx� 2 Rm : hx�; x� �xi � 0; 8x 2 Xg isthe normal 
one to the polyhedral set X at �x 2 X.For more spe
i�
 stru
tures of probabilisti
 
onstraints, even in 
ase of asto
hasti
 matrix T (�), the situation may be
ome mu
h more 
omfortable ifP is a multivariate normal distribution. To demonstrate this, we 
onsider the
ase � = Rm+1 , T (�)x = mPi=1 �ixi, i.e., T (�) 
onsists of one single row, andh(�) = �m+1. Then H(x) takes the formH(x) = n� 2 Rm+1 : mXi=1 �ixi � �m+1o (46)
for ea
h x 2 Rm , i.e., the sets H(x) are 
losed half-spa
es in Rm+1 .Corollary 42 Let P be a normal distribution on Rm+1 with mean � 2 Rm+1and nonsingular 
ovarian
e matrix � 2 R(m+1)�(m+1) , H be given by (46) andp 2 (12 ; 1). Let X�(P ) be nonempty and U � Rm be an open bounded neigh-bourhood of X�(P ). Assume that there exists an x̂ 2 X su
h that P (H(x̂)) > p.Then there are 
onstants L > 0 and Æ > 0 su
h thatj#(P )� #U(Q)j �L�h(P;Q); 6= X�U(Q)�X�(P ) + 	P (L�h(P;Q))Bholds and X�U(Q) is a CLM set for (44) relative to U for ea
h Q 2 P(�) with�h(P;Q) < Æ. Here, the fun
tion 	P is given by (23) and �h is the half-spa
edis
repan
y (see Se
tion 2.1).Proof: For any x 2 Rm , we set x0 := (x1; : : : ; xm;�1) and �(x) := h�x0; x0i 12 .Let � denote the standard normal distribution fun
tion and � the standardnormal density. Then h�; x0i is normal with mean h�; x0i and standard devia-tion �(x0) > 0 (due to the nonsingularity of �), andg(x) = P (f� 2 Rm+1 : h�; x0i � 0g) = � h�; x0i�(x0) !holds for any x 2 Rm . Further, the fun
tionĝ(x) := h�; x0i � ��1(p)�(x0) = h��1(g(x))� ��1(p)i�(x0)47



is 
on
ave on Rm due to ��1(p) > 0 and 
ontinuously di�erentiable on Rmwith gradientrĝ(x) = �(x0)�(g(x))rg(x) + [��1(g(x))� ��1(p)ir�(x0)0B� Im0 1CA :Let �x 2 X be su
h that g(�x) = p and x̂ 2 X be the element having theproperty P (H(x̂)) > p or, equivalently, ĝ(x̂) > 0. Then the 
on
avity of ĝimplies hrĝ(�x); x̂ � �xi > 0 and, thus, rĝ(�x) 62 NX(�x). Due to the equationrĝ(�x) = �(�x0)�(g(�x))rg(�x), we 
on
lude rg(�x) 62 NX(�x). Hen
e, the 
onstraintquali�
ation (45) and, thus, 
ondition (ii) of Theorem 39 are satis�ed. 2For the remainder of this se
tion we assume that the te
hnology matrix T (�)is �xed, i.e., T (�) � T . We will show that the 
onstraint quali�
ation ofCorollary 42, i.e., P (H(x̂)) > p for some x̂ 2 X, implies 
ondition (ii) ofTheorem 39 for any r-
on
ave probability distribution.To re
all the notion of r-
on
avity, we introdu
e �rst the generalized meanfun
tion mr on R+ � R+ � [0; 1℄ for r 2 [�1;1℄ by
mr(a; b;�) := 8>>>>>>>>>>>><>>>>>>>>>>>>:

(�ar + (1� �)br)1=r ; r 2 (0;1) or r 2 (�1; 0); ab > 0;0 ; ab = 0; r 2 (�1; 0);a�b1�� ; r = 0;maxfa; bg ; r =1;minfa; bg ; r = �1: (47)
A measure P 2 P(Rs) is 
alled r-
on
ave for some r 2 [�1;1℄ (
f. Prekopa(1995)) if the inequalityP (�B1 + (1� �)B2) � mr(P (B1); P (B2);�)holds for all � 2 [0; 1℄ and all 
onvex Borel subsets B1; B2 of Rs su
h that�B1 + (1� �)B2 is Borel. For r = 0 and r = �1, P is also 
alled logarithmi

on
ave and quasi-
on
ave, respe
tively. Sin
e mr(a; b;�) is in
reasing in r ifall the other variables are �xed, the sets of all r-
on
ave probability measuresare in
reasing if r is de
reasing. It is known that P 2 P(Rs) is r-
on
ave forsome r 2 [�1; 1=s℄ if P has a density fP su
h thatfP (�z + (1� �)~z) � mr(s)(fP (z); fP (~z);�); (48)where r(s) = r(1� rs)�1, holds for all � 2 [0; 1℄ and z; ~z 2 Rs . Let us mentionthat many multivariate probability distributions are r-
on
ave for some r 248



