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Approximation issues

We consider a stochastic program of the form

min

{∫
Ξ

Φ(ξ, x)P (dξ) : x ∈ X

}
,

where X ⊆ Rm is a constraint set, P a probability distribution on

Ξ ⊆ Rd, and f = Φ(·, x) is a decision-dependent integrand.

Any approach to solving such models computationally requires to

replace the integral by a quadrature rule

Qn,d(f ) =

n∑
i=1

wif (ξi),

with weights wi ∈ R and scenarios ξi ∈ Ξ, i = 1, . . . , n.

If the natural condition wi ≥ 0 and
∑n

i=1 wi = 1 is satisfied,

Qn,d(f ) allows the interpretation as integral with respect to the

discrete probability measure Qn having scenarios ξi with probabili-

ties wi, i = 1, . . . , n.
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Assumption: P has a density ρ w.r.t. λd.

Now, we set F = {Φ(·, x)ρ(·) : x ∈ X} and assume that the set

F is a bounded subset of some linear normed space Fd with norm

‖ · ‖d and unit ball Bd = {f ∈ Fd : ‖f‖d ≤ 1}.

The absolute error of the quadrature rule Qn,d is

e(Qn,d) = sup
f∈Bd

∣∣∣∣∣
∫

Ξ

f (ξ)dξ −
n∑

i=1

wif (ξi)

∣∣∣∣∣
and the approximation criterion is based on the relative error and

a given tolerance ε > 0, namely, it consists in finding the smallest

number nmin(ε, Qn,d) ∈ N such that

e(Qn,d) ≤ εe(Q0,d),

holds, where Q0,d(f ) = 0 and, hence, e(Q0,d) = ‖Id‖ with

Id(f ) =

∫
Ξ

f (ξ)dξ.
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Alternatively, we look for a suitable set F of functions such that

{CΦ(·, x) : x ∈ X} ⊆ F for some constant C > 0 and, hence,

e(Qn,d) ≤
1

C
sup
f∈F

∣∣∣∣∫
Ξ

f (ξ)P (dξ)−
∫

Ξ

f (ξ)Qn(dξ)

∣∣∣∣ = D(P, Qn),

and that D is a metric distance between probability distributions.

Example: Fortet-Mourier metric (of order r ≥ 1)

ζr(P, Q) := sup

∣∣∣∣∫
Ξ

f (ξ)(P −Q)(dξ) : f ∈ Fr(Ξ)

∣∣∣∣,
where

Fr(Ξ) := {f : Ξ 7→ R : f (ξ)− f (ξ̃) ≤ cr(ξ, ξ̃), ∀ξ, ξ̃ ∈ Ξ},

cr(ξ, ξ̃) := max{1, ‖ξ‖r−1, ‖ξ̃‖r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξ).
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The behavior of e(Qn,d) with respect to n ∈ N and of nmin(ε, Qn,d)

with respect to ε is of considerable interest. In both cases the de-

pendence on the dimension d of P is often crucial, too.

The behavior of both quantities depends heavily on the normed

space Fd and the set F , respectively.

It is desirable that an estimate of the form

nmin(ε, Qn,d) ≤ C dqε−p

is valid for some nonnegative constants C, q, p > 0 and for every

ε ∈ (0, 1). Of course, q = 0 is highly desirable for high-dimensional

problems.

Proposition: (Stability)

Let the set X be compact. Then there exists L > 0 such that∣∣∣∣∣ inf
x∈X

∫
Ξ

Φ(ξ, x)ρ(ξ)dξ − inf
x∈X

n∑
i=1

wiΦ(ξi, x)ρ(ξi)

∣∣∣∣∣ ≤ L e(Qn,d).

The solution set mapping is upper semicontinuous at P .
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Examples of normed spaces Fd relevant in SP:

(a) The Banach space Fd = Lip(Rd) of Lipschitz continuous func-

tions equipped with the norm

‖f‖d = |f (0)| + sup
ξ 6=ξ̃

|f (ξ)− f (ξ̃)|
‖ξ − ξ̃‖

.

