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Abstract Piecewise linear convex functions arise as integrands in stochastic
programs. They are Lipschitz continuous on their domain, but do not belong
to tensor product Sobolev spaces. Motivated by applying Quasi-Monte Carlo
methods we show that all terms of their ANOVA decomposition, except the
one of highest order, are smooth if the underlying densities are smooth and
a certain geometric condition is satisfied. The latter condition is generically
satisfied in the normal case.

1 Introduction

During the last decade much progress has been achieved in Quasi-Monte
Carlo (QMC) theory for computing multidimensional integrals. Appropriate
function spaces of integrands were discovered that allowed to improve the
classical convergence rates. It is referred to the monographs [27, 17] for pro-
viding an overview of the earlier work and to [16, 2, 12] for presenting much
of the more recent achievements.
In particular, certain reproducing kernel Hilbert spaces Fd of functions f :
[0, 1]d → R became important for estimating the quadrature error (see [7]).
If the integral Id(f) =

∫
[0,1]d

f(x)dx defines a linear continuous functional on

Fd and Qn,d(f) denotes a Quasi-Monte Carlo method for computing Id(f),
i.e.,

Qn,d(f) =
1

n

n∑
j=1

f(xj) (n ∈ N)
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for some sequence xi ∈ [0, 1)d, i ∈ N, the quadrature error en(Fd) allows the
representation

en(Fd) = sup
f∈Fd ,∥f∥≤1

∣∣Id(f)−Qn,d(f)
∣∣ = sup

∥f∥≤1

|⟨f, hn⟩| = ∥hn∥ (1)

according to Riesz’ theorem for linear bounded functionals. The representer
hn ∈ Fd of the quadrature error is of the form

hn(x) =

∫
[0,1]d

K(x, y)dy − 1

n

n∑
i=1

K(x, xi) (∀x ∈ [0, 1]d),

where K : [0, 1]d × [0, 1]d → R denotes the kernel of Fd. It satisfies the
conditions K(·, y) ∈ Fd and ⟨f,K(·, y)⟩ = f(y) for each y ∈ [0, 1]d and
f ∈ Fd, where ⟨·, ·⟩ and ∥ · ∥ denote inner product and norm in Fd.
In particular, the weighted tensor product Sobolev space [25]

Fd = W(1,...,1)
2,mix ([0, 1]d) =

d⊗
i=1

W 1
2 ([0, 1]) (2)

equipped with the weighted norm ∥f∥2γ = ⟨f, f⟩γ and inner product (see
Section 2 for the notation)

⟨f, g⟩γ =
∑

u⊆{1,...,d}

∏
j∈u

γ−1
j

∫
[0,1]|u|

∂|u|

∂xu
f(xu, 1−u)

∂|u|

∂xu
g(xu, 1−u)dxu, (3)

and a weighted Walsh space consisting of Walsh series (see [2, Example 2.8]
and [1]) are reproducing kernel Hilbert spaces.
They became important for analyzing the recently developed randomized
lattice rules (see [26, 11, 13] and [1, 2]) and allowed for deriving optimal
error estimates of the form

en(Fd) ≤ C(δ)n−1+δ (n ∈ N, δ ∈ (0, 12 ]), (4)

where the constant C(δ) does not depend on the dimension d if the nonneg-
ative weights γj satisfy

∞∑
j=1

γ
1

2(1−δ)

j <∞.

