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Abstract: Stability-based methods for scenario generation in stochastic programming are
reviewed. In particular, we discuss Monte Carlo sampling, quasi-Monte Carlo methods,
and quadrature rules based on sparse grids, optimal quantization, and moment matching
methods. In addition, we provide some results on convergence rates. Scenario reduction
and scenario tree generation are briefly mentioned.

Many stochastic programming problems may be stated in the form

minimize /fo(x, E)P(dE) suchthat x € X and /fl(x, EP(E) <0 (1)
where X is a closed subset of R™, 2 is a closed subset of R?, the functions o and f; map from R™ X = to the
extended real numbers R U {+c0}, and P is a probability distribution on =. The set X is used to describe
all constraints not depending on P and the set E to contain the support of P. The integrands f; and f; are
assumed to be lower semicontinuous jointly in (x, £) implying that all integrals in Equation (1) are well
defined (although possibly infinite).

Classical examples are two-stage stochastic (integer) programs and optimization models with probabilistic
constraints (see Ref. 1 for the specific form of integrands). The corresponding integrands f; and f;, respec-
tively, are nondifferentiable or even discontinuous. (We assume here that the integrals in problem (1) are
finite for every x € X.)

The most important approach to solve problem (1) computationally consists of replacing the integrals
in Equation (1) by numerical integration formulas. This leads to the optimization problems

n n
minimize Z w, fo(, &Y suchthat x € X and Z w, fi(x, <o (2)
i=1 i=1
for some n € N, weights w; € R and elements & €8, i=1,...,n Such numerical integration schemes

result by replacing P in problem (1) by a finite signed measure Q, with support {&1, ... ,&"} and
Q,({&)) = w,. If Q, is a probability measure, then & are called scenarios. An extension of known stability
results for problem (1) with respect to approximations of the original probability distribution P (see Ref. 2
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for a survey) states that infimal values v(P) and ¥(Q,) and solution sets S(P) and S(Q,,) of Equation (1),
respectively, get close if the distance

dr(P,Q,) = sup|P(f) — Q,(f)| = sup
feFr feF

/_ FEOPAE) = Y w,f(E) (3)
E i=1

of Pand Q, with ¥ = {fi(x,-) : x € X, j = 0,1} gets small, the set X is compact, the objective function
X fE fo(x, £)P(dE) is Lipschitz continuous on X and a metric regularity condition for the constraint set is
satisfied. The latter two conditions are not needed if the constraints of problem (1) do not depend on P.

Approximate stochastic programming problems (problem (2)) represent standard (linear, nonlinear, and
integer) optimization models. The only difficulty consists in the need of many evaluations of the functions f;
at the pairs (v, &'),i = 1, ... , n, if the number # gets large. But, large # are often unavoidable when recalling
that the dimension 4 is often large in applied stochastic programming models in energy, transportation,
and finance (see Ref. 3).

The behavior of the error e, (P, F) = d(P, Q,) with respect to n € N depends heavily on the set 7 of inte-
grands as well as on the probability distribution P. As the set F in its present form is often not convenient
to handle, it might be an alternative to enlarge 7 in Equation (3). However, if, for example, F is enlarged
to coincide with the unit ball B in the Banach space Lip(R?) of Lipschitz continuous functions on R?, d;.
represents the dual of the Wasserstein metric of order 1 (see Equation (8) for » = 1) and the convergence
rate of e, (P, B) is at most O(n_é) if P has a density with respect to the Lebesgue measure on R%.

Next, we discuss five scenario generation techniques for solving problem (1):

1 Monte Carlo Methods

Monte Carlo (MC) methods are based on drawing independent identically Distributed (iid) E-valued ran-
dom samples &!(+), ... ,&"(-), ... (defined on some probability space (2, .4, P)) from some probability
distribution P (on Z)(see Monte Carlo Methods). It is well-known (see Ref. 4, Theorem 2.1) that

n 2 )
E(%Zf(é“(w))— [f(e:)P(d:)) = %[E<f(él(w))— / f(:)P(d@) @
i=1 g s

holds for any real function f on E that is quadratically integrable with respect to P. Uniform versions
of estimate (Equation (4)) imply that e, (P, F) has the typical mean square convergence rate O(n’%) of
MC methods which is slow in practice. Such iid samples are approximately obtained by pseudo random
number generators first as uniform samples in [0, 117 and later transformed to more general probability
distributions (for example based on the Rosenblatt transformation[®!). We refer to Ref. 1 (Chapter 5) and
the references therein for applying MC methods in stochastic programming.

