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Abstract. Optimization models under uncertainty for mid-term cost-optimal op-
eration of a hydro-thermal power system and for simultaneous power production
and day-ahead trading at a power exchange are presented. Algorithms for solving
these models are sketched and initial numerical experience is reported.

1 Introduction

Uncertainty is of increased importance in today’s power management. Tra-
ditional sources of uncertainty, such as weather conditions infecting the load
curve, are accompanied by novel sources that are due to the liberalization of
power markets. Trading now becomes an issue, and new market instruments
arise that, to more or less extent, involve some level of uncertainty.

In the present paper we report on two mathematical optimization models
that are tailored to coping with randomness in power production and power
trading. The paper grew out of a cooperation with the VEAG Vereinigte
Energiewerke AG Berlin, a utility running a hydro-thermal power system
in the Eastern part of Germany. Our mathematical instruments stem from
(mainly two-stage) stochastic integer programming.

In Sect. 2 we present basic issues of mathematical modelling of generation
units and their interaction in the VEAG system. Section 3 then addresses a
planning model for mid-term cost optimal power production under uncer-
tainty of electrical load, fuel prices and electricity prices in power contracts.
In Sect. 4 we develop some ideas on how to couple day-ahead trading at
a power exchange with the basic production model from Sect. 2. In both
Sects. 3 and 4 we place accent on modelling issues, sketch the optimization
algorithms for problem solution, and display initial numerical experience.

2 Power Production — The VEAG System

The generation system of VEAG Vereinigte Energiewerke AG Berlin com-
prises pumped-storage hydro as well as coal and gas fired thermal power
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plants. Throughout, we work with a (mostly hourly) discretization of the
planning horizon into ¢ = 1,...,T subintervals, and we assume that there
are I thermal as well as J pumped-storage hydro units. The variable u;; €
{0,1}, ¢ = 1,...,I;t = 1,...,T indicates whether the thermal unit ¢ is
in operation at time t. Variables py, sji, wjs, ¢ = 1,...,1, 7 = 1,...,J;
t =1,...,T are the output levels for the thermal units, the hydro units in
generation and in pumping modes, respectively. The variables [;; denote the
fill (in energy) of the upper dam of the hydro unit j at the end of interval .

The power output of units and the fill of the upper dams have to fit the
following bounds

min

Py i < pie < piPug, i =1,... I, t=1,...,
0 < 550 <83, ji=1...,J,t=1,...,
0<w]t<w;7‘”, j=1,...,J,t=1,...,

0< Ly <IBoe,  j=1,...,J t=1,..,

1)

e B M

Here, pli'", pfpa®, 85", wi®® denote minimal and maximal outputs, respec-
tively, and I7%% is the maximal fill of the upper dam. Load coverage is
Y j

modeled by the constraints
I J
Zpit + Z(sjt - wjt) _>. dt, t= 1’ 2o 7T7 (2)
— =

where d; denotes the electrical load at time .

In addition to load coverage, reserve management is a key issue in power
production. Quite different reserve schemes are employed in practice. At least
the following requirement involving a so-called spinning reserve r; has to be
met for the thermal units:

I
> (uiep®® = pi) > 10, t=1,...,T. (3)
i=1

For the pumped-storage plants we have the following balances that intercon-
nect different time intervals:

Lt = L1 = (850 —mjwye), |

A ’ =1,...,J,t=1,...,T. 4

Lo=1,  lr=imd, | T @)
Here, l;", lj”d are the initial and final fills (in energy) of the upper dams, n;
denote the pumping efficiencies. Constraints avoiding simultaneous genera-
tion and pumping in the hydro plants are dispensable since it can be shown
that such a deficiency can not occur in optimal points.