(�1;1℄, e.g. the uniform distribution (on some bounded 
onvex set), the(nondegenerate) multivariate normal distribution, the Diri
hlet distribution,the multivariate Student and Pareto distributions (see Prekopa (1995)).The key observation of r-
on
ave measures in the 
ontext of probabilisti

onstraints is the following one.Lemma 43 Let H be a multifun
tion from Rm to Rs with 
losed 
onvex graphand P be r-
on
ave for some r 2 [�1;1℄. Then the fun
tion g := P (H(�))from Rm to R has the propertyg(�x+ (1� �)~x) � mr(g(x); g(~x);�)for ea
h x; ~x 2 Rm and � 2 [0; 1℄.Proof: In parti
ular, H(x) is a 
losed 
onvex subset of Rs for any x 2 Rm .Let x; ~x 2 Rm and � 2 [0; 1℄. Then the set �H(x) + (1� �)H(~x) is also 
losedand 
onvex and it holds that �H(x)+ (1��)H(~x) � H(�x+(1��)~x). Usingthe r-
on
avity of P this impliesg(�x+ (1� �)~x) � mr(P (H(x)); P (H(~x));�) = mr(g(x); g(~x);�): 2Corollary 44 Let T (�) � T and P be r-
on
ave for some r 2 (�1;1℄. LetX�(P ) be nonempty and U � Rm be an open bounded neighbourhood of X�(P ).Assume that there exists an element x̂ 2 X su
h that P (H(x̂)) > p holds.Then there are 
onstants L > 0, Æ > 0 and k 2 N su
h thatj#(P )� #U(Q)j �L�phk(P;Q); 6= X�U(Q)�X�(P ) + 	P (L�phk(P;Q))B ;and X�U(Q) is a CLM set for (44) relative to U whenever Q 2 P(�) and�phk(P;Q) < Æ. Here, the fun
tion 	P is given by (23).Proof: We assume without loss of generality that r < 0. Again we have toverify the metri
 regularity 
ondition (ii) of Theorem 39. To this end, weuse the fun
tion ĝ(�) := pr � gr(�) instead of g(�) := P (H(�)). Sin
e P isr-
on
ave, the fun
tion ĝ(�) is 
on
ave on Rm . We 
onsider the set-valuedmapping �(x) := fv 2 R : x 2 X; ĝ(x) � vg from Rm to R. Its graph is 
losedand 
onvex. Let �x 2 X with g(�x) = p, i.e., ĝ(�x) = pr. As there exists anx̂ 2 X su
h that g(x̂) > p, i.e., ĝ(x̂) > 0, the element v = 0 belongs to theinterior of the range of �. Hen
e, the Robinson-Urses
u Theorem (Theorem9.48 in Ro
kafellar and Wets (1998)) implies the existen
e of 
onstants a > 0and " > 0 su
h thatd(x;��1(v)) � ad(v;�(x)) � amaxf0; v � ĝ(x)g49



holds whenever x 2 X, kx� �xk � " and jvj � ". For x 2 X with kx� �xk � "and suÆ
iently small jyj we obtaind(x;Xy(P )) = d(x;��1(pr � (p� y)r)) � amaxf0; gr(x)� (p� y)rgFinally, it remains to use that the fun
tion v 7! vr is lo
ally Lips
hitz 
ontin-uous on (0;+1). 2The above result improves in 
ase of h(�) � � and, hen
e, g(x) = FP (Tx),where FP is the distribution fun
tion of P . Then the polyhedral dis
repan
y�phk 
an be repla
ed by the Kolmogorov distan
e dK.The next result provides a suÆ
ient 
ondition for (ii) in situations where P isnot quasi
on
ave, but has a density on Rs . Here, metri
 regularity is impliedby a growth 
ondition of g(�) = FP (T �) (see Henrion and R�omis
h (1999)).Corollary 45 Let T (�) � T , h(�) � �, P 2 P(Rs) have a density fP , X�(P )be nonempty and U � Rm be an open bounded neighbourhood of X�(P ).Assume the following two 
onditions for ea
h �x 2 X�(P ):(i) (T �x+ bdRs�) \ f� 2 Rs : 9" > 0 su
h that fP (�) � "; 8� 2 � + "B g 6= ;,(ii) there exists an x̂ 2 X su
h that T x̂ > T �x holds 
omponentwise.Then there are 
onstants L > 0 and Æ > 0 su
h thatj#(P )� #U(Q)j �LdK(P;Q); 6= X�U(Q)�X�(P ) + 	P (LdK(P;Q))B ;and X�U(Q) is a CLM set of (44) relative to U whenever Q 2 P(�) anddK(P;Q) < Æ. Here, the fun
tion 	P is given by (23).The essential 
ondition (i) says that, for ea
h � 2 T (X�(P )), the boundaryof the 
ell �+ Rs� meets the stri
t positivity region of the density of P some-where. This implies a suitable growth behaviour of the distribution fun
tionFP at elements of T (X�(P )) and, hen
e, metri
 regularity.Finally, we study the growth fun
tion  P of (44) and derive 
onditions imply-ing quadrati
 growth near solution sets in 
ase of h(�) � � and a logarithmi

