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Introduction

Many stochastic programming models may be traced back to minimizing an

expectation functional on some closed subset of a Euclidean space or, eventually

in addition, relative to some expectation constraint. Their general form is

(SP) min
{∫

Ξ

f0(x, ξ)P (dξ) : x ∈ X,
∫

Ξ

f1(x, ξ)P (dξ) ≤ 0
}

where X is a closed subset of Rm, Ξ a closed subset of Rs, P is a Borel probability

measure on Ξ abbreviated by P ∈ P(Ξ). The functions f0 and f1 from Rm× Ξ

to the extended reals R = (−∞,∞] are normal integrands.
For example, typical integrands in linear two-stage stochastic programming models are

f0(x, ξ) =

{
g(x) + Φ(q(ξ), h(x, ξ)) , q(ξ) ∈ D

+∞ , else
and f1(x, ξ) ≡ 0,

where X and Ξ are convex polyhedral, g(·) is a linear function, q(·) is affine, D = {q ∈ Rm̄ :
{z ∈ Rr : W>z − q ∈ Y ?} 6= ∅} denotes the convex polyhedral dual feasibility set, h(·, ξ) is
affine for fixed ξ and h(x, ·) is affine for fixed x, and Φ denotes the infimal function of the
linear (second-stage) optimization problem

Φ(q, t) := inf{〈q, y〉 : Wy = t, y ∈ Y }

with (r, m̄) matrix W and convex polyhedral cone Y ⊂ Rm̄.



Typical integrands f1 appearing in chance constrained programming are of the form

f1(x, ξ) = p− 1lP(x)(ξ),

where 1lP(x) is the characteristic function of the polyhedron P(x) = {ξ ∈ Ξ : h(x, ξ) ≤ 0}
depending on x.

For general continuous multivariate probability distributions P such stochastic

optimization models (SP) are not solvable in general.

Many approaches for solving such optimization models computationally are based

on discrete approximations of the probability measure P , i.e., on finding a discrete

probability measure Pn in

Pn(Ξ) :=
{ n∑

i=1

piδξi : ξi ∈ Ξ, pi ≥ 0, i = 1, . . . , n,

n∑
i=1

pi = 1
}

for some n ∈ N, which approximates P in a suitable way.

The atoms ξi, i = 1, . . . , n, of Pn are often called scenarios in this context. Of

course, the notion suitable should at least include that the distance of infima

|v(P )− v(Pn)|

becomes resonably small.



Stability-based scenario generation

Let v(P ) and S(P ) denote the infimum and solution set of (SP). We are inter-

ested in their dependence on the underlying probability distribution P .

To state a stability result we introduce the following sets of functions and of

probability distributions (both defined on Ξ)

F = {fj(x, · ) : j = 0, 1, x ∈ X} ,

PF =
{
Q ∈ P(Ξ) : −∞ <

∫
Ξ

inf
x∈X

fj(x, ξ)Q(dξ), sup
x∈X

∫
Ξ

fj(x, ξ)Q(dξ) < +∞,∀j
}

and the (pseudo-) distance on PF

dF(P,Q) = sup
f∈F

∣∣∣ ∫
Ξ

f (ξ)(P −Q)(dξ)
∣∣∣ (P,Q ∈ PF).

At first sight the set PF seems to have a complicated structure. For typical

applications, however, like for linear two-stage and chance constrained models,

the sets PF or appropriate subsets allow a simple characterization, for example,

as subsets of P(Ξ) satisfying certain moment conditions.



Proposition: We consider (SP) for P ∈ PF , assume that X is compact and

(i) the function x→
∫

Ξ f0(x, ξ)P (dξ) is Lipschitz continuous on X ,

(ii) the set-valued mapping y ⇒
{
x ∈ X :

∫
Ξ f1(x, ξ)P (dξ) ≤ y

}
satisfies the

Aubin property at (0, x̄) for each x̄ ∈ S(P ).