Unfortunately, a number of integrands do not belong to such tensor product
Sobolev or Walsh spaces and are even not of bounded variation in the sense of
Hardy and Krause. The latter condition represents the standard requirement
on an integrand f to justify Quasi-Monte Carlo algorithms via the Koksma-
Hlawka theorem [17, Theorem 2.11].
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Often integrands are non-differentiable like those in option pricing models
[31] or max-type functions in general. It has been discovered in [4, 5] that
the so-called ANOVA decomposition (see Section 2) of such integrands may
have a smoothing effect in the sense that many ANOVA terms are smooth if
the underlying densities are sufficiently smooth.
In this paper we show that such a smoothing effect occurs also in case of piece-
wise linear convex functions f . More precisely, we show that all ANOVA terms
except the one of highest order of such functions are infinitely differentiable
if the densities are sufficiently smooth and a geometric property is satisfied.
This geometric property is generic if the underlying densities are normal.
The results pave the way to extensions for composite functions f(g(·)) with
a smooth mapping g. Since piecewise linear convex functions appear as the
result of linear optimization processes, our results apply to linear two-stage
stochastic programs and (slightly) extend the main result of [6]. Hence, the
results justify earlier studies of QMC methods in stochastic programming
[3, 9, 21] and motivate that the recently developed randomized lattice rules
[26, 2] may be efficient for stochastic programming models if their super-
position dimension is small. The computational experience reported in [6]
confirms the efficiency of randomly shifted lattice rules.
The paper starts by recalling the ANOVA decomposition in Section 2 and
convex piecewise linear functions in Section 3. Section 4 contains the main
results on the smoothing effect of the ANOVA decomposition of convex piece-
wise linear functions, followed by discussing the generic character of the geo-
metric property (Section 5) and dimension reduction (Section 6) both in the
normal case.

2 ANOVA decomposition and effective dimension

The analysis of variance (ANOVA) decomposition of a function was first
proposed as a tool in statistical analysis (see [8] and the survey [29]). Later
it was often used for the analysis of quadrature methods mainly on [0, 1]d.
Here, we will use it on Rd equipped with a probability measure given by a
density function ρ of the form

ρ(ξ) =

d∏
j=1

ρj(ξj) (∀ξ = (ξ1, . . . , ξd) ∈ Rd) (5)

with continuous one-dimensional marginal densities ρj on R. As in [5] we
consider the weighted Lp space over Rd, i.e., Lp,ρ(Rd), with the norm
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∥f∥p,ρ =


( ∫
Rd

|f(ξ)|pρ(ξ)dξ
) 1

p

if 1 ≤ p < +∞,

ess sup
ξ∈Rd

ρ(ξ)|f(ξ)| if p = +∞.

Let I = {1, . . . , d} and f ∈ L1,ρ(Rd). The projection Pk, k ∈ I, is defined by

(Pkf)(ξ) :=

∫ ∞

−∞
f(ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds (ξ ∈ Rd).

Clearly, the function Pkf is constant with respect to ξk. For u ⊆ I we use |u|
for its cardinality, −u for I \ u and write

Puf =
( ∏

k∈u

Pk

)
(f),

where the product sign means composition. Due to Fubini’s theorem the
ordering within the product is not important and Puf is constant with respect
to all ξk, k ∈ u.
The ANOVA decomposition of f ∈ L1,ρ(Rd) is of the form [30, 14]

f =
∑
u⊆I

fu (6)

with fu depending only on ξu, i.e., on the variables ξj with indices j ∈ u. It
satisfies the property Pjfu = 0 for all j ∈ u and the recurrence relation

f∅ = PI(f) and fu = P−u(f)−
∑
v⊆u

fv .

It is known from [14] that the ANOVA terms are given explicitly in terms of
the projections by

fu =
∑
v⊆u

(−1)|u|−|v|P−vf = P−u(f) +
∑
v⊂u

(−1)|u|−|v|Pu−v(P−u(f)), (7)

where P−u and Pu−v mean integration with respect to ξj , j ∈ I \ u and j ∈
u \ v, respectively. The second representation motivates that fu is essentially
as smooth as P−u(f) due to the Inheritance Theorem [5, Theorem 2].
If f belongs to L2,ρ(Rd), the ANOVA functions {fu}u⊆I are orthogonal in
the Hilbert space L2,ρ(Rd) (see e.g. [30]).
Let the variance of f be defined by σ2(f) = ∥f − PI(f)∥2L2

. Then it holds

σ2(f) = ∥f∥22,ρ − (PI(f))
2 =

∑
∅≠u⊆I

∥fu∥22,ρ =:
∑

∅≠u⊆I

σ2
u(f).
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To avoid trivial cases we assume σ(f) > 0 in the following. The normalized

ratios
σ2
u(f)

σ2(f) serve as indicators for the importance of the variable ξu in f .