To avoid excessive thermal stresses in the coal fired blocks, they have to
adhere to minimum up and down times o; and 7;. These are modeled via

Ujt — Wi p— 1<uw, c=t+1,... ,min{t+0; —1,T},

Uyt~ 1— U <1l—upr, 7=t+1,... ,min{t+7‘i—1,T}, (5)
i1=1,..., ;t=2,...,T -1
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The constraints (1)—(5) provide a mathematical model for basic features and
basic interaction of the generating units of the VEAG system. Typical ob-
jective functions to be minimized on the constraint set (1)—(5) concern fuel
consumption for starting up and operating thermal units together with costs
(or revenues) according to power contracts. Formalizing fuel cost minimiza-
tion, for instance, leads to the objective function

T I

I
Z Cit(pit, wit) + Z Z Sit(us), (6)

t=1 i=1 t=1 i=1

where Cj; denote the piecewise linear fuel costs and Sy (u;) = ¢;; max{u;; —
u;¢—1,0} the start-up costs for the thermal unit 4, where u; := (u;)~, and
Usp 18 a given initial value.

In Sects. 3 and 4, the above mathematical apparatus will be utilized
as starting point for including the sources of uncertainty outlined in the
introduction.

3 Mid-Term Power Planning

For the system introduced in Sect. 2 we describe a model for its mid-term
cost-optimal power production planning under uncertainty on the electrical
load and on the electricity and fuel prices. For mid-term planning models
we are faced with stochastic data when considering time periods lying far
in the future. In order to derive solutions that hedge against uncertainty it
is necessary to incorporate the randomness of the data into the model. So
far this is mainly done for operational models (cf. [4,6] and the references
therein).

Since we regard future planning periods (e. g. next week or year), we
assume that the quality of available information on the load uncertainty
does not depend on time, i.e., it does not increase with the length of the
planning horizon. Furthermore, the load is stochastic right from the beginning
of the considered time period. The stochastic behaviour of the load dy, the
spinning reserve 7; and the price for fuel and electricity — characterized by its
coefficients a;, b; and c; — is represented by a discrete-time stochastic process
{&; := (di, ¢, a, by, ct)}t (on some probability space ({2, A, IP). Now, the
decision process consists of two stages where the first-stage decisions cor-
respond to the here-and-now schedules for all power generation units. The
second-stage decisions, on the other hand, correspond to future compensation
or recourse actions of each unit in each time period. The latter naturally
depend on the environment created by the first-stage decisions and the load
and price scenarios in that specific time period. Hence, the aim of such a two-
stage planning model can be formulated as follows. Find an optimal schedule
for the whole system and planning horizon such that the uncertain data can
be compensated by the system, all system constraints are satisfied and the
sum of the total generation costs and the expected recourse costs is minimal.
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In order to give a mathematical formulation of the two-stage model let
(u, p, s, w) denote the first-stage decisions and (u, p, s, w) be the stochastic
second-stage decisions having the components u;;, p;;, Sjt, Wj¢, which corre-
spond to the recourse actions of each unit at time period ¢. In addition to the
(non-stochastic) constraints for (u, p, s, w), i.e. the capacity limits (1), the
storage dynamics (4) and the minimum up- and down-times (5), we have to
require that the recourse actions also satisfy the system constraints. These are
the operating ranges of all units, the minimum up/down-time requirements
for the thermal units and the reservoir capacity bounds:
sznuit <pi < p;mwuit’ u;t € {Ov 1}’ (73)
W — W1 S, 0=t+1,... ,min{t +o0;—1, T},

w1 —wp<l—-w,, 7=t+1,... mn{t+n -1, T}, (7b)

t=2....T—1,i=1,...,1, P-a.s.

Ofsjt SS;naz7 OSW]t Sw‘;naz7 0 S‘e]t Sggrtlax5 (70)
t=1,...,T, j=1,...,J, P-a.s.

ejt = Kj,t—l — 85t +1NjWjt, t = 1,...,T, (7d)
Lio=Ll" Lip =L, j=1,...,J), P-a.s.