The best possible convergence rate is e(Qn,d) = O(n−
1
d).

It is attained for wi = 1
n and certain ξi, i = 1, . . . , n, if P has

finite moments of order 1 + δ for some δ > 0. (Graf-Luschgy 00)

(b) Assumption: Ξ = [0, 1]d (attainable by suitable transformations).

We consider the Banach space Fd = BVHK([0, 1]d) of functions

having bounded variation in the sense of Hardy and Krause

equipped with the norm ‖f‖d = |f (0)| + VHK(f ).

Then for wi = 1
n, i = 1, . . . , n, there exist ξn ∈ [0, 1]d, n ∈ N

such that the convergence rate is

e(Qn,d) = O

(
(log n)d−1

n

)
.
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(c) The tensor product Sobolev space

Fd,γ = W (1,...,1)
2,mix ([0, 1]d) =

d⊕
i=1

W 1
2 ([0, 1])

of real functions on [0, 1]d having first order mixed weak deriva-

tives with the (weighted) norm

‖f‖d,γ =

(∑
u⊂D

γ−1
u

∫
[0,1]|u|

∣∣∣∣∂|u|∂ξu
f (ξu, 1−u)

∣∣∣∣2 dξu

)1
2

,

where D = {1, . . . , d}, γ1 ≥ γ2 ≥ · · · ≥ γd > 0, γ∅ = 1 and

γu =
∏
j∈u

γj (u ⊆ D).

Note that any f ∈ W (1,...,1)
2,mix ([0, 1]d) is of bounded variation in

the sense of Hardy and Krause.

For n prime, wi = 1
n, there exist ξi ∈ [0, 1]d, i = 1, . . . , n such

that

e(Qn,d) ≤ Cd(δ)n−1+δ‖Id‖
for all 0 < δ ≤ 1

2.
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Generation of a number of scenarios

We will discuss the following four scenario generation methods for

stochastic programs without nonanticipativity constraints:

(a) Monte Carlo sampling from the underlying probability distribu-

tion P on Rd
(Shapiro 03).

(b) Optimal quantization of probability distributions (Pflug-Pichler 10).

(c) Quasi-Monte Carlo methods (Koivu-Pennanen 05).

(d) Quadrature rules based on sparse grids (Chen-Mehrotra 08).
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Monte Carlo sampling methods

Monte Carlo methods are based on drawing independent identi-

cally distributed (iid) Ξ-valued random samples ξ1(·), . . . , ξn(·), . . .
(defined on some probability space (Ω,A, P)) from an underlying

probability distribution P (on Ξ) such that

Qn,d(ω)(f ) =
1

n

n∑
i=1

f (ξi(ω)),

i.e., Qn,d(·) is a random functional, and it holds

lim
n→∞

Qn,d(ω)(f ) =

∫
Ξ

f (ξ)P (dξ) = E(f ) P-almost surely

for every real continuous and bounded function f on Ξ.

If P has finite second order moments, the error estimate

E

∣∣∣∣∣1n
n∑

i=1

f (ξi(ω))− E(f )

∣∣∣∣∣
2
 ≤

E
(
(f − E(f ))2

)
n
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is valid. Hence, the mean square convergence rate is

‖Qn,d(ω)(f )− E(f )‖L2 = σ(f )n−
1
2 ,

where σ2(f ) = E
(
(f − E(f ))2

)
.

The latter holds without any assumption on f except σ(f ) < ∞.

Remarkable property: The rate does not depend on d.

Deficiencies: (Niederreiter 92)

(i) There exist only probabilistic error bounds.

(ii) Possible regularity of the integrand does not improve the rate.

(iii) Generating (independent) random samples is difficult.

Practically, iid samples are approximately obtained by pseudo ran-

dom number generators as uniform samples in [0, 1]d and later trans-

formed to more general sets Ξ and distributions P .
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Classical generators for pseudo random numbers are based on linear

congruential methods. As the parameters of this method, we choose

a large M ∈ N (modulus), a multiplier a ∈ N with 1 ≤ a < M

and gcd(a, M) = 1, and c ∈ ZM = {0, 1, . . . ,M − 1}. Starting

with y0 ∈ ZM a sequence is generated by

yn ≡ ayn−1 + c mod M (n ∈ N)

and the linear congruential pseudo random numbers are

ξn =
yn

M
∈ [0, 1).

