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Introduction and contents

The use of stochastic orderings as a modeling tool has become standard in theory

and applications of stochastic optimization. Much of the theory is developed and

many successful applications are known.

Research topics:
- Multivariate concepts and analysis,

- scenario generation and approximation schemes,

- analysis of (Quasi-) Monte Carlo approximations,

- numerical methods and decomposition schemes,

- applications.

Contents of the talk:

(1) Introduction, stochastic dominance, probability metrics

(2) Quantitative stability results

(3) Sensitivity of optimal values

(4) Limit theorem for empirical approximations



Optimization models with stochastic dominance constraints

We consider the convex optimization model

min
{
f (x) : x ∈ D, G(x, ξ) �(k) Y

}
,

where k ∈ N, k ≥ 2, D is a nonempty closed convex subset of Rm, Ξ a closed

convex subset of Rs, f : Rm → R is convex, ξ is a random vector with support

Ξ and Y a real random variable on some probability space both having finite

moments of order k − 1, and G : Rm × Rs → R is continuous, concave with

respect to the first argument and satisfies the linear growth condition

|G(x, ξ)| ≤ C(B) max{1, ‖ξ‖} (x ∈ B, ξ ∈ Ξ)

for every bounded subset B ⊂ Rm and some constant C(B) (depending on B).

The random variable Y plays the role of a benchmark outcome.

D. Dentcheva, A. Ruszczyński: Optimization with stochastic dominance constraints, SIAM J. Optim. 14 (2003),
548–566.



Stochastic dominance relation �(k)

X �(k) Y ⇔ F
(k)
X (η) ≤ F

(k)
Y (η) (∀η ∈ R)

where X and Y are real random variables belonging to Lk−1(Ω,F ,P) with norm

‖ · ‖k−1 for some probability space (Ω,F ,P). By L0 we denote consistently the

space of all scalar random variables.

Let PX denote the probability distribution of X and F
(1)
X = FX its distribution

function, i.e.,

F
(1)
X (η) = P({X ≤ η}) =

∫ η

−∞
PX(dξ) =

∫ η

−∞
dFX(ξ) (∀η ∈ R)

and

F
(k+1)
X (η) =

∫ η

−∞
F

(k)
X (ξ)dξ =

∫ η

−∞

(η − ξ)k

k!
PX(dξ) =

∫ η

−∞

(η − ξ)k

k!
dFX(ξ)

=
1

k!
‖max{0, η −X}‖kk (∀η ∈ R),

where

‖X‖k =
(
E(|X|k)

)1
k (∀k ≥ 1).

A. Müller and D. Stoyan: Comparison Methods for Stochastic Models and Risks, Wiley, Chichester, 2002.



The original problem is equivalent to its split variable formulation

min
{
f (x) : x ∈ D, G(x, ξ) ≥ X, F

(k)
X (η) ≤ F

(k)
Y (η),∀η ∈ R

}
by introducing a new real random variable X and the constraint

G(x, ξ) ≥ X P–almost surely.

This formulation motivates the need of two different metrics for handling the two

constraints of different nature:

The almost sure constraint G(x, ξ) ≥ X (P-a.s.) and the functional constraint

F
(k)
X (·) ≤ F

(k)
Y (·), respectively.

D. Dentcheva, A. Ruszczyński: Optimality and duality theory for stochastic optimization problems with nonlinear
dominance constraints, Math. Progr. 99 (2004), 329–350.



Properties:

(i) Equivalent characterization of �(2):

X �(2) Y ⇔ E[u(X)] ≥ E[u(Y )]

for each nondecreasing concave utility u : R→ R such that the expectations

are finite.

(ii) The function F
(k)
X : R → R is nondecreasing for k ≥ 1 and convex for

k ≥ 2.

(iii) For every k ∈ N the SD relation �(k) introduces a partial ordering in

Lk−1(Ω,F ,P) which is not generated by a convex cone if Y is not de-

terministic.

Extensions: By imposing appropriate assumptions all results remain valid for

the following two extended situations:

(a) finite number of kth order stochastic dominance constraints,

(b) the objective f is replaced by an expectation function of the form E[g(· , ξ)]

where g is a real-valued function defined on Rm × Rs.