Then there exist constants L > 0 and δ > 0 such that the estimates

|v(P )− v(Q)| ≤ LdF(P,Q)

sup
x∈S(Q)

d(x, S(P )) ≤ ΨP (LdF(P,Q))

hold whenever Q ∈ PF and dF(P,Q) < δ. The real-valued function ΨP is

given by ΨP (r) = r+ψ−1
P (2r) for all r ∈ R+, where ψP is the growth function

ψP (τ ) = inf
x∈X

{∫
Ξ

f0(x, ξ)P (dξ)− v(P ) : d(x, S(P )) ≥ τ, x ∈ X,∫
Ξ

f1(x, ξ)P (dξ) ≤ 0
}
.

In case f1 ≡ 0 only lower semicontinuity is needed in (i) and the estimates hold

with L = 1 and for any δ > 0. Furthermore, ΨP is lower semicontinuous and

increasing on R+ with ΨP (0) = 0. (Rachev-Römisch 02)



The stability result suggests to choose discrete approximations from Pn(Ξ) for

solving (SP) such that they solve the best approximation problem

(OSG) min
Pn∈Pn(Ξ)

dF(P, Pn) .

at least approximately. Determining the scenarios of some solution to (OSG) may

be called optimal scenario generation. This optimal choice of discrete approxi-

mations is challenging and not possible in general.

For linear two-stage models (OSG) may be reformulated as best approximation

problem for the expected recourse function or as generalized semi-infinite pro-

gram which is convex in some cases (Henrion-Römisch 17).

It was suggested in (Rachev-Römisch 02) to eventually enlarge the function class F
such that dF becomes a metric distance and has further nice properties. This

may lead, however, to nonconvex nondifferentiable minimization problems (OSG)

for determining the optimal scenarios and to unfavorable convergence rates of(
min

Pn∈Pn(Ξ)
dF(P, Pn)

)
n∈N

.

Typical examples are to choose F as bounded subset of some Banach space

Cr,α(Ξ) with r ∈ N0, α ∈ (0, 1], and convergence rate O(n−
r+α
s ).



Motivated by linear two-stage models one may consider

Fortet-Mourier metrics:

ζr(P,Q) := sup
∣∣∣ ∫

Ξ

f (ξ)(P −Q)(dξ) : f ∈ Fr(Ξ)
∣∣∣,

where the function class Fr for r ≥ 1 is given by

Fr(Ξ) :=
{
f : Ξ 7→ R : f (ξ)− f (ξ̃) ≤ cr(ξ, ξ̃), ∀ξ, ξ̃ ∈ Ξ

}
,

cr(ξ, ξ̃) := max{1, ‖ξ‖r−1, ‖ξ̃‖r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξ).

Duality holds with a transshipment problem and cost function cr.

Proposition: (Rachev-Rüschendorf 98)

If Ξ is bounded, ζr may be reformulated as dual transportation problem

ζr(P,Q) = inf
{∫

Ξ×Ξ

ĉr(ξ, ξ̃)η(dξ, dξ̃) : π1η =P, π2η = Q
}
,

where the reduced cost ĉr is a metric with ĉr ≤ cr and given by

ĉr(ξ, ξ̃) := inf
{ n−1∑

i=1

cr(ξli, ξli+1
) : n ∈ N, ξli ∈ Ξ, ξl1 = ξ, ξln = ξ̃

}
.



Monte Carlo and Quasi-Monte Carlo methods

Monte Carlo: Let ξi(·), i ∈ N, denote independent and identically distributed

random vectors with common distribution P and Pn be the empirical measure

Pn(·) =
1

n

n∑
i=1

δξi(·) (n ∈ N)

defined on some probability space (Ω,A,P). The law of large numbers implies

that the sequence (Pn(·))n∈N converges P-almost surely weakly to P .

To study the convergence rate one considers the empirical process

{βn(Pn(·)− P )f}f∈F (n ∈ N)

indexed by a function class F with sequence (βn), where Qf =
∫

Ξ f (ξ)Q(dξ) for

any Borel probability measure Q on Ξ. The empirical process is called bounded

in probability with tail function τF if for all ε > 0 and n ∈ N the estimate

P({βndF(Pn(·), P ) ≥ ε}) ≤ τF(ε)

holds. Whether the empirical process is bounded in probability, depends on the

size of the class F measured in terms of covering numbers in L2(Ξ, P ). Typically,

one has an exponential tail τF(ε) = C(ε) exp (−ε2) and βn =
√
n.