Example: M = 232, a ≡ 5 mod 8, and c odd (period M).

Use only pseudo random number generators having passed a series

of statistical tests, e.g., uniformity test, serial correlation test, serial

test, coarse lattice structure test etc.
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Optimal quantization of probability measures

Let D be a metric distance of probability measures on Rd, e.g., the

Fortet-Mourier metric ζr of order r, or some other metric such that

the underlying stochastic program behaves stable with respect to D.

Let P be a given probability distribution on Rd. We are looking

for a discrete probability measure Qn with support supp(Qn) =

{ξ1, . . . , ξn} and Qn({ξi}) = 1
n, i = 1, . . . , n, such that it is the

best approximation to P with respect to D, i.e.,

D(P, Qn) = min{D(P, Q) : |supp(Q)| = n,Q is uniform}.

Existence of best approximations and their convergence rates are

well known for Wasserstein metrics (Graf-Luschgy 00).

Best approximations for standard normal distributions are known

for d = 1 and d = 2.
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In general, however, the function

Ψ(ξ1, . . . , ξn) := D

(
P,

1

n

n∑
i=1

δξi

)
is nonconvex and nondifferentiable on Rdn. Hence, the global min-

imization of Ψ is not an easy task.

Algorithmic procedures for minimizing Ψ globally may be based on

stochastic gradient algorithms, stochastic approximation methods

and stochastic branch-and-bound techniques (e.g. Hochreiter-Pflug 07,

Pflug-Pichler 10, Pagés et al 04)
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Quasi-Monte Carlo methods

The basic idea of Quasi-Monte Carlo (QMC) methods is to replace

random samples in Monte Carlo methods by deterministic points

that are uniformly distributed in [0, 1]d. The latter property may be

defined in terms of the so-called star-discrepancy of ξ1, . . . , ξn

D∗
n(ξ1, . . . , ξn)) := sup

ξ∈[0,1]d

∣∣∣∣∣λd([0, ξ))− 1

n

n∑
i=1

1l[0,ξ)(ξ
i)

∣∣∣∣∣,
namely, by calling a sequence (ξi)i∈N uniformly distributed in [0, 1]d

if for n →∞
D∗

n(ξ1, . . . , ξn) → 0 .

A classical result due to Roth 54 states

D∗
n(ξ1, . . . , ξn) ≥ Bd

(log n)
d−1
2

n

for some constant Bd and all sequences (ξi) in [0, 1]d.
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There are two classical convergence results for QMC methods.

Theorem: (Proinov 88)

If the real function f is continuous on [0, 1]d, then there exists

C > 0 such that

|Qn,d(f )− Id(f )| ≤ Cωf

(
D∗

n(ξ1, . . . , ξn)
1
d

)
,

where ωf(δ) = sup{|f (ξ)− f (ξ̃)| : ‖ξ− ξ̃)‖ ≤ δ, ξ, ξ̃ ∈ [0, 1]d} is

the modulus of continuity of f .

Theorem: (Koksma-Hlawka 61)

If f is of bounded variation in the sense of Hardy and Krause, it

holds

|Id(f )−Qn,d(f )| ≤ VHK(f )D∗
n(ξ1, . . . , ξ

n) .

for any n ∈ N and any ξ1, . . . , ξn ∈ [0, 1]d.

There exist sequences (ξi) in [0, 1]d such that

D∗
n(ξ1, . . . , ξn) = O(n−1(log n)d−1).
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First general construction: (Sobol 69, Niederreiter 87)

Elementary subintervals E in base b:

E =

d∏
j=1

[
aj

bdj
,
aj + 1

bdj

)
,

with ai, di ∈ Z+, 0 ≤ ai < di, i = 1, . . . , d.