Here some remarks concerning the interplay of the two stages are due. The
first-stage solutions act as a basis for the recourse actions, which have to
satisfy the second-stage constraints in a cost-optimal way. To this end we have
to guarantee that the transition from the first to the second stage is feasible.
While the static constraints (7a) and (7c) need no further consideration, we
neglect the possible impact of the constraints (7d). This is justified since the
generation system is thermal dominated. The minimum up- and down-times
constraints (7b) for the thermal units, however, need some refinement. In
order to enforce compatibility between the first- and second-stage decisions
we introduce constraints that relate the scheduling behaviours of the two
stages to each other. This means that we prevent a thermal unit from being
switched on or off in the second stage, if the scheduling history in the first
stage prohibits that. The same canonical dependency is required in the other
direction as well, i.e. we restrict switching in the first stage subject to the
constraints set by the second-stage scheduling. Thus we have the constraints:

Ui —Ujp-1 < 1= (Wpo1 —Wig), 0 =t,...,min{t +0, -1, T}, (8a
Uigo1 —Uig <1— (W7 —Wro1), 7=¢,...,min{t+7, -1, T},  (8b
W — 1 <1— (o1 —Uip), 0 =t,...,min{t+0, -1, T}, (8
wip1 — Wi <1—(uir —Ur-1), 7=1t,...,min{t +7,—1, T}, (8
P-as,i=1,...,I,t=2,...,T—1.

Observe the consequences of the compatibility constraints (8). The inequality
(8b), say, represents a constraint for the second stage if and only if unit i is
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switched off in the first stage at time ¢. In this case it enforces that the thermal
unit will not be switched on in the second stage as long as the unit is cooling
for its minimum down-time in the first stage. The remaining inequalities have
similar effects.

Furthermore we introduce a subdivision of the set Z := {1,...,I} of all
thermal units into two subsets Z; and Z, such that 7y UZ; = T and the
conditions u;; = ui, ¢ € Iy, t = 1,...,T, IP - a. s.,are satisfied. This

means that only some of the available thermal units may change their on/off
state when compensating uncertain data. From a modelling point of view this
approach leads to a reduction of the number of binary variables corresponding
to a unit ¢ € Zy. Moreover the case Zo = Z conforms with the view taken
in [3]. There all on/off decisions of the thermal units have been regarded as
long-term decisions and thus belonging to the first stage only. Observe that
(8) is clearly satisfied for all i € Z,.

The loading constraints (2) have to be adapted to the new situation. Here
we distinguish between the two stages. As mentioned before we are looking for
a solution to the here-and-now decisions that satisfies the uncertain demand
with a certain probability and furthermore allows an optimal scheduling in
each of the scenarios. That is why the first-stage power outputs of all gener-
ation units have to satisfy at least the expected load, while the second-stage
power outputs are required to satisfy the load d; with probability one. Hence
the (modified) loading constraints are given by the following inequalities:

I J
Zpit + Z('sjt - wjt) 2> ]E(dt)’ t= 17 tee 7T7 (9&)
i=1 j=1
I J
Zpit—I-Z(Sjt—th)Zdt,t=1,...,T,P-a.S. (gb)
i=1 j=1

The reserve constraints (3) are modified in the same way. Note that from
now on we use an equivalent characterization of the reserve constraints:

I J
Zuitpf;’a" + Z(sjt —wjt) 2E(di+1), t=1,...,T, (10a)
i=1 j=1
I J
Zuitpft‘ax + Z(sjt —wjt) >di+r, t=1,...,T, P-a.s. (10b)

Again the second-stage decisions cover the specified amount with probability
one, while the first-stage spinning reserve meets at least the expected de-
mand. Finally we incorporate the stochastic fuel and electricity prices into
the model. To this end we define the random variables C;;, that describe the
costs for operating thermal unit ¢ in the second-stage during time period ¢,
in the following way: Cj:(p, u) = lma,xl_{autp + bt u }, where ai, biy

=l,...,

are components of the random variable €, that represent stochastic cost
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coefficients such that Cj(-,1) is IP-almost surely convex and increasing on
R4. The cost functions Cj:(p, u) for the first stage we define accordingly,
taking the expected values IE(a;;;), IE(bi;),l = 1,... ,1, as price coefficients,
however. The effect of stochastic prices on the startup costs is modelled in a
similar way. More precisely we have S;t(u;) := ¢it [wir — W 1-1]", Siz(w;) :=
E(cit) [uit — uit—1]", where c;; are stochastic startup cost coefficients and
i = (llit)g;o, ;0 = U0 P - a. S., 1= 1,... ,I.