They are used to define sensitivity indices of a set u ⊆ I for f in [28] and the
dimension distribution of f in [18, 15].
For small ε ∈ (0, 1) (ε = 0.01 is suggested in a number of papers), the effective
superposition (truncation) dimension dS(ε) (dT (ε)) is defined by

dS(ε) = min
{
s ∈ I :

∑
|u|≤s

σ2
u(f)

σ2(f)
≥ 1− ε

}
dT (ε) = min

{
s ∈ I :

∑
u⊆{1,...,s}

σ2
u(f)

σ2(f)
≥ 1− ε

}
and it holds dS(ε) ≤ dT (ε) and (see [30])∥∥∥f −

∑
|u|≤dS(ε)

fu

∥∥∥
2,ρ

≤
√
εσ(f). (8)

For linear functions f one has σu(f) = 0 for |u| > 1, dS(ε) = 1, but dT (ε)
may be close to d [18, 30]. For the simple convex piecewise linear function
f(ξ1, ξ2) = max{ξ1, ξ2} on [0, 1]2 with the uniform distribution it holds f∅ =
1
3 , σ

2(f) = 1
18 ,

f{i}(ξi) = −1

2
ξ2i + ξi −

1

3
, σ2

{i}(f) =
2

45
, (i = 1, 2), σ2

{1,2}(f) =
1

90
.

Hence, we obtain dS(ε) = 2 for ε ∈ (0, 15 ) and the situation is entirely different
for convex piecewise linear functions.

3 Convex piecewise linear functions

Convex piecewise linear functions appear as optimal value functions of linear
programs depending on parameters in right-hand sides of linear constraints
or in the objective function. In general, they are nondifferentiable and not of
bounded variation in the sense of Hardy and Krause (for the latter see [19]).
On the other hand, such functions enjoy structural properties which make
them attractive for variational problems.
As in [22, Section 2.I] a function f from Rd to the extended reals R̄ is called
piecewise linear on D = dom f = {ξ ∈ Rd : f(ξ) < ∞} if D can be repre-
sented as the union of finitely many polyhedral sets relative to each of which
f(ξ) is given by f(ξ) = a⊤ξ + α for some a ∈ Rd and α ∈ R.

Proposition 1. Let f : Rd → R̄ be proper, i.e., f(ξ) > −∞ and D = dom f
be nonempty. Then the function f is convex and piecewise linear if and only
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if it has a representation of the form

f(ξ) =

{
max{a⊤1 ξ + α1, . . . , a

⊤
ℓ ξ + αℓ} , ξ ∈ D,

∞ , ξ ̸∈ D,
(9)

for some ℓ ∈ N, aj ∈ Rd and αj ∈ R, j = 1, . . . , ℓ. Moreover, D is poly-
hedral and, if intD is nonempty, D may represented as the union of a fi-
nite collection of polyhedral sets Dj, j = 1, . . . , ℓ, such that intDj ̸= ∅ and
intDj ∩ intDj′ = ∅ when j ̸= j′.

Proof. The two parts of the results are proved as Theorem 2.49 and Lemma
2.50 in [22, Section 2.I]. �

Example 1. (Linear two-stage stochastic programs)
We consider the linear optimization problem

min
{
c⊤x+ EP [q

⊤y(ξ)] :Wy(ξ) + T (ξ)x = h(ξ), x ∈ X, y(ξ) ≥ 0, ∀ξ ∈ Rd
}
,

where c ∈ Rm, q ∈ Rm̄, W is a r× m̄ matrix, T (ξ) a r×m matrix, h(ξ) ∈ Rr

for each ξ ∈ Rd,X is convex and polyhedral in Rm, P is a probability measure
on Rd and EP denotes expectation with respect to P . We assume that T (·)
and h(·) are affine functions of ξ. The above problem may be reformulated
as minimizing a convex integral functional with respect to x, namely,

min
{
c⊤x+

∫
Rd

Φ(h(ξ)− T (ξ)x)P (dξ) : x ∈ X
}
, (10)

where Φ is the optimal value function assigning to each parameter t ∈ Rr

an extended real number by Φ(t) = inf{q⊤y : Wy = t, y ≥ 0}. The value
Φ(t) = −∞ appears if there exists y ∈ Rm̄