Let m, t ∈ Z+, m > t.

A set of bm points in [0, 1]d is a (t,m, d)-net in base b if every

elementary subinterval E in base b with λd(E) = bt−m contains bt

points.

A sequence (ξi) in [0, 1]d is a (t, d)-sequence in base b if, for all

integers k ∈ Z+ and m > t, the set

{ξi : kbm ≤ i < (k + 1)bm}

is a (t,m, d)-net in base b.

Proposition: (0, d)-sequences exist if d ≤ b.
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Theorem:
The star-discrepancy of a (0, m, d)-net {ξi} in base b satisfies

D∗
n(ξi) ≤ Ad(b)

(log n)d−1

n
+ O

(
(log n)d−2

n

)
.

Special cases: Sobol, Faure and Niederreiter sequences.

Second general construction: (Korobov 59, Sloan-Joe 94)

Let g ∈ Zd and consider the lattice points{
ξi =

{
i

n
g

}
: i = 1, . . . , n

}
,

where {z} is defined componentwise and for z ∈ R+ it is the frac-

tional part of z, i.e., {z} = z − bzc ∈ [0, 1).

Similar convergence results may be obtained for the star-discrepancy.
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Quadrature rules with sparse grids

Again we consider the unit cube [0, 1]d in Rd. Let nested sets of

grids in [0, 1] be given, i.e.,

Ξi = {ξi
1, . . . , ξ

i
mi
} ⊂ Ξi+1 ⊂ [0, 1] (i ∈ N),

for example, the dyadic grid

Ξi =

{
j

2i
: j = 0, 1, . . . , 2i

}
.

Then the point set suggested by Smolyak

H(q, d) :=
⋃

∑d
j=1 ij=q

Ξi1 × · · · × Ξid (q ∈ N)

is called a sparse grid in [0, 1]d. In case of dyadic grids in [0, 1] the

set H(q, d) consists of all d-dimensional dyadic grids with product

of mesh size given by 1
2q .
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The corresponding tensor product quadrature rule for q ≥ d on

[0, 1]d with respect to the Lebesgue measure λd is of the form

Qq,d(f ) =
∑

q−d+1≤|i|≤q

(−1)q−|i|
(

d− 1

q − |i|

)mi1∑
j1=1

· · ·
mid∑
jd=1

f (ξi1
j1
, . . . , ξ

id
jd

)

d∏
l=1

a
il
jl
,

where |i| =
∑d

j=1 ij and the coefficients ai
j (j = 1, . . . ,mi, i =

1, . . . , d) are weights of one-dimensional quadrature rules.

Even if the one-dimensional weights are positive, some of these

weights may become negative. Hence, an interpretation as discrete

probability measure is no longer possible.

Convergence rates are very similar to those of QMC methods if the

integrand f belongs to a tensor product Sobolev space.
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Scenario reduction

We assume that the stochastic program behaves stable with respect

to the Fortet-Mourier metric ζr.

Proposition: (Rachev-Rüschendorf 98)

If Ξ is bounded, ζr may be reformulated as transportation problem

ζr(P, Q) = inf

{∫
Ξ×Ξ

ĉr(ξ, ξ̃)η(dξ, dξ̃) :π1η=P, π2η =Q

}
,

where ĉr is a metric (reduced cost) with ĉr ≤ cr and given by

ĉr(ξ, ξ̃) := inf

{
n−1∑
i=1

cr(ξli, ξli+1) : n ∈ N, ξli ∈ Ξ, ξl1 = ξ, ξln = ξ̃

}
.

We consider discrete distributions P with scenarios ξi and proba-

bilities pi, i = 1, . . . , N , and Q being supported by a given subset

of scenarios ξj, j 6∈ J ⊂ {1, . . . , N}, of P .
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Best approximation given a scenario set J :

The best approximation of P with respect to ζr by such a distribu-

tion Q exists and is denoted by Q∗. It has the distance

DJ := ζr(P, Q∗) = min
Q

ζr(P, Q) =
∑
i∈J

pi min
j 6∈J

ĉr(ξi, ξj)

and the probabilities q∗j = pj +
∑
i∈Jj

pi, ∀j 6∈ J, where

Jj := {i ∈ J : j = j(i)} and j(i) ∈ arg min
j 6∈J

ĉr(ξi, ξj), ∀i ∈ J

(optimal redistribution).