In consistency with common two-stage stochastic programming the ob-
jective function corresponds to the total costs for operating the thermal units
in the first stage plus the expected costs in the second stage, i.e.,

I
_thz [Czt(pzh uzt) + Szt U; ] + E Z:Itz [ it Pm uzt) + Szt(uz)] (11)
1= =1 1=

The stochastic power production planning model consists then in minimizing
the objective function (11) over all deterministic decisions (u, p, w, s) and
all stochastic decisions (u, p, s, w) € L® (12, A, IP; R?TU+)) satisfying the
constraints (1), (4), (5), (7)-(10). The model represents a two-stage stochas-
tic mixed-integer program involving 2(I + J)T deterministic and 2(I + J)T'
stochastic decision variables.

The stochastic program elaborated above is almost separable with respect
to the units, since only the constraints (9)-(10) couple different units. This
structure allows us to apply a stochastic version of the classical Lagrangian
relaxation idea. We relax the above mentioned coupling constraints by intro-
ducing Lagrange multipliers A := (A, A2, A%, A*), where !, A2 € RY and
A3 At e L, A, P; RT). Setting = := (u, p, s, w) and x := (u, p, s, )
the Lagrangian L(z, x; A) is formed in the following way. Each of the con-
straints (9)—(10) is first associated with a Lagrange multiplier and then enters
the objective function (11). Here the deterministic multipliers A, A2 are
linked with the first-stage constraints (9a) and (10a), whereas the stochastic
variables A3, A* are paired with the second-stage constraints (9b), (10b).
Note that L(-) takes its values in R, since the latter constraints enter the
objective function via their expected value (cf. [10]). With the dual func-
tion D(A) := inf L(z, x; A), where the infimum is taken subject to the

constraints (1), (;1), (5), (7) and (8), the dual problem reads
max {D(A) : A e R x L}(2, A, P; R2T)}. (12)

The optimal value of the dual problem (12) provides a lower bound for
the optimal costs of the (nonconvex) primal model. The minimization of
L decomposes into stochastic single unit subproblems and the dual function

D) = 3 DY)+ 35 D53

r (13)
Z; [MIE(d:) + ME(d; +7¢) + E (Ald; + A (ds + 1))
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may be evaluated by solving thermal subproblems and hydro subproblems
corresponding to D;(A) and D;(X), respectively. The two kinds of subprob-
lems represent two-stage stochastic programming models for the operation
of a single unit. While the thermal subproblems are mixed-integer two-stage
stochastic program, that reduce to combinatorial two-stage stochastic prob-
lems, the hydro subproblems are linear two-stage models. For the latter we
make use of a descent algorithm described in [9], whereas for the thermal sub-
problems we employ stochastic dynamic programming when it is necessary.
This means in particular that for the solution of the thermal subproblems we
first relax the compatibility constraints (8) in order to apply a scenario de-
composition approach. Then the stochastic dynamic programming need only
be used if the preliminarily solution violates the compatibility constraints (cf.
[10]). Extending Lagrangian relaxation approaches for deterministic power
management models, our method for solving the stochastic two-stage model
consists of the components described in Fig. 1. The non-smooth optimization
problem (12) is solved with the proximal bundle method described in [7].
Bundle methods make use of function value and subgradient information in
order to determine descent directions. The subproblem solvers provide that
necessary information. The bundle method delivers an optimal value D(A*)
of (12), which is a lower bound for the optimal cost of the primal model. In
general, however, the dual optimal scheduling decisions violate the load and
reserve constraints. With a Lagrangian heuristics, that takes its basic ideas
from [5,12], we determine a primal feasible solution. For the case Z, = T
we use a strategy that treats all scenarios simultaneously, whereas in all
other instances each scenario is dealt with independently. Finally we fix the
binary decisions and use a deterministic version of the economic dispatch
algorithm in [9] for every scenario to find a nearly optimal primal solution.
The interaction of the described components is illustrated in Fig. 1.