2 Quasi-Monte Carlo Methods

The basic idea of quasi-Monte Carlo (QMC) methods is to replace random samples in MC methods by a
sequence (&), of deterministic points that are uniformly distributed in [0, 1]?. The latter property means
that the star-discrepancy en(/ld ,F,) of the set {£, ... ,&"} converges to zero if n — co. Here, F,, denotes
the class of characteristic functions 1, f of boxes [0, &] for each & € [0, 1]%, 44 the d-dimensional Lebesgue
measure and Q,, the uniform probability measure with support {£!, ... ,&"}. It is known that there exist
sequences such that en(/ld, Fy) = O(n~'(log n)?) holds and that this rate carries over to en(ﬂd, F)if Fisa
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bounded subset of the tensor product Sobolev space Wél’ =D ([0, 1]%) of functions with mixed first deriva-
tives belonging to L, [0, 1]. The important examples are Sobol’ sequences and certain lattice point sets (see
Refs 4, Section 5, 6, Chapter 8). Later, it turned out that proper randomizations of QMC point sets lead
to improvements of the convergence rate. For example, if F is a bounded subset of Wz(l’ ~(10,1]%), there
exists a weighted norm on that space such that randomly shifted lattice rules attain the following estimate

\Ele; (4%, F)] < C(8) n~'*° (5)

for the root mean square error, where § € (0, %], C(6) is independent of # and d (see Ref. 4, Section 5). It
is shown in Ref. 7 that the results apply to linear two-stage stochastic programs if the integrands have low
effective dimension!®!. For further information, we refer to Refs 4 and 6.

3 Quadrature Rules Using Sparse Grids

We consider again the unit cube [0, 1]%. Let nested sets of grids &/ = {éi, ,éini} c %1 in [0, 1] be
given for i € N, for example, the dyadic grids E° = {ZLI :j=0,1, ... ,2}. Then, the point set suggested
by Smolyak
Hg.d) := |) &'x-.-xgk (6)
=X, 4=q

is called a sparse grid in [0, 1]4. In the case of dyadic grids in [0, 1], H(g, d) consists of all d-dimensional
dyadic grids with the product of mesh size given by 217

The corresponding sparse grid quadrature rules for ¢ > d on [0, 1]¢ with respect to the Lebesgue measure
2% are of the form

d
Qg H= Y. (—1)q—'i'( >Z Zﬂf“ ¢ [14 @)
=1

q-d+1<[i|<q h=l Jja=1

where n = n(q, d) is the number of summands in Equation (7), and the coefficients a}’f, j=1,...,m; are
weights of one-dimensional quadrature rules based on Z, i € N. Even if the one-dimensional weights are
positive, some of the weights in Equation (7) become negative. Hence, an interpretation as scenario-based
probability measure is no longer possible. However, if the class F is a bounded subset of Wz(l’ =D([0,1]9),
the error e, (A%, F) has the convergence rate O(n~!(log n)*@~D). For details and further information see
Refs 9 and 10.

4 Optimal Quantization of Probability Measures

Let » > 1 and consider the Wasserstein metric W, on the set of all probability measures defined on = that
have r-th order moments, that is,

W.(P,Q) = <inf{/_ Mg =ElI"n(dé dé) = myn = P, ayn = Q}) (8)

~ =

where z; and 7, denote the projections onto the first and the second component, respectively. Let P be
a given probability distribution on E. For given n € N, the support {&1, ... , "} of a discrete probability
measure Q, on E is called optimal n-quantizer of P of order r if Q, is the best approximation to P with
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respect to W,. The rth power of the distance W, (P, Q,) enables a reformulation as a real function @, . on
E" by defining

¥, ) = WIP.Q,) = / _min || &= £1'Po)

The function ¥, is continuous and has compact level sets, hence, optimal n-quantizers of order r exist,
but ¥, , is nonconvex and has probably many local minimizers. Hence, its global minimization on E” is
not an easy task.

Moreover, the probability w; of each scenario & has to be computed by w; = P(A;), where A,,i =1, ... ,n,
is a Voronoi partition!!! of Z. It is known that W,(P, Q,) converges to zero, but not faster than O(n_%)
(see Ref. 11). Global minimization of ¥, , may be done by stochastic gradient algorithms or stochastic
approximation methods (see Refs 12, 13).

5 Moment-Matching Methods

The idea consists of determining a discrete probability measure Q, with scenarios & € = and probabilities
w; > 0,i =1, ... ,n suchthat Pand Q, have identical moments defined by certain multivariate monomials,
that is, it holds

d n d
/ [T P =Y w @ w.eheR, xE i=1, ....n (9)
Ej=1 =1 j=1
forany a = (a4, ... ,a;) € I with a prescribed multi-index set T C Ng. The matching polynomial moment

conditions represent a system of nonlinear (polynomial) equations with n(d + 1) unknowns, | I| equations,
and additional constraints (see Ref. 14). The connection to numerical integration rules that are exact for
a class of d-variate polynomials, for example, for the class P, of all d-variate polynomials of degree up to
r € N, is revealed in Ref. 15. There it is also shown that for any given set 7, the system (9) is solvable for
n = |I|. Solution methods are developed and convergence for r — o is studied in Ref. 15, too.

Stability-based methods for scenario reduction are reviewed in Ref. 16 (see also Ref. 17 for original work).
The generation of scenario trees for multistage stochastic programs is studied in [13, Chapter 4] and in Refs
14, 18 and 19.
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