on
ave measure P . The �rst step of our analysis 
onsists in a redu
tion argu-ment that de
omposes problem (44) into two auxiliary problems. The �rst oneis a sto
hasti
 program with modi�ed obje
tive and probabilisti
 
onstraints(with de
isions taken in Rs) whereas the se
ond one represents a parametri
linear program. The argument is similar to Lemma 28 for two-stage modelsand was proved in Henrion and R�omis
h (1999).Lemma 46 Let Q 2 P(Rs) and U � Rm be a nonempty open set su
h that50



its 
losure is a polytope. Then we have#U(Q) = inff�U(y) : y 2 T (XU); FQ(y) � pg and X�U(Q) = �U(YU(Q));where XU =X \ 
lU ;YU(Q)= argminf�U(y) : y 2 T (XU); FQ(y) � pg;�U(y)= inffh
; xi : Tx = y; x 2 XUg;�U(y)= argminfh
; xi : Tx = y; x 2 XUg (y 2 T (XU)):Here, �U is 
onvex polyhedral on T (XU) and �U is Lips
hitz 
ontinuous onT (XU) with respe
t to the Pompeiu-Hausdor� distan
e on Rs .Theorem 47 Let T (�) � T , h(�) � �, P 2 P(Rs) be logarithmi
 
on
ave andX�(P ) be nonempty and bounded. Assume that(i) X�(P ) \ argminfh
; xi : x 2 Xg = ;;(ii) there exists an �x 2 X su
h that FP (T �x) > p;(iii) logFP is strongly 
on
ave on some 
onvex neighbourhood V of T (X�(P )).Then there exist L > 0 and Æ > 0 and a neighbourhood U of X�(P ) su
h thatD1(X�(P ); X�U(Q)) � LdK(P;Q)1=2holds whenever Q 2 P(Rs) and dK(P;Q) < Æ. Here, D1 denotes the Pompeiu-Hausdor� distan
e on subsets of Rm and dK the Kolmogorov metri
 on P(Rs).Proof: Let U 0 � Rm be an open 
onvex set su
h that X�(P ) � U 0 andT (U 0) � V. For ea
h x 2 X�(P ) sele
t "(x) > 0 su
h that the polyhedronx + "(x)B1 (with B1 denoting the 
losed unit ball w.r.t. the norm k � k1 onRm) is 
ontained in U 0. Sin
e X�(P ) is 
ompa
t, �nitly many of these balls
over X�(P ). The 
losed 
onvex hull �U of their union is a polyhedron withX�(P ) � U � �U � U 0, where U = int �U . With the notations of Lemma 46we 
onsider the problemminf�U(y) : y 2 T (XU); ĝ(y) := log p� logFP (y) � 0g:A

ording to Lemma 46 the solution set YU(P ) of this problem ful�ls X�(P ) =X�U(P ) = �U (YU(P )). Let y� 2 YU(P ) and �y = T �x with �x 2 X from (ii). Thenthe logarithmi
 
on
avity of P implies for any � 2 (0; 1℄:ĝ(��y + (1� �)y�)= log p� logFP (��y + (1� �)y�)� log p� � logFP (�y)� (1� �) logFP (y�)��(log p� logFP (�y)) < 0:51



Thus, we may 
hoose �̂ 2 (0; 1℄ su
h that ŷ = �̂�y + (1 � �̂)y� belongs toT (XU) and has the property ĝ(ŷ) < 0. This 
onstraint quali�
ation impliesthe existen
e of a Kuhn-Tu
ker 
oeÆ
ient �� � 0 su
h that�U (y�) = minf�U(y) + ��ĝ(y) : y 2 T (XU)g and ��ĝ(y�) = 0:In 
ase �� = 0, this would imply y� 2 argminf�U(y) : y 2 T (XU)g and, hen
e,the existen
e of some x� 2 X�(P ) with h
; x�i = �U(Tx�) = minfh
; xi : Tx =y�; x 2 XUg. Hen
e, 
ondition (i) would be violated due to x� 2 intU . Thus�� > 0 and �V + ��ĝ is strongly 
onvex on T (XU). Hen
e, y� is the uniqueminimizer of �V + ��ĝ and the growth property�ky � y�k2 � �U(y) + ��ĝ(y)� �U(y�) (49)holds for some � > 0 and all y 2 T (XU).As the assumptions of Corollary 44 are satis�ed, the set-valued mappingX�U(�)is upper semi
ontinuous at P and X�U(Q) 6= ; is a 
omplete lo
al minimizingset if dK(P;Q) is suÆ
iently small. Hen
e, there exists a Æ > 0 su
h that; 6= X�U(Q) � U for all Q 2 P(Rs) with dK(P:Q) < Æ. With the notationsfrom Lemma 46 and using the fa
t that YU(P ) = fy�g and X�(P ) = X�U(P ) =�U(y�) we obtainD1(X�(P ); X�U(Q)) = D1(�U(y�); �U(YU(Q))) � L̂ supy2YU (Q) ky � y�k;where L̂ > 0 is the Lips
hitz 
onstant of �U (
f. Lemma 46). Using (49) andYU(Q) � T (XU), the above 
hain of inequalities extends toD1(X�(P ); X�U(Q))� L̂�1=2 supy2YU (Q)[�U(y) + ��ĝ(y)� �U(y�)℄1=2= L̂�1=2 [#U(Q)� #(P ) + ��(log p� logFP (y))℄1=2� L̂�1=2 [#U(Q)� #(P ) + ��(logFQ(y)� logFP (y))℄1=2� L̂�1=2 [(L+ ��p )dK(P;Q)℄1=2;where L > 0 is the 
onstant from Theorem 39 and 1p the Lips
hitz 
onstant oflog(�) on [p; 1℄. This 
ompletes the proof. 2A slightly more general version of the result for r-
on
ave measures was provedin Henrion and R�omis
h (1999). The assumptions (i){(iii) imposed in Theo-rem 47 
on
ern the original problem. The 
onditions (i) and (ii) mean that52