The stochastic Lagrangian relaxation algorithm was implemented in C++
except for the proximal bundle method, for which the FORTRAN-package
NOA 3.0 [8] was used as a callable library. For testing the implementation
a number of load scenarios was simulated from a time series model for the
load process described in [6]. Furthermore the stochastic prices have been

solution of the dual problem

(proximal bundle method) p solution of subproblems
(stochastic dynamic programming)
l (descent algorithm)

| Lagrange heuristics ‘::
!

l (stochastic) economic dispatch ]

Fig. 1. Structure of the stochastic Lagrangian relaxation method
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opt. tol: 1073 opt. tol: 1074
Scenarios Tj time [min] gap time [min] gap obj.val
NOA all [% NOA all [%] [10%

5 0 0:16 1:00 0.61 0:41 145 0.21 1.15511
5 0 0:18 0:35 0.25 0:45 1:18 0.17 1.49352
10 0 0:57 2:50 0.45 1:55 5:08 0.30 1.15563
10 0 0:44 2:04 0.31 1:32  3:53  0.13 1.42486
5 T 0:10 0:28 0.90 0:26 0:43 0.70 1.50801
10 T 0:27 0:59 1.25 1:14  1:43 0.87 1.44497
50 I 9:00 12:04 1.83 12:36  16:07 1.36 1.41429
100 A 30:17 35:31 1.99 35:37 42:48 1.70 1.43047

Table 1. Computing times and gaps (NOA 3.0: NGRAD= 20)

simulated by a discretized geometric Brownian motion. Test runs have been
carried out for the weekly production planning (i.e. T = 168) of the hydro-
thermal power generation system of VEAG comprising 25 thermal units and
7 pumped storage plants and for a number of scenarios ranging from 5 to
100. The corresponding primal optimization problems have up to 400.000 bi-
nary and 650.000 continuous variables, and more than 1.300.000 constraints.
Table 1 shows computing times and gaps for different choices of the optimality

8000 it
6000
4000

2000

-2000

load + reserve

thermal generation 1st stage
storage plants 1st stage

Fig. 2. Solution for 10 scenarios and Ty = 0

thermal generation 2nd stage

storage plants 2nd stage ----—-
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tolerance for the proximal bundle method. The test runs have been performed
on an HP 9000 (780/J280) Compute-Server with 180 MHz frequency and 768
MByte main memory under HP-UX 10.20. The results show that a smaller
optimality tolerance leads to smaller gaps at the expense of the computing
times. Here the gap refers to the relative difference of the costs of the deter-
mined scheduling decisions (z, x) and the optimal value D(A*) of the dual
problem. In the case of Z; = () the performance of the algorithm is closely
related to the efficiency of the thermal subproblem’s solver. In particular
it depends on how often the stochastic dynamic programming algorithm is
used during the dual maximization. In fact the complexity of the involved
memory structures increases very fast, so that problem instances with more
than 10 scenarios cannot be handled so far. Figure 2 provides a sample output
of the algorithm. It is worth mentioning that typical solutions exhibit both
switching on and off decisions at the transition from the first to the second
stage. Thus a solution for this case in general yields a better objective function
value than the solution to the corresponding problem, where the index set Z,
consists of all thermal units (cf. [10]).

4 Day-Ahead Trading and Power Production

Power exchanges with future and spot markets are novel instruments arising
at liberalized electricity markets [1]. Trading at a power exchange is becoming
a means of ever growing importance in the utility’s total economic activity.
Coordination of trading and power production is a key issue in this respect. In
what follows we address simultaneous power production and day-ahead trad-
ing at a power exchange. The production component is modeled according
to Sect. 2.