Determining the optimal index set J with prescribed cardinality

N − n is, however, a combinatorial optimization problem:

min {DJ : J ⊂ {1, ..., N}, |J | = N − n}

Hence, the problem of finding the optimal set J for deleting scenar-

ios is NP-hard and polynomial time algorithms are not available.

−→ Search for fast heuristics starting from n = 1 or n = N − 1.
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Fast reduction heuristics

Starting point (n = N − 1): min
l∈{1,...,N}

pl min
j 6=l

ĉr(ξl, ξj)

Algorithm 1: (Backward reduction)

Step [0]: J [0] := ∅ .

Step [i]: li ∈ arg min
l 6∈J [i−1]

∑
k∈J [i−1]∪{l}

pk min
j 6∈J [i−1]∪{l}

ĉr(ξk, ξj).

J [i] := J [i−1] ∪ {li} .

Step [N-n+1]: Optimal redistribution.
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Starting point (n = 1): min
u∈{1,...,N}

N∑
k=1

pkĉr(ξk, ξu)

Algorithm 2: (Forward selection)

Step [0]: J [0] := {1, . . . , N}.
Step [i]: ui ∈ arg min

u∈J [i−1]

∑
k∈J [i−1]\{u}

pk min
j 6∈J [i−1]\{u}

ĉr(ξk, ξj),

J [i] := J [i−1] \ {ui} .

Step [n+1]: Optimal redistribution.
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Example: (Electrical load scenario tree)

(Mean shifted ternary) Load scenario tree (729 scenarios)
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24 48 72 96 120 144 168

<Start Animation>

file:E:/anim/animation.html
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Reduced load scenario tree obtained by the forward selection method (15 scenarios)
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Reduced load scenario tree obtained by the backward reduction method (12 scenarios)
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Generation of scenario trees

Some recent approaches:

(1) Bound-based approximation methods: Kuhn 05, Casey-Sen 05.

(2) Monte Carlo-based schemes: Shapiro 03, 06.

(3) Quasi-Monte Carlo methods: Pennanen 06, 09 .

(4) Moment-matching principle: Høyland-Kaut-Wallace 03.

(5) Stability-based approximations: Hochreiter-Pflug 07, Mirkov-Pflug 07,

Pflug-Pichler 10, Heitsch-Rö 05, 09.

Survey: Dupačová-Consigli-Wallace 00
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Theoretical basis of (5): Stability results for multi-stage stochas-

tic programs.

Scenario tree generation:

(i) Development of a stochastic model for the data process ξ

(parametric [e.g. time series model], nonparametric [e.g. re-

sampling from statistical data]) and generation of simulation

scenarios;

(ii) Construction of a scenario tree out of the simulation scenarios

by recursive scenario reduction and bundling over time such

that the optimal expected revenue stays within a prescribed

tolerance.

Implementation: GAMS-SCENRED 2.0 (by H. Heitsch)
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 t = 1  t = 2  t = 3  t = 4  t = 5  t = 1  t = 2  t = 3  t = 4  t = 5  t = 3 t = 1  t = 2  t = 4  t = 5

 t = 1  t = 2  t = 3  t = 5 t = 4  t = 5 t = 1  t = 2  t = 3  t = 4  t = 1  t = 2  t = 3  t = 4  t = 5

Illustration of the forward tree generation for an example including T=5 time periods starting with
a scenario fan containing N=58 scenarios

<Start Animation>

file:E:/anim/animation.html
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Appendix: Functions of bounded variation

Let D = {1, . . . , d} and we consider subsets u of D with cardinality

|u|. By −u we mean −u = D \ u.

The expression ξu denotes the |u|-tuple of the components ξj, j ∈
u, of ξ ∈ Rd. For example, we write

f (ξ) = f (ξu, ξ−u).