the probability level p is not 
hosen too low and too high, respe
tively. Con-dition (i) expresses the fa
t that the presen
e of the probabilisti
 
onstraintFP (Tx) � p moves the solution set X�(P ) away from the one obtained with-out imposing that 
onstraint. Re
ent results in Henrion and R�omis
h (2002)show that assumption (i) is not ne
essary for Theorem 47 to hold. Assump-tion (iii) is de
isive for the desired growth 
ondition of the obje
tive fun
tionaround X�(P ). In 
ontrast to the global 
on
avity of logFP , (iii) requires thestrong 
on
avity of logFP as a lo
al property around T (X�(P )). Sin
e generalsuÆ
ient 
riteria for (iii) are not available so far, we provide a few examples.Example 48 (strong logarithmi
 
on
avity of measures)Let P be the uniform distribution on some bounded re
tangle in Rs havingthe form D = �si=1[ai; bi℄. Then logFP (�) = Psi=1 log(�i � ai); � 2 D. Clearly,log(� � ai) is strongly 
on
ave on any 
losed subinterval of (ai; bi). Hen
e,logFP (�) is strongly 
on
ave on any 
losed 
onvex subset of intD.Let P be the multivariate normal distribution on Rs having a nonsingulardiagonal 
ovarian
e matrix. A dire
t 
omputation for the standard normaldistribution fun
tion � on R shows that log� is strongly 
on
ave on anybounded interval. Sin
e logFP is equal to the sum of logarithms of the marginaldistribution fun
tions, it is strongly 
on
ave on any bounded 
onvex set in Rs .4 Approximations of Sto
hasti
 ProgramsMany approximations of sto
hasti
 programs result from repla
ing the under-lying probability distribution by some other measure, whi
h typi
ally leads tosimpler models. Important examples are nonparametri
 statisti
al estimates(e.g. empiri
al ones) and s
enario tree 
onstru
tions using probability distribu-tion information. Next we give an idea how the results of the previous se
tionsmay be used to design and to analyse approximations of sto
hasti
 programs.We begin with some glimpses into the analysis of empiri
al approximationsand the relations to empiri
al pro
ess theory. A more far-rea
hing analysis isgiven in P
ug (2003) and Shapiro (2003).4.1 A Glimpse of Empiri
al ApproximationsLet P 2 P(�) and �1; �2; : : : ; �n; : : : be independent identi
ally distributed �-valued random variables on a probability spa
e (
;A;P) having the 
ommondistribution P , i.e., P = P��11 . We 
onsider the empiri
al measuresPn(!) := 1n nXi=1 Æ�i(!) (! 2 
; n 2 N);53



where Æ� denotes the unit mass at � 2 �, and the empiri
al approximationsof the sto
hasti
 program (1), i.e., the models that result from repla
ing P byPn(�). These take the formminn nXi=1 F0(x; �i(�)) : x 2 X ; nXi=1 Fj(x; �i(�)) � 0 ; j = 1; : : : ; do; (50)where the fa
tor 1n in the obje
tive and 
onstraints has been removed. Sin
ethe obje
tive and 
onstraint fun
tions Fj, j = 0; : : : ; d, are assumed to berandom lower semi
ontinuous fun
tions from Rm � � to R , the 
onstraint setis 
losed-valued and measurable from 
 to Rm and, hen
e, the optimal value#(Pn(�)) of (50) is measurable from 
 to R and the solution set X�(Pn(�))is a 
losed-valued measurable multifun
tion from 
 to Rm (see Chapter 14and, in parti
ular, Theorem 14.37 in Ro
kafellar and Wets (1998)). The same
on
lusion is valid for the lo
alized 
on
epts #U and X�U for any nonemptyopen subset U of Rm .Another measurability question arises when studying uniform 
onvergen
eproperties of the empiri
al pro
essnn 12 (Pn(�)� P )F = n� 12 nXi=1(F (�i(�))� PF )oF2F ;indexed by some 
lass F of fun
tions that are integrable with respe
t to P .Here, we set QF := R� F (�)dQ(�) for any Q 2 P(�) and F 2 F . Sin
e thesuprema dF(Pn(�); P ) = supF2F jPn(�)F � PF j may be non-measurable fun
-tions from 
 to R , we introdu
e a 
ondition on F that simpli�es matters andis satis�ed in most sto
hasti
 programming models. A 
lass F of measurablefun
tions from � to R is 
alled P-permissible for some P 2 P(�) if there existsa 
ountable subset F0 of F su
h that for ea
h fun
tion F 2 F there existsa sequen
e (Fn) in F0 
onverging pointwise to F and su
h that the sequen
e(PFn) also 
onverges to PF . ThendF(Pn(!); P ) = supF2F j(Pn(!)� P )F j = dF0(Pn(!); P )holds for ea
h n 2 N and ! 2 
, i.e., the analysis is redu
ed to a 
ountable
lass and, in parti
ular, dF(Pn(�); P ) is a measurable fun
tion from 
 to R .A P -permissible 
lass F is 
alled a P -Glivenko-Cantelli 
lass if the sequen
e(dF(Pn(�); P )) of random variables 
onverges to 0 P-almost surely. If F is P -permissible, the empiri
al pro
ess fn 12 (Pn(�) � P )FgF2F is 
alled uniformlybounded in probability with tail CF(�) if the fun
tion CF(�) is de�ned on (0;1)and de
reasing to 0, and the estimateP(f! : n 12dF(Pn(!); P ) � "g) � CF(") (51)54