+ , y ̸= 0 such that Wy = 0 and
Φ(t) = +∞ means infeasibility, i.e., {y ∈ Rm̄ :Wy = t, y ≥ 0} is empty. The
integrand in (10) is f(ξ) = c⊤x+ Φ(h(ξ)− T (ξ)x) for every x ∈ X.
Now, we assume that both domΦ = {t ∈ Rr : Φ(t) < +∞} and the dual
polyhedron D = {z ∈ Rr : W⊤z ≤ q} are nonempty. Then Φ(t) > −∞ holds
for all t ∈ Rr and the original primal as well as the dual linear program
max{t⊤z : z ∈ D} are solvable due to the duality theorem. If vj , j = 1, . . . , l,
denote the vertices of D, it holds

Φ(t) = max
j=1,...,l

t⊤vj (t ∈ domΦ = Rr),

i.e., the integrand f(·) is convex and piecewise linear on D = Rd for every
x ∈ X. For more information on stochastic programming see [23, 24].
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4 ANOVA decomposition of convex piecewise linear
functions

We consider a piecewise linear convex function f and assume that its poly-
hedral domain D = dom f has nonempty interior. Let Dj , j = 1, . . . , ℓ, be
the polyhedral subsets of D according to Proposition 1 such that

f(ξ) = a⊤j ξ + αj (∀ξ ∈ Dj)

holds for some aj ∈ Rd, αj ∈ R, j = 1, . . . , ℓ. For each i ∈ I = {1, . . . , d} there
exist finitely many (d − 1)-dimensional intersections Hij , j = 1, . . . , J(i), of
Di with adjacent polyhedral sets Dj , j ∈ {1, . . . , d} \ {i}. These polyhedral
sets are subsets of finitely many (d − 1)-dimensional affine subspaces of Rd

which are renumbered by Hi, i = 1, . . . , θ(f).
Furthermore, we assume that the support Ξ of the probability measure is
contained in D and its density ρ is of the form (5). For any k ∈ I we denote
the kth coordinate projection of D by πk(D), i.e.,

πk(D) = {ξk ∈ R : ∃ξj , j ∈ I, j ̸= k, such that ξ = (ξ1, . . . , ξd) ∈ D}.

Next we intend to compute projections Pk(f) for k ∈ I. For ξ ∈ D we set
ξ̄k = (ξ1, . . . , ξk−1, ξk+1, . . . , ξd), and ξ̄ks = (ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd) for
s ∈ πk(D). We know that

ξ̄ks ∈
ℓ∪

j=1

Dj = D (11)

for every s ∈ πk(D) and assume ρk(s) = 0 for every s ∈ R \ πk(D). Hence,
we obtain by definition of the projection

(Pkf)(ξ̄
k) =

∫ ∞

−∞
f(ξ̄ks )ρk(s)ds =

∫ ∞

−∞
f(ξ1, . . . , ξk−1, s, ξk+1, . . . , ξd)ρk(s)ds.

Due to (11) the one-dimensional affine subspace {ξ̄ks : s ∈ R} intersects a finite
number of the polyhedral sets Dj . Hence, there exist p = p(k) ∈ N ∪ {0},
si = ski ∈ R, i = 1, . . . , p, and ji = jki ∈ {1, . . . , ℓ}, i = 1, . . . , p+1, such that
si < si+1 and

ξ̄ks ∈ Dj1 ∀s ∈ (−∞, s1] ∩ πk(D)

ξ̄ks ∈ Dji ∀s ∈ [si−1, si] (i = 2, . . . , p)

ξ̄ks ∈ Djp+1 ∀s ∈ [sp,+∞) ∩ πk(D).