We set the d-fold alternating sum of f over the d-dimensional

interval [a, b] as

4(f ; a, b) =
∑
u⊆D

(−1)|u|f (au, b−u).

Furthermore, we set for any v ⊆ u

4u(f ; a, b) =
∑
v⊆u

(−1)|v|f (av, b−v).
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Let Gj denote finite grids in [aj, bj), aj < bj, j = 1, . . . , d, and

G = ×d
i=1Gj a grid in [a, b) = ×d

i=1[aj, bj). For g ∈ G let g+ =

(g+
1 , . . . , g+

d ), where g+
j is the successor of gj in Gj ∪ {bj}.

Then the variation of f over G is

VG(f ) =
∑
g∈G

|4(f ; g, g+)| .

If G denotes the set of all finite grids in [a, b), the variation of f on

[a, b] in the sense of Vitali is

V[a,b](f ) = sup
G∈G

VG(f ) .

The variation of f on [a, b] in the sense of Hardy and Krause is

VHK(f ; a, b) =
∑
u⊂D

V[a−u,b−u](f (ξ−u, bu)) .

Bounded variation on [a, b] in the sense of Hardy and Krause then

means VHK(f ; a, b) < ∞.
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G. Ch. Pflug and A. Pichler: Scenario generation for stochastic optimization problems, in:
Stochastic Optimization Methods in Finance and Energy (M.I. Bertocchi, G. Consigli, M.A.H.
Dempster eds.) (to appear).

G. Ch. Pflug: Scenario tree generation for multiperiod financial optimization by optimal
discretization, Mathematical Programming 89 (2001), 251–271.

Quasi-Monte Carlo:

T. Pennanen, M. Koivu: Epi-convergent discretizations of stochastic programs via integration
quadratures, Numerische Mathematik 100 (2005), 141–163.

T. Homem-de-Mello: On rates of convergence for stochastic optimization problems under
non-i.i.d. sampling, SIAM Journal on Optimization 19 (2008), 524-551.



Home Page

Title Page

Contents

JJ II

J I

Page 36 of 39

Go Back

Full Screen

Close

Quit

I. M. Sobol’: Multidimensional Quadrature Formulas and Haar Functions, Nauka, Moscow,
1969 (in Russian).
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J. Dupačová, G. Consigli and S. W. Wallace: Scenarios for multistage stochastic programs,
Annals of Operations Research 100 (2000), 25–53.

M. Casey and S. Sen: The scenario generation algorithm for multistage stochastic linear
programming, Mathematics of Operations Research 30 (2005), 615–631.

K. Frauendorfer: Barycentric scenario trees in convex multistage stochastic programming,
Mathematical Programming Ser. B, 75 (1996), 277–293.

H. Heitsch and W. Römisch: Scenario tree modeling for multistage stochastic programs,
Mathematical Programming 118 (2009), 371–406.

H. Heitsch and Römisch: Scenario tree reduction for multistage stochastic programs, Com-
putational Management Science 6 (2009), 117–133.

R. Hochreiter and G. Ch. Pflug: Financial scenario generation for stochastic multi-stage



Home Page

Title Page

Contents

JJ II

J I

Page 39 of 39

Go Back

Full Screen

Close

Quit

decision processes as facility location problem, Annals of Operations Research 152 (2007),
257–272.

K. Høyland, M. Kaut and S. W. Wallace: A heuristic for moment-matching scenario genera-
tion, Computational Optimization and Applications 24 (2003), 169–185.

D. Kuhn: Generalized bounds for convex multistage stochastic programs, Lecture Notes in
Economics and Mathematical Systems, Vol. 548, Springer, Berlin, 2005.

T. Pennanen: Epi-convergent discretizations of multistage stochastic programs via integra-
tion quadratures, Mathematical Programming 116 (2009), 461–479.

G. Ch. Pflug and R. Mirkov: Tree approximations of dynamic stochastic programs, SIAM
Journal on Optimization 18 (2007), 1082–1105.