The case of discrete distributions:

Let ξj, Xj and Yj the scenarios of ξ, X and Y with probabilities pj, j = 1, . . . , n.

Then the second order dominance constraints (i.e. k = 2) in the split variable

formulation can be expressed as
n∑
j=1

pj[η −Xj]+ ≤
n∑
j=1

pj[η − Yj]+ (∀η ∈ I).

The latter condition can be shown to be equivalent to
n∑
j=1

pj[Yk −Xj)]+ ≤
n∑
j=1

pj[Yk − Yj]+ (∀k = 1, . . . , n).

if Yk ∈ I , k = 1, . . . , n. Here, [ · ]+ = max{0, · }.
Hence, the second order dominance constraints may be reformulated as linear

constraints for the Xj, j = 1, . . . , n, in

G(x, ξj) ≥ Xj (j = 1, . . . , n).

D. Dentcheva, A. Ruszczyński: Optimality and duality theory for stochastic optimization problems with nonlinear
dominance constraints, Math. Progr. 99 (2004), 329–350.
J. Luedtke: New formulations for optimization under stochastic dominance constraints, SIAM J. Optim. 19
(2008), 1433–1450.



Metrics associated to �(k)

Rachev metrics on Lk−1:

Dk,p(X, Y ) :=


(∫

R

∣∣F (k)
X (η)− F (k)

Y (η)
∣∣pdη)1

p

, 1 ≤ p <∞

sup
η∈R

∣∣F (k)
X (η)− F (k)

Y (η)
∣∣ , p =∞

Proposition: It holds for any X, Y ∈ Lk−1

Dk,p(X, Y )= ζk,p(X, Y ) := sup
f∈Dk,p

∣∣∣∣∫
R
f (x)PX(dx)−

∫
R
f (x)PY (dx)

∣∣∣∣
if E(X i) = E(Y i), i = 1, . . . , k − 1.

Here, Dk,p denotes the set of continuous functions f : R → R that have mea-

surable kth order derivatives f (k) on R such that∫
R
|f (k)(x)|

p
p−1dx ≤ 1 (p > 1) or ess sup

x∈R
|f (k)(x)| ≤ 1 (p = 1).



Note that the condition E(X i) = E(Y i), i = 1, . . . , k − 1, is implied by the

finiteness of ζk,p(X, Y ), since Dk,p contains all polynomials of degree k − 1.

Conversely, if X and Y belong to Lk−1 and E(X i) = E(Y i), i = 1, . . . , k − 1,

holds, then the distance Dk,p(X, Y ) is finite.

Proposition:
There exists ck > 0 (only depending on k) such that

ζk,∞(X, Y ) ≤ ζ1,∞(X, Y ) ≤ ckζk,∞(X, Y )
1
k (∀X, Y ∈ Lk−1).

ζ1,∞ is the Kolmogorov metric and ζ1,1 the first order Fourier-Mourier or

Wasserstein metric.

S. T. Rachev: Probability Metrics and the Stability of Stochastic Models, Wiley, 1991.



Structure and stability

We consider the kth order SD constrained optimization model

min
{
f (x) : x ∈ D, F (k)

G(x,ξ)(η) ≤ F
(k)
Y (η), ∀η ∈ R

}
as semi-infinite program.

Relaxation: Replace R by some compact inverval I = [a, b].

Proposition:
Under the general convexity assumptions the feasible set

X (ξ, Y ) =
{
x ∈ D : F

(k)
G(x,ξ)(η) ≤ F

(k)
Y (η), ∀η ∈ I

}
is closed and convex in Rm.



Uniform dominance condition of kth order (kudc) at (ξ, Y ):

There exists x̄ ∈ D such that

min
η∈I

(
F

(k)
Y (η)− F (k)

G(x̄,ξ)(η)
)
> 0 .