By setting s0 := −∞, sp+1 := ∞, we obtain the following explicit represen-
tation of Pkf .
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(Pkf)(ξ̄
k) =

p+1∑
i=1

∫ si

si−1

(a⊤ji ξ̄
k
s + αji)ρk(s)ds (12)

=

p+1∑
i=1

(( d∑
l=1
l ̸=k

ajilξl + αji

)∫ si

si−1

ρk(s)ds+ ajik

∫ si

si−1

sρk(s)ds
)

=

p+1∑
i=1

(( d∑
l=1
l ̸=k

ajilξl + αji

)
(φk(si)− φk(si−1))

+ajik(ψk(si)− ψk(si−1))
)

(13)

Here, φk is the one-dimensional distribution function with density ρk, ψk the
corresponding mean value function and µk the mean value, i.e.,

φk(u) =

∫ u

−∞
ρk(s)ds, ψk(u) =

∫ u

−∞
sρk(s)ds, µk =

∫ +∞

−∞
sρk(s)ds.

Next we reorder the outer sum to collect the factors of φk(si) and ψk(si),
and a remainder.

(Pkf)(ξ̄
k) =

p∑
i=1

(( d∑
l=1
l̸=k

(ajil − aji+1l)ξl + (αji − αji+1)
)
φk(si) +

(ajik − aji+1k)ψk(si)
)
+

d∑
l=1
l̸=k

ajp+1lξl + αjp+1 + ajp+1kµk.(14)

As the convex function f is continuous on intD, it holds

a⊤ji ξ̄
k
s + αji = a⊤ji+1

ξ̄ks + αji+1

and, thus, the points si, i = 1, . . . , p, satisfy the equations

d∑
l=1
l̸=k

ξl(aji+1l − ajil) + si(aji+1k − ajik) + αji+1 − αji = 0 (i = 1, . . . , p).

This leads to the explicit formula

si =
1

ajik − aji+1k

( d∑
l=1
l̸=k

ξl(aji+1l−ajil)+αji+1 −αji

)
if ajik ̸= aji+1k. (15)

for i = 1, . . . , p. Hence, all si, i = 1, . . . , p, are linear combinations of the
remaining components ξj , j ̸= k, of ξ if the following geometric condition is
satisfied: All kth components of adjacent vectors aj are different from each
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other, i.e., all polyhedral sets Hj are subsets of (d−1)-dimensional subspaces
that are not parallel to the kth coordinate axis in Rr or, with other words,
not parallel to the canonical basis element ek (whose components are equal
to δik, i = 1, . . . , d).
To simplify notation we set wi = aji − aji+1 and vi = αji − αji+1 . If the
above geometric condition is satisfied, we obtain the following representation
of Pkf :

(Pkf)(ξ̄
k)=

p∑
i=1

wik

(
− si(ξ̄

k)φk(si(ξ̄
k)) + ψk(si(ξ̄

k))
)

+
d∑

l=1
l̸=k

ajp+1lξl + αjp+1 + ajp+1kµk (16)

si = si(ξ̄
k) = − 1

wik

( d∑
l=1
l̸=k

wilξl + vi

)
. (17)

Hence, the projection represents a sum of products of differentiable functions
and of affine functions of ξk.

Proposition 2. Let f be piecewise linear convex having the form

f(ξ) = a⊤j ξ + αj (∀ξ ∈ Dj). (18)

Let k ∈ I and assume that vectors aj belonging to adjacent polyhedral sets Dj

have different kth components. Then the kth projection Pkf is twice contin-
uously differentiable. The projection Pkf belongs to Cs+1(Rd) if the density
ρk is in Cs−1(R) (s ∈ N). Pkf is infinitely differentiable if the density ρk is
in C∞(R).