Quasi-Monte Carlo: The basic idea of Quasi-Monte Carlo (QMC) methods is

to use deterministic points that are (in some way) uniformly distributed in [0, 1]s

and to consider first the approximate computation of

Is(f ) =

∫
[0,1]s

f (ξ)dξ by Qn,s(f ) =
1

n

n∑
i=1

f (ξi)

with (non-random) points ξi, i = 1, . . . , n, from [0, 1]s.

The uniform distribution property of point sets may be defined in terms of the

so-called Lp-discrepancy of ξ1, . . . , ξn for 1 ≤ p ≤ ∞

dp,n(ξ1, . . . , ξn) =
(∫

[0,1]s
|disc(ξ)|pdξ

)1
p
, disc(ξ) :=

d∏
j=1

ξj −
1

n

n∑
i=1

1l[0,ξ)(ξ
i) .

A sequence (ξi)i∈N is called uniformly distributed in [0, 1]s if

dp,n(ξ1, . . . , ξn)→ 0 for n→∞

There exist sequences (ξi) in [0, 1]s such that for all δ ∈ (0, 1
2]

d∞,n(ξ1, . . . , ξn) = O(n−1(log n)s) or d∞,n(ξ1, . . . , ξn) ≤ C(s, δ)n−1+δ .



Using a suitable randomization of such sequences may lead to a root mean square

convergence rate
√
E[d2

2,n(ξ1, . . . , ξn)] ≤ C(δ)n−1+δ with a constant C(δ) not

depending on the dimension s and δ ∈ (0, 1
2].

Example: Randomly shifted lattice rule (Sloan-Kuo-Joe 02).

With a random vector 4 which is uniformly distributed on [0, 1]s, we consider

the randomly shifted lattice rule

Qn,s(ω)(f ) =
1

n

n∑
j=1

f
({(j − 1)

n
g +4(ω)

})
.

Theorem: Let n ∈ N be prime and f belong to the weighted tensor product

Sobolev spaceW (1,...,1)
2,γ,mix([0, 1]s). Then g ∈ Zs+ can be constructed componentwise

such that for each δ ∈ (0, 1
2] there exists a constant C(δ) > 0 with

sup
‖f‖γ≤1

√
E|Qn,s(ω)(f )− Is(f )|2 ≤ C(δ)n−1+δ ,

where C(δ) increases if δ decreases, but does not depend on s if the sequence

(γj) of coordinate weights satisfies
∑∞

j=1 γ
1

2(1−δ)
j <∞ (e.g. γj = 1

j3 ).

Note that piecewise polynomial functions f do almost belong toW (1,...,1)
2,γ,mix([0, 1]s) if its effective

dimension is small (Heitsch-Leövey-Römisch 16).



Scenario reduction

Let P and Q be two discrete distributions, where ξi are the scenarios with prob-

abilities pi, i = 1, . . . , N , of P and ξ̃j the scenarios and qj, j = 1, . . . , n, the

probabilities of Q. Let Ξ denote the union of both scenario sets. Then

ζr(P,Q) = inf
{∫

Ξ×Ξ

ĉr(ξ, ξ̃)η(dξ, dξ̃) : π1η = P, π2η = Q
}

= inf
{ N∑

i=1

n∑
j=1

ηij ĉr(ξi, ξ̃j) :

n∑
j=1

ηij = pi,

N∑
i=1

ηij = qj, ηij ≥ 0,

i = 1, . . . , N, j = 1, . . . , n
}

= sup
{ N∑

i=1

piui −
n∑
j=1

qjvj : pi − qj ≤ ĉr(ξi, ξ̃j), i = 1, . . . , N,

j = 1, . . . , n
}

These two formulas represent primal and dual representations of ζr(P,Q) and

primal and dual linear programs.