Metrics on Lsk−1 × Lk−1:

dk((ξ, Y ), (ξ̃, Ỹ )) = `k−1(ξ, ξ̃) + Dk,∞(Y, Ỹ ),

where k ∈ N, k ≥ 2 is the degree of the SD constraint,

Dk,∞ is the kth order Rachev metric, and

`k−1 is the Lk−1-minimal or (k − 1)th order Wasserstein distance defined by

`k−1(ξ, ξ̃) := inf
{∫

Ξ×Ξ

‖x− x̃‖k−1η(dx, dx̃)
} 1

k−1
,

where the infimum is taken w.r.t. all probability measures η on Ξ × Ξ with

marginal Pξ and Pξ̃, respectively.



Proposition:
Let D be compact and assume that the function G satisfies

|G(x, u)−G(x, ũ)| ≤ LG‖u− ũ‖

for all x ∈ D, u, ũ ∈ Ξ and some constant LG > 0. Assume that the kth order

uniform dominance condition is satisfied at (ξ, Y ).

Then there exist constants L(k) > 0 and δ > 0 such that

dH(X (ξ, Y ),X (ξ̃, Ỹ )) ≤ L(k) dk((ξ, Y ), (ξ̃, Ỹ )),

whenever the pair (ξ̃, Ỹ ) is chosen such that dk((ξ, Y ), (ξ̃, Ỹ )) < δ.

(dH denotes the Pompeiu-Hausdorff distance on compact subsets of Rm.)

Note that L(k) gets smaller with increasing k ∈ N if ‖ξ‖k−1 grows at most exponentially with k.
Hence, higher order stochastic dominance constraints may have improved stability properties.



Let v(ξ, Y ) denote the optimal value and S(ξ, Y ) the solution set of

min
{
f (x) : x ∈ D, x ∈ X (ξ, Y )

}
.

We consider the growth function

ψ(ξ,Y )(τ ) := inf
{
f (x)− v(ξ, Y ) : d(x, S(ξ, Y )) ≥ τ, x ∈ X (ξ, Y )

}
and

Ψ(ξ,Y )(θ) := θ + ψ−1
(ξ,Y )(2θ) (θ ∈ R+),

where we set ψ−1
(ξ,Y )(t) = sup{τ ∈ R+ : ψ(ξ,Y )(τ ) ≤ t}.

Note that Ψ(ξ,Y ) is increasing, lower semicontinuous and vanishes at θ = 0.



Main stability result

Theorem:
Let D be compact and assume that the function G satisfies

|G(x, u)−G(x, ũ)| ≤ LG‖u− ũ‖

for all x ∈ D, u, ũ ∈ Ξ and some constant LG > 0. Assume that the kth order

uniform dominance condition is satisfied at (ξ, Y ).

Then there exist positive constants L(k) and δ such that

|v(ξ, Y )− v(ξ̃, Ỹ )| ≤ L(k) dk((ξ, Y ), (ξ̃, Ỹ ))

sup
x∈S(ξ̃,Ỹ )

d(x, S(ξ, Y )) ≤ Ψ(ξ,Y )(L(k) dk((ξ, Y ), (ξ̃, Ỹ )))

whenever dk((ξ, Y ), (ξ̃, Ỹ )) < δ.

(Klatte 94, Rockafelar-Wets 98)



Dual multipliers and utilities

Let Y = C(I) and Y∗ its dual which is isometrically isomorph to the space rca(I)

of regular countably additive measures µ on I having finite total variation |µ|(I).

The dual pairing is given by

〈µ, y〉 =

∫
I

y(η)µ(dη) (∀y ∈ Y , µ ∈ rca(I)).

We consider the closed convex cone

K = {y ∈ Y : y(η) ≥ 0, ∀η ∈ I}

and its polar cone K−

K− = {µ ∈ rca(I) : 〈µ, y〉 ≤ 0,∀y ∈ K}.

The semi-infinite constraint may be written as

Gk(x;Pξ, PY ) := F
(k)
Y − F

(k)
G(x,ξ) ∈ K

and the semi-infinite program is

min
{
f (x) : x ∈ D, Gk(x;Pξ, PY ) ∈ K

}
.