Proof. Let l ∈ I, l ̸= k. The projection Pkf is partially differentiable with
respect to ξl and it holds

∂Pkf

∂ξl
(ξ̄k) =

p∑
i=1

wik
∂

∂ξl

(
− si(ξ̄

k)φk(si(ξ̄
k)) + ψk(si(ξ̄

k))
)
+ ajp+1l

=

p∑
i=1

wil

(
φk(si(ξ̄

k)) + si(ξ̄
k)φ′

k(si(ξ̄
k))− ψ′

k(si(ξ̄
k))

)
+ ajp+1l

=

p∑
i=1

wilφk(si(ξ̄
k)) + ajp+1l

due to (16)–(17) and φ′
k(s) = ρk(s) and ψ

′
k(s) = sρk(s). Hence, the behavior

of all first order partial derivatives of Pkf only depends on the kth marginal
distribution functions. The first order partial derivatives are continuous and
again partially differentiable. The second order partial derivatives are of the
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form
∂2Pkf

∂ξl∂ξr
(ξ̄k) =

p∑
i=1

−wilwir

wik
ρk(si(ξ̄

k))

and, thus, only depend on the marginal density ρk. Hence, Pkf is twice
continuously differentiable as ρk is continuous. If ρk ∈ Cs−1(R) for some
s ∈ N, Pkf belongs to Cs+1(Rd). If ρk ∈ C∞(R), Pkf is in C∞(Rd). �
Our next example shows that the geometric condition imposed in Proposition
2 is not superfluous.

Example 2. Let us consider the function

f(ξ) = max{ξ1,−ξ1, ξ2} (∀ξ = (ξ1, ξ2) ∈ R2)

on D = R2, i.e., we have α1 = α2 = α3 = 0 and a1 = (1, 0)⊤, a2 = (−1, 0)⊤

and a3 = (0, 1)⊤. The decomposition of D according to Proposition 1 consists
of

D1 = {ξ ∈ R2 : ξ1 ≥ 0, ξ2 ≤ ξ1}, D2 = {ξ ∈ R2 : ξ1 ≤ 0, ξ2 ≤ −ξ1},
D3 = {ξ ∈ R2 : ξ2 ≥ ξ1, ξ2 ≥ −ξ1}.

All polyhedral sets are adjacent and the second component of two of the vec-
tors aj , j = 1, 2, 3, coincides. Hence, the geometric condition in Proposition
2 is violated. Indeed, the projection P2f is of the form

(P2f)(ξ1) = |ξ1|
∫ |ξ1|

−∞
ρ(ξ2)dξ2 +

∫ +∞

|ξ1|
ξ2ρ(ξ2)dξ2

and, thus, nondifferentiable on R (see also [6, Example 3]).

The previous result extends to more general projections Pu.

Proposition 3. Let ∅ ̸= u ⊆ I, f be given by (18) and the vectors aj belong-
ing to adjacent polyhedral sets Dj have kth components which are all different
for some k ∈ u. Then the projection Puf is continuously differentiable. The
projection Puf is infinitely differentiable if ρk ∈ C∞

b (R). Here, the subscript b
at C∞

b (R) indicates that all derivatives of functions in that space are bounded
on R.
Proof. If |u| = 1 the result follows from Proposition 2. For u = {k, r} with
k, r ∈ I, k ̸= r, we obtain from the Leibniz theorem [5, Theorem 1] for l ̸∈ u

DlPuf(ξ
u) =

∂

∂ξl
Puf(ξ

u) = Pr
∂

∂ξl
Pkf(ξ

u)

and from the proof of Proposition 2

DlPuf(ξ
u) =

p∑
i=1

wil

∫
R
φk(si(ξ̄

k))ρr(ξr)dξr + ajp+1l .
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If u contains more than two elements, the integral on the right-hand side be-
comes a multiple integral. In all cases, however, such an integral is a function
of the remaining variables ξj , j ∈ I \u, whose continuity and differentiability
properties correspond to those of φk and ρk. This follows from Lebesgue’s
dominated convergence theorem as φk and all densities ρj , j ∈ u, and their
derivatives are bounded on R. �

The following is the main result of this section.

Theorem 1. Let u ⊂ I, f given by (18) and the vectors aj belonging to
adjacent polyhedral sets Dj have kth components which are all different for
some k ∈ −u = I \ u. Then the ANOVA term fu is infinitely differentiable if
ρk ∈ C∞

b (R).