The optimal scenario reduction problem

min
Q∈Pn(Ξ)

ζr(P,Q)

with P ∈ PN(Ξ), N > n, can be decomposed into finding the optimal scenario

set J to remain and into determining the optimal new probabilities given J .

Let P have scenarios ξi with probabilities pi, i = 1, . . . , N , and Q being sup-

ported by a given subset of scenarios ξj, j ∈ J ⊂ {1, . . . , N}, |J | = n.

The best approximation of P with respect to ζr by such a distribution Q exists

and is denoted by Q∗. It has the distance

DJ := ζr(P,Q
∗) = min

Q∈Pn(Ξ)
ζr(P,Q) =

∑
i6∈J

pi min
j∈J

ĉr(ξ
i, ξj)

and the probabilities q∗j = pj +
∑
i∈Ij

pi, ∀j ∈ J, where Ij := {i 6∈ J : j = j(i)}

and j(i) ∈ arg min
j∈J

ĉr(ξ
i, ξj), ∀i 6∈ J (optimal redistribution).

(Dupačová–Gröwe-Kuska–Römisch 03)



Determining the optimal scenario set J with prescribed cardinality n is, however,

a combinatorial optimization problem: (n-median problem)

min {DJ : J ⊂ {1, ..., N}, |J | = n}

Hence, the problem of finding the optimal set J of remaining scenarios is NP-

hard and polynomial time algorithms are not available.

Reformulation as combinatorial program

min

N∑
i,j=1

pixij ĉr(ξ
i, ξj) subject to

N∑
i=1

xij = 1 (j = 1, . . . , N),
N∑
i=1

yi ≤ n ,

xij ≤ yi, xij ∈ {0, 1} (i, j = 1, . . . , N) ,

yi ∈ {0, 1} (i = 1, . . . , N).

The variable yi decides whether scenario ξi remains and xij indicates whether

scenario ξj minimizes the ĉr-distance to ξi.



There is a well developed theory of approximation algorithms for the n-median

problem. The current best approximation algorithm provides always an approxi-

mation guarantee of 1 +
√

3 + ε (Li-Svensson 16).

The simplest algorithms are greedy heuristics, namely, backward (or reverse) and

forward heuristics:

Starting point (n = N − 1): min
l∈{1,...,N}

pl min
j 6=l

ĉr(ξl, ξj)

Algorithm 1: (Backward reduction)

Step [0]: J [0] := ∅ .
Step [i]: li ∈ arg min

l 6∈J [i−1]

∑
k∈J [i−1]∪{l}

pk min
j 6∈J [i−1]∪{l}

ĉr(ξk, ξj).

J [i] := J [i−1] ∪ {li} .
Step [N-n+1]: Optimal redistribution.



Starting point (n = 1): min
u∈{1,...,N}

N∑
k=1

pkĉr(ξk, ξu)

Algorithm 2: (Forward selection)

Step [0]: J [0] := {1, . . . , N}.
Step [i]: ui ∈ arg min

u∈J [i−1]

∑
k∈J [i−1]\{u}

pk min
j 6∈J [i−1]\{u}

ĉr(ξk, ξj),

J [i] := J [i−1] \ {ui} .
Step [n+1]: Optimal redistribution.

Although the approximation ratio of forward selection is known to be unbounded

(Rujeerapaiboon-Schindler-Kuhn-Wiesemann 17), it worked well in many practical instances.



Example: (Weekly electrical load scenario tree)

Ternary load scenario tree (N=729 scenarios)
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(Mean shifted) Ternary load scenario tree (N=729 scenarios)
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Reduced load scenario trees obtained by forward selection with respect to the Fortet-Mourier distances ζr,
r = 1, 2, 4, 7 and n = 20 (starting above left) (Heitsch-Römisch 07)



Gas network capacities and validation of nominations

(H. Heitsch, H. Leövey, R. Mirkov, I. Wegner-Specht)

We consider the gas transport network of the company Open Grid Europe GmbH

(OGE). It is Germany’s largest gas transport company. Such networks consist

of intermeshed pipelines which are actuated and safeguarded by active elements

(like valves and compressor machines). Here, we consider the stationary state of

the network and the isothermal case.