Lemma: (Dentcheva-Ruszczyǹski 03)

Let k ≥ 2, I = [a, b], µ ∈ −K−. There exists u ∈ Uk−1 such that

〈µ, F (k)
X 〉 =

∫
I

F
(k)
X (η)µ(dη) = −E[u(X)]

holds for every X ∈ Lk−1. Here, Uk−1 denotes the set of all u ∈ Ck−2(R) such

that its (k− 1)th derivative exists almost everywhere and there is a nonnegative,

non-increasing, left-continuous, bounded function ϕ : I → R such that

u(k−1)(t) = (−1)kϕ(t) , µ-a.e. t ∈ [a, b],

u(k−1)(t) = (−1)kϕ(a) , t < a,

u(t) = 0 , t ≥ b,

u(i)(b) = 0 , i = 1, . . . , k − 2,

where the symbol u(i) denotes the ith derivative of u. In particular, the utilities

u ∈ Uk−1 are nondecreasing and concave on R.

Proof: The function u ∈ Uk−1 is defined by putting u(t) = 0, t ≥ b, u(k−1)(t) = (−1)kµ([t, b]), µ-a.e. t ≤ b,
u(i)(b) = 0, = 1, . . . , k − 2. One obtains by repeated integration by parts for any X ∈ Lk−1

〈µ, F (k)
X 〉 = (−1)k

∫ b

−∞
F

(k)
X (η)du(k−1)(t) = −

∫ b

−∞
u(t)dFX(t) = −E[u(X)].



Optimality and duality

Define the Lagrange-like function L : Rm × Uk−1 → R as

L(x, u;Pξ, PY ) := f (x)−
∫

Ξ

u(G(x, z))Pξ(dz) +

∫
R
u(t)PY (dt).

Theorem: (Dentcheva-Ruszczyǹski)

Let k ≥ 2 and assume the kth order uniform dominance condition at (ξ, Y ).

A feasible û is optimal if and only if a function û ∈ Uk−1 exists such that

L(x̂, û;Pξ, PY ) = min
x∈D

L(x, û, Pξ, PY )∫
Ξ

û(G(x̄, z))Pξ(dz) =

∫
R
û(t)PY (dt).

Furthermore, the dual problem is

max
u∈Uk−1

[
inf
x∈D

[
f (x)− E [u(G(x; ξ))] + E [u(Y )]

]]
or

max
µ∈−K−

[
inf
x∈D

[
f (x)− 〈µ,Gk(x;Pξ, PY )〉

]]
and primal and dual optimal values coincide.



Sensitivity of the optimal value function

Let the infimal function v : C(D)→ R be given by

v(g) = infx∈D g(x).

If D is compact, v is finite and concave on C(D), and Lipschitz continuous

with respect to the supremum norm ‖ · ‖∞ on C(D). Hence, it is Hadamard

directionally differentiable on C(D) and

v′(g; d) = min
{
d(x) : x ∈ arg min

x∈D
g(x)

}
(g, d ∈ C(D)).

Let U∗k−1 denote the solution set of the dual problem. Any ū ∈ U∗k−1 is called

shadow utility. For some shadow utility ū and gū = L(· , ū;Pξ, PY ), the duality

theorem implies v(gū) = v(Pξ, PY ).

Corollary: Let D be compact and the assumptions of the duality theorem be

satisfied. Then the optimal value function v(Pξ, PY ) is Hadamard directionally

differentiable on C(D) and the directional derivative into direction d ∈ C(D) is

v′(gū; d) = v′(Pξ, PY ; d)) = min
{
d(x) : x ∈ S(Pξ, PY )

}
.



Limit theorems for empirical approximations

Let (ξn, Yn), n ∈ N, be a sequence of i.i.d. (independent, and identically dis-

tributed) random vectors on some probability space. Let P
(n)
ξ and P

(n)
Y denote

the corresponding empirical measures and Pn = P
(n)
ξ × P

(n)
Y .

Empirical approximation:

min
{
f (x) : x ∈ D,

n∑
i=1

[
η −G(x, ξi)

]k−1

+
≤

n∑
i=1

[
η − Yi

]k−1

+
, η ∈ I

}
Optimal value:

v(Pξ, PY ) = inf
x∈D

L(x, ū;Pξ, PY )

= inf
x∈D

E
[
f (x) + ū(G(x, ξ))− ū(Y )

]
= inf

x∈D
P (f (x) + ū(G(x, z))− ū(t)),

where ū is a shadow utility and P := Pξ × PY .