Proof. According to formula (7) it holds

fu = P−u(f) +
∑
v⊂u

(−1)|u|−|v|Pu−v(P−u(f))

and Proposition 3 implies that P−uf is infinitely differentiable. The result fol-
lows from the Inheritance Theorem [5, Theorem 2] applied to Pu−v(P−u(f))
for each v ⊂ u. �

Corollary 1. Let f be given by (18) and the following geometric condi-
tion (GC) be satisfied: All (d− 1)-dimensional subspaces containing (d− 1)-
dimensional intersections of adjacent polyhedral sets Dj are not parallel to
any coordinate axis. Then the ANOVA approximation

fd−1 :=
∑
u⊂I

fu (19)

of f is infinitely differentiable if all densities ρk, k ∈ I, belong to C∞
b (R).

Proof. The result follows immediately from Theorem 1 when applying it to
all nonempty strict subsets of I. �

Remark 1. Under the assumptions of Corollary 1 all ANOVA terms fu are
at least continuously differentiable if ρ is continuous and |u| ≤ d− 1. Hence,
the function fd−1 is in C1(Rd) (C∞(Rd)) if each ρk, k ∈ I, belongs to C(R)
(C∞

b (R)). On the other hand, it holds

f = fd−1 + fI and ∥f − fd−1∥2L2
= ∥fI∥2L2

= σ2
I (f)

according to (6). Hence, the question arises: For which convex piecewise linear
functions f is σ2

I (f) small or, in terms of the effective superposition dimension
dS(ε) of f , is dS(ε) smaller than d (see also (8))?
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5 Generic smoothness in the normal case

We consider the convex, piecewise linear function

f(ξ) = max{a⊤1 ξ + α1, . . . , a
⊤
ℓ ξ + αℓ} (∀ξ ∈ Rd)

on dom f = Rd and assume that ξ is normal with mean µ and nonsingular
covariance matrix Σ. Then there exists an orthogonal matrix Q such that
∆ = QΣQ⊤ is a diagonal matrix. Then the d-dimensional random vector η
given by

ξ = Qη + µ or η = Q⊤(ξ − µ)

is normal with zero mean and covariance matrix ∆, i.e., has independent
components. The transformed function f̂

f̂(η) = f(Qη+µ) = max
j=1,...,ℓ

{a⊤j (Qη+µ)+αj} = max
j=1,...,ℓ

{(Q⊤aj)
⊤η+a⊤j µ+αj}

is defined on the polyhedral set Q⊤D −Q⊤µ and it holds

f̂(η) = (Q⊤aj)
⊤η + a⊤j µ+ αj for each η ∈ Q⊤(Dj − µ).

We consider now (d− 1)-dimensional intersections Hij of two adjacent poly-
hedral sets Di and Dj , i, j = 1, . . . , ℓ. They are polyhedral subsets of (d− 1)-
dimensional affine subspaces Hi. The orthogonal matrix Q⊤ causes a rotation
of the sets Hij and the corresponding affine subspaces Hi. However, there are
only countably many orthogonal matrices Q such that the geometric condi-
tion (GC) (see Corollary 1) on the subspaces is not satisfied. When equipping
the linear space of all orthogonal d×dmatrices with the standard norm topol-
ogy, the set of all orthogonal matrices Q that satisfy the geometric condition,
is a residual set, i.e., the countable intersection of open dense subsets. A
property for elements of a topological space is called generic if it holds in a
residual set. This proves

Corollary 2. Let f be a piecewise linear convex function on dom f = Rd

and let ξ be normally distributed with nonsingular covariance matrix. Then
the infinite differentiability of the ANOVA approximation fd−1 of f (given
by (19)) is a generic property.