holds for ea
h " > 0 and n 2 N . Whether a given 
lass F is a P -Glivenko-Cantelli 
lass or the empiri
al pro
ess is uniformly bounded in probabil-ity depends on the size of the 
lass F measured in terms of 
ertain 
over-ing numbers or the 
orresponding metri
 entropy numbers de�ned as theirlogarithms (e.g., Dudley (1984), Pollard (1990), van der Vaart and Wellner(1996)). To introdu
e these 
on
epts, let F be a subset of the normed spa
eLr(�; P ) for some r � 1 equipped with the usual norm kFkP;r = (P jF jr) 1r .The 
overing number N(";F ; Lr(�; P )) is the minimal number of open ballsfG 2 Lr(�; P ) : kG � FkP;r < "g needed to 
over F . A measurable fun
tionFF from � to R is 
alled an envelope of the 
lass F if jF (�)j � FF (�) holds forevery � 2 � and F 2 F . The following result provides 
riteria for the desiredproperties in terms of uniform 
overing numbers.Theorem 49 Let F be P -permissible with envelope FF . If PFF <1 andsupQ N("kFFkQ;1;F ; L1(Q)) <1; (52)then F is a P -Glivenko-Cantelli 
lass. If F is uniformly bounded and thereexist 
onstants r � 1 and R � 1 su
h thatsupQ N("kFFkQ;2;F ; L2(Q)) � �R" �r (53)holds for all " > 0, then the empiri
al pro
ess indexed by F is uniformlybounded in probability with exponential tail CF(") = (K(R)"r� 12 )r exp(�2"2)with some 
onstant K(R) depending only on R.The suprema in (52) and (53) are taken over all �nitely dis
rete probabilitymeasures Q with kFFkQ;1 = QFF > 0 and kFFk2Q;2 = QF 2F > 0, respe
tively.For the proof we refer to Talagrand (1994), van der Vaart and Wellner (1996)and van der Vaart (1998). For studying entropi
 sizes of sto
hasti
 programsP
ug (1999, 2003) uses results of this type but with bra
keting numbers in-stead of uniform 
overing numbers. He also studies situations where F is notuniformly bounded and shows that the blow-up fun
tion n 12 for n ! 1 hasto be repla
ed by some fun
tion 
onverging to 1 more slowly. Here, we usethe 
on
ept of uniform 
overing numbers sin
e they turn out to be useful fordis
ontinuous fun
tions.The stability results of Se
tion 2 dire
tly translate into 
onvergen
e resultsand rates, respe
tively, for empiri
al optimal values and solution sets.Theorem 50 Assume that the 
onditions (i){(iii) of Theorem 5 are satis�edand that FU is P -permissible. 55