Proposition: (Donsker class)

Let the assumptions of the main stability theorem be satisfied. Let D and the

supports Ξ = supp(Pξ) and Υ = supp(PY ) be compact.

Then Γk is a Donsker class, i.e., the empirical process Eng indexed by g ∈ Γk

Eng =
√
n(Pn − P )g =

√
n
(
n−1

n∑
i=1

g(ξi, Yi)− E(g(ξ, Y ))
)

d−→ G(g) (g ∈ Γk)

converges in distribution to a Gaussian limit process G on the space `∞(Γk) (of

bounded functions on Γk) equipped with supremum norm, where

Γk=
{
gx : gx(z, t) =f (x) + ū(G(x, z))− ū(t), (z, t) ∈ Ξ× Υ, x ∈ D

}
.

The Gaussian process G has zero mean and covariances

E[G(x)G(x̃)] = EP [gxgx̃]− EP [gx]EP [gx̃] for x, x̃ ∈ D.



Proposition: (functional delta method)

Let B1 and B2 be Banach spaces equipped with their Borel σ-fields and B1 be

separable. Let (Xn) be random elements of B1, h : B1 → B2 be a mapping and

(τn) be a sequence of positive numbers tending to infinity as n→∞. If

τn(Xn − θ)
d−→ X

for some θ ∈ B1 and some random element X of B1 and h is Hadamard direc-

tionally differentiable at θ, it holds

τn(h(Xn)− h(θ))
d−→ h′(θ;X),

where
d→ means convergence in distribution.

Application:
B1 = C(D), B2 = R, h(g) = infx∈D g(x), h is concave and Lipschitz w.r.t.

‖ · ‖∞, and h′(g; d) = min{d(y) : y ∈ arg minx∈D g(x)}.



Theorem: (Limit theorem)

Let the assumptions of the Donsker class Proposition be satisfied.

Then the optimal values v(P
(n)
ξ , P

(n)
Y ), n ∈ N, satisfy the limit theorem

√
n
(
v(P

(n)
ξ , P

(n)
Y )− v(Pξ, PY )

) d−→ min{G(x) : x ∈ S(Pξ, PY )}

where G is a Gaussian process with zero mean and covariances E[G(x)G(x̃)] =

EP [gxgx̃]− EP [gx]EP [gx̃] for x, x̃ ∈ S(Pξ, PY ).

If S(Pξ, PY ) is a singleton, i.e., S(Pξ, PY ) = {x̄}, the limit G(x̄) is normal with

zero mean and variance EP [g2
x̄]− (EP [gx̄])

2.

The result allows the application of resampling techniques to determine asymp-

totic confidence intervals for the optimal value v(Pξ, PY ), in particular, boot-

strapping if S(Pξ, PY ) is a singleton and subsampling in the general case.

A. Eichhorn and W. Römisch: Stochastic integer programming: Limit theorems and confidence intervals, Math.
Oper. Res. 32 (2007), 118–135.



Conclusions

• Quantitative continuity properties for optimal values and solution sets in

terms of a suitable distance of probability distributions have been obtained.

• A limit theorem for optimal values of empirical approximations of stochastic

dominance constrained optimization models is shown which allows to derive

confidence intervals.

• Extensions of the results to study (modern) Quasi-Monte Carlo approxima-

tions of such models are desirable (convergence rate O(n−1+δ), δ ∈ (0, 1
2]).

• Extensions of the asymptotic result to the situation of estimated shadow

utilities are desirable.

• Extensions to multivariate dominance constraints are desirable, e.g., for the

concept

X �(m,k) Y iff v>X �(k) v
>Y, ∀v ∈ V ,

where V is convex in Rm
+ and X, Y ∈ Lmk−1.

For example, V = {v ∈ Rm
+ : ‖v‖1 = 1} is studied in (Dentcheva-Ruszczyński 09)

and V ⊆ {v ∈ Rm : ‖v‖1 ≤ 1} in (Hu-Homem-de-Mello-Mehrotra 11).
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