Proof. Let µ be the mean vector and Σ be the nonsingular covariance
matrix of ξ. Let Q be the orthogonal matrix satisfying QΣQ⊤ = ∆ =
diag(σ2

1 , . . . , σ
2
d) and ρ be the normal density with mean µ and covariance

matrix ∆. Then σj > 0, j = 1, . . . , d, and ρ is equal to the product of all
one-dimensional marginal densities ρk, where

ρk(t) =
1√
2πσk

exp
(
− (t− µk)

2

2σ2
k

)
(k = 1, . . . , d),
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and all ρk belong to C∞
b (R). Hence, the result follows from Corollary 1. �

6 Dimension reduction of piecewise linear convex
functions

In order to replace a piecewise linear convex function f by the sum fd−1 of
ANOVA terms until order d− 1 (see Corollary 1), we need that the effective
superposition dimension dS of f is is smaller than d. Hence, one is usually
interested in determining and reducing the effective dimension. This topic is
discussed in a number of papers, e.g., [3, 15, 18, 28, 30, 32].
In the normal or lognormal case there exist universal (i.e., independent on the
structure of f) and problem dependent principles for dimension reduction.
A universal principle for dimension reduction is principal component analysis
(PCA). In PCA one uses the decomposition Σ = UP U

⊤
P of Σ with the

matrix UP = (
√
λ1u1, . . . ,

√
λdud), the eigenvalues λ1 ≥ · · · ≥ λd > 0 of

Σ in decreasing order and the corresponding orthonormal eigenvectors ui,
i = 1, . . . , d, of Σ. Several authors report an enormous reduction of the
effective truncation dimension in financial models if PCA is used (see, for
example, [30, 31]). However, PCA may become expensive for large d and the
reduction effect depends on the eigenvalue distribution.
Several dimension reduction techniques exploit the fact that a normal random
vector ξ with mean µ and covariance matrix Σ can be transformed by ξ =
Bη + µ and any matrix B satisfying Σ = BB⊤ into a standard normal
random vector η with independent components. The following equivalence
principle is [32, Lemma 1] and already mentioned in [20, p. 182].

Proposition 4. Let Σ be a d× d nonsingular covariance matrix and A be a
fixed d× d matrix such that AA⊤ = Σ. Then it holds Σ = BB⊤ if and only
if B is of the form B = AQ with some orthogonal d× d matrix Q.

To apply the proposition, one may choose A = LC , where LC is the standard
Cholesky matrix, or A = UP . Then any other decomposition matrix B with
Σ = BB⊤ is of the form B = AQ with some orthogonal matrix Q.
A dimension reduction approach now consists in determining a good orthogo-
nal matrix Q such that the truncation dimension is minimized by exploiting
the structure of the underlying integrand f . Such an approach is proposed in
[10] for linear functions and refined and extended in [32].
Piecewise linear convex functions are of the form

f(ξ) = G(a⊤1 ξ + α1, . . . , a
⊤
ℓ ξ + αℓ), (20)

where G(t1, . . . , tℓ) = max{t1, . . . , tℓ}. Hence, f is of the form as considered
in [32] shortly after Theorem 3. The transformed function is
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f̂(η) = f(Bη + µ) = G((B⊤a1)
⊤η1 + a⊤1 µ+ α1, . . . , (B

⊤aℓ)
⊤ηd + a⊤ℓ µ+ αℓ).

(21)

In order to minimize the truncation dimension of f̂ in (21), the following
result is recorded from [32, Theorem 2] (see also Proposition 1 in [10]).

Proposition 5. Let ℓ = 1. If the matrix Q = (q1, . . . , qd) is determined such
that

q1 = ± A⊤a1
∥A⊤a1∥

and Q is orthogonal, (22)

the transformed function is

f̂(η) = G(∥A⊤a1∥η1 + a⊤1 µ+ α1)

and has effective truncation dimension dT = 1.

The orthogonal columns q2, . . . , qd may be computed by the Householder
transformation. In case 1 < ℓ ≤ d it is proposed in [32] to determine the or-
thogonal matrix Q = (q1, . . . , qd) by applying an orthogonalization technique
to the matrix

M = (A⊤a1, . . . , A
⊤aℓ, bℓ+1, . . . , bd), (23)

where we assume that the a1, . . . , aℓ are linearly independent and bℓ+1, . . . , bd
are selected such thatM has rank d. It is shown in [32, Theorem 3] that then

the function f̂ depends only on η1, . . . , ηℓ. The practical computation may
again be done by the Householder transformation applied to M in (23).
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