If FU is a P -Glivenko-Cantelli 
lass, the sequen
es�j#(P )� #U (Pn(�))j� and � supx2X�U (Pn(�)) d(x;X�(P ))�
onverge P-almost surely to 0. Furthermore, the set X�U(Pn(!)) is a CLM setof (50) relative to U for suÆ
iently large n 2 N and for P-almost all ! 2 
.If the empiri
al pro
ess indexed by FU is uniformly bounded in probability withtail CFU (�), the following estimates hold for ea
h " > 0 and ea
h n 2 N:P(j#(P )� #U(Pn(�))j > "n� 12 )�CFU (minfÆ; "Lg); (54)P( supx2X�U (Pn(�)) d(x;X�(P )) > "n� 12 )�CFU (minfÆ; L̂�1	�1P (")g): (55)Proof: Let L > 0, L̂ > 0, Æ > 0 be the 
onstants in Theorems 5 and 9. First,let FU be a P -Glivenko-Cantelli 
lass and A 2 A be su
h that P(A) = 0 and(dFU (Pn(!); P )) 
onverges to 0 for every ! 2 
 n A. Let ! 2 
 n A. ThenX�U(Pn(!)) is nonempty, sin
e the obje
tive fun
tion R� F0(�; �)dP (�) is lowersemi
ontinuous on X and the 
onstraint set XU(Pn(!)) is 
ompa
t due toProposition 3. Let n0(!) 2 N be su
h that dFU (Pn(!); P ) < Æ holds for ea
hn � n0(!). Due to the Theorems 5 and 9 the estimatesj#(P )� #U (Pn(!))j �LdFU (Pn(!); P )supx2X�U (Pn(!)) d(x;X�(P ))�	P (L̂dFU (Pn(!); P ))hold for n � n0(!). In parti
ular, the sequen
es (j#(P ) � #U(Pn(!))j) and(supx2X�U(Pn(!)) d(x;X�(P ))) 
onverge to 0. Hen
e, X�U(Pn(!)) � U and, thus,X�U(Pn(!)) is a CLM set relative to U for suÆ
iently large n 2 N .Now, let " > 0 be arbitrary. The Theorems 5 and 9 also implyP(j#(P )� #U(Pn(�))j > ")�P(dFU (Pn(�); P ) � minfÆ; "Lg); (56)P( supx2X�U (Pn(�)) d(x;X�(P )) > ")�P(dFU (Pn(�); P ) � minfÆ; L̂�1	�1P (")g): (57)If the empiri
al pro
ess indexed by FU is uniformly bounded in probabilitywith tail CFU (�), the estimates (56) and (57) may be 
ontinued by using (51)and, thus, lead to (54) and (55). 2The estimates (54) and (55) may be used to derive the speed of 
onvergen
ein probability of optimal values and solution sets, respe
tively. Clearly, the56



speed depends on the asymptoti
 behaviour of the tail CFU (") as "!1 andof the fun
tion 	P . For the situation of exponential tails, this is elaborated inRa
hev and R�omis
h (2002).Next we show how our analysis applies to two-stage sto
hasti
 programs withand without integrality requirements and to 
han
e 
onstrained models. Itturns out that, under reasonable assumptions on all models, the empiri
alpro
ess indexed by FU is uniformly bounded in probability with exponentialtails.Example 51 (linear 
han
e 
onstrained models)A 
lass B of Borel sets of Rs is 
alled a Vapnik- �Cervonenkis (VC) 
lass ofindex r = r(B) if r is �nite and equal to the smallest n 2 N for whi
h no setof 
ardinality n+1 is shattered by B. B is said to shatter a subset f�1; : : : ; �lgof 
ardinality l in Rs if ea
h of its 2l subsets is of the form B \ f�1; : : : ; �lg forsome B 2 B. For VC 
lasses B it holds thatN("; f�B : B 2 Bg; L1(�; Q)) � K"�rfor any " > 0 and Q 2 P(�), and some 
onstant K > 0 depending only onthe index r (Theorem 2.6.4 in van der Vaart and Wellner (1996)).For any polyhedral set � � Rs and k 2 N the 
lass Bphk(�) is a VC 
lass,sin
e the 
lass of all 
losed half spa
es is VC and �nite interse
tions of VC
lasses are again VC. The 
orresponding 
lass of 
hara
teristi
 fun
tions ispermissible for P , sin
e the set of all polyhedra in Bphk(�) having verti
es atrational points in Rs plays the role of the 
ountable subset in the de�nition ofpermissibility. Hen
e, Theorem 49 applies and the empiri
al pro
ess indexedby FU = f�H(x) : x 2 X \ 
lUg, where U is a bounded open set 
ontainingX�(P ), is uniformly bounded in probability with exponential tail CFU (") =K̂"r exp(�2"2) for some index r 2 N and some 
onstant K̂ > 0. For example,from Theorem 50 we obtain for ea
h " > 0 and n 2 N the estimateP� supx2X�U(Pn(�)) d(x;X�(P )) > "n� 12� � K̂"r exp(�2minfÆ; L̂�1	�1P (")g2):Example 52 (two-stage models without integrality)Let F0 be de�ned as in Se
tion 3.1 and let (A1) and (A2) be satis�ed. Then, forea
h nonempty open and bounded subset U of Rm , the 
lass FU = fF0(x; �) :x 2 X \ 
lUg is a subset of L1(�; P ). FU is also permissible for P , sin
eany 
lass fF0(x; �) : x 2 X
g with X
 being a 
ountable and dense subset ofX\ 
lU may be used as the 
ountable subset of FU in the de�nition of permis-sibility. Proposition 22 implies that the fun
tion FFU (�) := Kmaxf1; k�k2g(� 2 �) is an envelope of FU for suÆ
iently large K > 0. Furthermore,due to the Lips
hitz 
ontinuity property of F0(�; �) with Lips
hitz 
onstantL̂maxf1; k�k2g (see Proposition 22), the uniform 
overing numbers of FU arebounded by the 
overing numbers of X \ 
lU (see Theorem 2.7.11 in van derVaart and Wellner (1996)). In parti
ular, for ea
h �nitely dis
rete measure57