Day-ahead trading involves sealed selling and purchase bids for every
individual hour of the day ahead. Each offer comprises volume and price.
There is only one round of bidding and the market price is cleared by an
independent operator such that the total exchange is maximized. Figure 3
depicts the price formation mechanism: selling and purchase offers are placed
in (price-) ascending and descending orders, respectively, yielding two step
curves where step length corresponds to volume and step height to price.
The intersection of the curves determines both the market price and the
total volume traded. Selling offers strictly below and purchase offers strictly
above market price are executed completely. Vice versa, sellings strictly above
as well as purchases strictly below do not become effective. Offers at market
price in general are executed only partially, with specific splitting rules in
case of multiple offers with identical price.

A simultaneous management of electricity production and day-ahead bid-
ding thus has to take into account two main factors: the utility’s possibilities
to generate or consume a certain amount of power at a certain price at a
certain time, and the competitors’ bids for that very time period. The latter
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price per volume

bg»tO
b8,t0 - :
b7,t0 1 ivalid market price gu
o V:
"o selling offers
bs,ty ; :
ba,t,
3,t0 purchase offers
b2ty
bl,to 1 ~ - - ~
offers to be executed offers to be not executed
T T T T T T T T T —l T T T T T T T T T
0 volume of energy

Fig. 3. Determining of the market price by mean of offers

being sealed and thus not available for the utility at the time of bidding, this
induces considerable uncertainty for the utility at the moment of decision
making.

The mathematical modelling of the phenomena sketched above is accom-
plished in two steps. First the price formation mechanism at the power ex-
change is formulated in mixed-integer linear terms and concatenated with the
production model from Sect. 2. Afterwards, this deterministic optimization
model is extended into a stochastic one by introducing probabilistic scenarios
for the bidding behaviour of the competitors and heading for an optimization
of the nonanticipative decisions to be taken by the utility. In what follows,
we will display the first step in detail and only outline the extension towards
stochastic programming.

To model price formation we consider the discretization t = 1,... ,T of
the optimization horizon from Sect. 2. The price is discretized into m =
1,..., M ascending levels with values b,,; > 0. For allt = 1,... ,T, m =
1,...,M we introduce triplets (v, v, v5;) € {0,1}3 of indicators. The
subsequent contraints system ensures that vs, = 1 (v5, = 1) iff the selling
(purchase) offer with price level m at time ¢ is strictly below (above) market
price and hence executed completely. Moreover, we have vg,, = 1 iff price
level m coincides with the valid market price at time ¢:

M
Yot =1,t=1,...,T;
m=1

S S

Ut 2 U1t

p p _ _

Ut < Upptr g t=1,..., T, m=1,... ,M.
Vpt + Vgt + Uy = 1,

(14)
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We distinguish between variables for energy volumes of own offers of price
level m in time period t (g5, ¢b,; > 0) and variables for volumes of own
ezecuted offers of price level m in time period t (p,,, ph,, > 0). Executed
offers cannot exceed offers:

0<ps <@y, 0<pE ., <ghy; t=1,....,T,m=1,...,m. (15)

Own selling offers below and own purchase offers above market price are to
be executed completely:

Pt 2 Gt — C1(1 = vp)s
Dot 2 Qo — C1(1 = 0,),

with a sufficiently big constant C;. Own selling (purchase) offers must not
be executed, if they are above (below) the valid price:

} t=1,...,T,m=1,...,m (16)

Dot < Ca(vpns + V),
ant < 02(vfnt + Vge)s

with a sufficiently big constant Cs.