Two different gas qualities are considered: H-gas and L-gas (high and low calorific

gas). Both are transported by different networks.

The gas dynamics in a pipe is modeled by the Euler equations, a nonlinear system

of hyperbolic partial differential equations. In the stationary and isothermal situ-

ation they boil down to nonlinear relations between pressure and flow. Together

with models for the active elements, this leads to large systems of nonlinear

mixed-integer equations and inequalities.

Aim: Evaluating the capacity of a gas network, validating nominations and

verifying booked capacities.





Statistical data and data analysis

Hourly gas flow data is available at all exit nodes of a given network for a period

of eight years. Due to stationary modeling we consider the daily mean gas flow

at all exit nodes. Since it depends on the daily mean temperature, we consider

a daily reference temperature based on a weighted average temperature taken at

different network nodes.

Due to stationary and isothermal modeling we introduce the temperature classes

(-15,-4], (-4,-2], (-2,0],. . ., (18,20], (20,30) and perform a corresponding filtering

of all daily mean gas flows at all exit nodes according to the daily reference

temperatures. We also check that a reasonable amount of daily mean gas flow

data is available for all temperature classes except for (-15,-4]. Another filtering

is carried out for day classes (working day, weekend, holiday).



Examples of daily main gas flow at exit nodes as function of the temperature

Daily mean gas flow data at exit nodes with municipal power stations, with zero flow (right).

Daily mean gas flow data at exit nodes with company (left), market transition (middle), storage (right).



Univariate distribution fitting

Classes of univariate probability distributions:

• (shifted) uniform distributions

• (shifted) (log)normal distributions

• Zero gas flow appears with empirical probability p at several exit nodes.

Hence, we consider the shifted probability distribution function

F (x) = pF 0(x) + (1− p)F+(x)

Probability distribution function of a shifted normal distribution at exit 1603



Fitting multivariate normal distributions

• Multivariate normal distributions are fitted for exit gas flows that satisfy

normality tests and have significant correlations with other exit nodes, i.e.,

in addition to means and variances, correlations are estimated by standard

estimators if sufficient data is available.

• Examples of correlation matrices:

Correlation plots for the temperature classes (10, 12] and (18, 20] in certain areas of the H-gas network.



Scenario generation

Using randomized Quasi-Monte Carlo methods we determine N samples with

probability 1
N for the s-dimensional random vector ξ that corresponds to the

random gas flows at the s exits of a given network. We proceed as follows:

• We determine N samples ηj of the uniform distribution on [0, 1)s using Sobol’

points and perform a componentwise random scrambling of their binary digits

using the Mersenne Twister. The scenarios ηj, j = 1, . . . , N , combine

favorable properties of both Monte Carlo and Quasi-Monte Carlo methods.

• Determine samples in Rs by

ζji = Φ−1
i (ηji ) (i = 1, . . . , s; j = 1, . . . , N)

using the univariate distribution function Φi of the ith component.

• If a part of the components of ξ has a d-dimensional multivariate normal

distribution with mean m ∈ Rs and s× s covariance matrix Σ, we perform

a decomposition Σ = AA>, where the matrix A preferably corresponds to

principal component analysis. Then the s-dimensional vectors

ξj = Aζj + m (j = 1, 2, . . . , N)

are suitable scenarios for this part of the random vector ξ.
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Comparison of n = 27 Monte Carlo Mersenne Twister points and randomly binary shifted Sobol’ points in
dimension s = 500, projection (8,9)



Illustration:
N = 2340 samples based on randomized Sobol’ points are generated for several hundred exits
and later reduced by scenario reduction to n = 50 scenarios. The result is shown below for a
specific exit where the diameters of the red balls are proportional to the new probabilities.
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(Chapters 13 and 14 in Koch-Hiller-Pfetsch-Schewe 15)
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