Q 2 P(�) and with F̂ (�) := L̂maxf1; k�k2g (� 2 �) it holds thatN("kF̂kQ;r;FU ; Lr(�; Q)) � N(";X \ 
lU ;Rm) � K"�m; (58)for ea
h " > 0, r � 1 and some 
onstant K > 0 depending only on m andthe diameter of X \ 
lU . Using (58) for r = 1, Theorem 49 implies that FUis a P -Glivenko-Cantelli 
lass. If � is bounded, FU is uniformly bounded and,using (58) for r = 2, Theorem 49 implies that the empiri
al pro
ess indexedby FU is uniformly bounded in probability with exponential tail.Example 53 (mixed-integer two-stage models)Let F0 be de�ned as in Se
tion 3.2 and let (B1){(B3) be satis�ed and � bebounded. Then, for ea
h nonempty open and bounded subset U of Rm , the
lass FU = nF0(x; �) = �Xj=1(h
; xi+ �(h(�)� T (�)x)��Rj;x(�) : x 2 X \ 
lUois a subset of L1(�; P ). This representation follows from Proposition 34 ifR > 0 is 
hosen suÆ
iently large su
h that f� 2 � : kh(�)�T (�)xk1 > Rg = ;for ea
h x 2 X \ 
lU . For ea
h X \ 
lU the sets �Rj;x (j = 1 : : : ; �) form adisjoint partition of � into Borel sets whose 
losures are in Bphk(�) for somek 2 N . Furthermore, the fun
tion �(h(�) � T (�)x) is Lips
hitz 
ontinuouson ea
h of these sets with a uniform 
onstant L1 > 0. Let F j0 (x; �) denotea Lips
hitz extension of the fun
tion h
; xi + �(h(�) � T (�)x) from �Rj;x toR by preserving the Lips
hitz 
onstant L1 (j = 1; : : : ; �). Furthermore, letF jU := fF j0 (x; �) : x 2 X\ 
lUg and GjU := f��Rj;x : x 2 X\ 
lUg (j = 1; : : : ; �).Now, we use a permanen
e property of the uniform 
overing numbers (
f.Se
tion 2.10.3 in van der Vaart and Wellner (1996)). Let Q 2 P(�) be dis
retewith �nite support. Then the estimateN("C0;FU ; L2(�; Q)) � �Yj=1N("Cj;F jU ; L2(�; Qj))N("Ĉj;GjU ; L2(�; Q̂j)) (59)is valid, where C0, Cj > 1, Ĉj, j = 1; : : : ; �, are 
ertain 
onstants and Qj, Q̂j,j = 1; : : : ; �, 
ertain dis
rete measures having �nite support. The 
onstantsdepend on the bounds of the uniformly bounded 
lasses F jU and GjU , j =1; : : : ; �. Sin
e the latter 
lasses satisfy the 
ondition (53) (see Examples 51 and52), the estimate (59) implies that FU satis�es (53), too. Hen
e, we obtain thesame estimates for mixed-integer two-stage models as in Example 52 for two-stage models without integrality requirements and in Example 51 for linear
han
e 
onstrained models. 58



Example 54 (newsboy 
ontinued)A

ording to Example 15, the 
lass FU is of the form FU = fF0(x; �) = (r �
)x+ 
maxf0; x� �g : x 2 X \ 
lUg with envelope FFU (�) = r supX\ 
lU jxj+
j�j and a uniform Lips
hitz 
onstant 
. Hen
e, FU is a subset of L1(�; P ) ifR� j�jdP (�) = Pk2N �kk <1. As in Example 52 we obtainN("
;FU ; L2(�; Q)) � N(";X \ 
lU ;Rm) � C"�mfor ea
h �nitely dis
rete measure Q 2 P(�) and, hen
e, Theorem 50 providesthe rate of 
onvergen
e of the solution sets X�U(Pn(�)) of (4) with linear 	P .4.2 S
enario Generation and Redu
tionMost of the numeri
al solution approa
hes for sto
hasti
 programs resort todis
rete approximations of the underlying probability measure P . Several ap-proa
hes have been developed for the generation or 
onstru
tion of dis
rete ap-proximations and are in use for solving applied sto
hasti
 programming models(see the overview by Dupa�
ov�a et al. (2000) and the referen
es therein). Thequantitative stability results of Se
tion 2.3 suggest another approa
h, namely,to 
onstru
t approximations for the original measure P su
h that they are
lose to P with respe
t to the 
orresponding probability (pseudo) metri
. LetF be a set of measurable fun
tions from � to R su
h that the sto
hasti
programming model (1) is stable in the sense of the Theorems 5 and 9 withrespe
t to the (pseudo) metri
dF(P;Q) = supF2F ��� Z� F (�)d(P �Q)(�)���or some other distan
e bounding dF(P;Q) from above. This means that theoptimal values and the solution sets of (1) behave 
ontinuously at P whenperturbing P with respe
t to dF .Then it is a natural requirement to 
onstru
t approximate probability dis-tributions su
h that they are best approximations to P in the sense of dF .For instan
e, the prin
iple of optimal s
enario generation with a pres
ribednumber of s
enarios may be formulated as follows:Given P 2 P(�) and M 2 N , determine a dis
rete probability measureQ� 2 P(�) having M s
enarios su
h thatdF(P;Q�) = minndF�P; MXj=1 qjÆ�j� : MXj=1 qj = 1; qj � 0; �j 2 �; j = 1; : : : ;Mo:59



Further 
onstraints 
ould be in
orporated into the minimization problem, e.g.,
onstraints implying that the s
enarios exhibit a tree stru
ture. Unfortunately,it seems to be hopeless to solve this problem for general measures P , fun
-tion 
lasses F , supports �, and large numbers M of s
enarios. However, itis of 
ourse a 
hallenging problem to develop approa
hes for solving the bestapproximation problem for more spe
i�
 situations, like e.g. for the un
on-strained 
ase � = Rs , dis
rete measures P (involving very many s
enarios)and fun
tion 
lasses that are relevant in Se
tion 3. An approa
h for solvingthe best approximation problem in 
ase of � = Rs and F = F1(Rs) is devel-oped in P
ug (2001).Another important problem 
onsists in redu
ing a given dis
rete probabilitymeasure P = PNi=1 piÆ�i with a (very) large number N of s
enarios to a mea-sure 
ontaining n of the original s
enarios with n << N . Similarly as in 
aseof optimal s
enario generation, the problem of optimal s
enario redu
tion maybe formulated in the formminndF� NXi=1 piÆ�i ;Xj2J qjÆ�j� : J � f1; : : : ; Ng; jJ j = n;Xj2J qj = 1; qj � 0o; (60)i.e., as a nonlinear mixed-integer program. Sin
e its obje
tive fun
tion is dif-�
ult to 
ompute for general 
lasses F , solution methods for (60) are a 
hal-lenging task. However, in the spe
ial 
ase that F = Fp(�), for some p � 1,the obje
tive fun
tion of (60) turns out to be the dual optimal value of thestandard network 
ow problem (see Ra
hev and R�us
hendorf (1998))minn NXi=1j2J 
p(�i; �j)k�i � �jk�ij : �ij � 0; NXi=1 �ij �Xj2J �ij = qj � pi; 8i; jo;where 
p(�i; �j) = maxf1; k�ik; k�jkgp�1, i; j = 1; : : : ; N , and, hen
e, it is apolyhedral fun
tion of q. Furthermore, in 
ase of F = F1(�) problem (60)simpli�es 
onsiderably.Proposition 55 Given J � f1; : : : ; Ng we haveminndF1(�)� NXi=1 piÆ�i ;Xj2J qjÆ�j� :Xj2J qj = 1; qj � 0o =Xi62J piminj2J k�i � �jk:Moreover, the minimum is attained at �qj = pj + Pi2Jj pi; for ea
h j 2 J, whereJj := fi 62 J : j = j(i)g and j(i) 2 argminj2J k�i � �jk for ea
h i 62 J.The proposition provides an expli
it formula for the redistribution of the givenprobabilities pi, i = 1; : : : ; N , to the s
enarios with indi
es in J . For its proof60



we refer to Theorem 2 in Dupa�
ov�a et al. (2003). Due to Proposition 55 theoptimal s
enario redu
tion problem (60) in 
ase of F = F1(�) takes the form:Given P 2 P(�) and n 2 N , determine a solution ofminnXi62J piminj2J k�i � �jk : J � f1; :::; Ng; jJ j = no (61)and 
ompute the optimal weights �q a

ording to the redistribution rule inProposition 55. Noti
e that problem (61) means that the set f1; : : : ; Ng has tobe 
overed by a subset J of f1; : : : ; Ng and by f1; : : : ; NgnJ su
h that jJ j = nand the 
over has minimal 
ost Pi62J piminj2J k�i � �jk. Hen
e, problem (61)is of set-
overing type and, thus, NP-hard. However, the spe
i�
 stru
tureof the obje
tive fun
tion allows the design of fast heuristi
 algorithms forits approximate solution (see Dupa�
ov�a et al. (2003), Heits
h and R�omis
h(2003)). Depending on the size of the number n of remaining s
enarios, thetwo basi
 ideas are ba
kward redu
tion and forward sele
tion, respe
tively. Inthe ba
kward redu
tion heuristi
 an index set J = fl1; : : : ; lng is determinedsu
h that li 2 arg minl2J [i�1℄r Xk2J [i�1℄r nflg pk minj 62J [i�1℄r nflg k�k � �jk (i = 1; : : : ; n);where J [0℄r = f1; : : : ; Ng, J [i℄r = J [i�1℄r n flig, i = 1; : : : ; n. In the forwardsele
tion heuristi
 the index set J = fl1; : : : ; lng is 
hosen by an oppositestrategy su
h thatli 2 arg minl 62J [i�1℄s Xk 62J [i�1℄s [flg pk minj2J [i�1℄s [flg k�k � �jk (i = 1; : : : ; n)holds, where J [0℄s = ;, J [i℄s = J [i�1℄s [ flig, i = 1; : : : ; n. We refer to Heits
hand R�omis
h (2003) for a dis
ussion of the 
omplexity of both heuristi
s, forimplementation issues and en
ouraging numeri
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