The competitors’ (or foreign) selling and purchase offers of price level
m for time ¢ are denoted by f3,,fb, > 0m =1,... Mt =1,...,T,
respectively. It is feasible that not the complete volume of a competitor’s
offer at market price is executed (as in our example, Fig. 3). 87, 87 > 0 then
denote the actually executed volumes of the competitors at valid market
price:

} t=1,...,T,m=1,...,m (17)

M M
0SB <Y Vnahey 0SB <Y Whefiys t=1,..,T.  (18)

m=1 m=1

Maximum exchange is reached at the equilibrium of supply and demand:

M M
(VmeSme + Pit) + B¢ = Z (Ve St +Pme) + 68, t=1,...,T. (19)
m=1 m=1

At market price, either a complete selling offer or a complete purchase offer
or both a complete selling and a complete purchase offer have to be executed
(cf. Fig. 4). Introducing another indicator v? € {0,1} attaining the value 1
iff at least all selling offers at market price are executed, the price formation
model is completed by the following constraints:

M M
B2 Y v fay — Ca(l =), B> wS, P~ Cad, t=1,....T;

m=1 m=1

pfntzq;t‘ci‘@""fm‘”?)’} t=1,...,T,m=1,...,M

Phue > qr’;Lt —C3(1 —vp, + v?),
(20)

with a sufficiently big constant Cs.
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P pj pj

T 4dmarket priceé T QT

iniE

E

Jmarket prlcx

)

;

Fig. 4. Cases of price formation

Let gr: € IR denote the net exchange at the power exchange of price level
m at time ¢t. It has to fulfill

M M
Z—:lgmt = z:l(pfnt _pfnt)v t=1,...,T, (21)

—Cys, < gmt S Cy,, t=1,...,T,m=1,..., M

with a sufficiently big constant Cj. Finally, concatenation with the production
model from Sect. 2 is achieved by modifying the load coverage constraints
into

I J M
Zpit+2(3jt“wjt)+zgmt:dta t=1,...,T (22)
i=1 j=1 m=1

and adding the term

T M
3> bmigme: (23)

t=1 m=1

to the objective (6).

The above model was validated with VEAG data for the power system
and market prices of the Amsterdam Power Exchange (APX) [1] for the
power exchange. The VEAG power system comprises 17 coal and 8 gas fired
thermal units as well as 7 pumped storage plants. Using APX market prices
from the time period July to December 1999 we constructed hourly foreign
offers of different prices and volumes. To study impacts of power trading
to power production we formed test problems both with actual APX price
levels (problem B) and with levels deviating form the APX prices by up
to 30% (problem C). In addition the model was run as a pure productions
model, without trading (problem A). Model sizes varied from 18 000 to 63 000
constraints and 13000 (2 500 integer) to 35000 (6 000 integer) variables. Nu-
merical tests were performed on a SUN E450 ultra SPARC, 300 MHz, using
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Best Lower Min. Volumes
Prob. Time  Solution Bound Gap Saving Selling Purchase
A 0:20:14 46287933 46287933 0.00% 0.00% 0 0

B 2:27:59 46185297 44892456 2.80% 0.22% 11200 2890
C  1:15:49 45767961 45242528 1.15% 1.12% 40900 1570

Table 2. Calculations

CPLEX Linear Optimizer 6.5.1 (1999), whose algorithmic basis is cutting-
plane enhanced LP-based branch-and-bound.

Table 2 reports solution times and optimality certificates (gaps) together
with the impact of trading. For problems B and C gains of 0.22% and 1.12%,
respectively, were achieved, compared with the pure-production instance A.
Solution times behind these savings are quite substantial. However, savings
of 0.14% and 0.48% were achieved for problems B and C after only 43 and
20 minutes of solution time, respectively. Trading activities (selling and pur-
chase volumes) over time for problem C are displayed in Fig. 5. These initial
numerical results indicate the potential of simultaneously optimizing power
production and trading.

To remove the unrealistic model assumption of anticipating the competi-
tors’ offers the latter are considered to be stochastic, i.e., given scenario-
wise with certain probabilities. Then a two-stage stochastic program becomes
appropriate. The principal modelling follows the lines sketched in a different
context in Sect. 3: We consider an optimization horizon of 7 days and assemble
all the decisions to be taken at the first day into the first stage. These comprise
production descisions (variabels p, s;¢, w;s, ;+ for suitable ¢ and all ¢, j) and
the utility’s offers for the subsequent day (variables gZ,;, ¢h,;, gm: for suitable
t and all m). The remaining variables enter the second stage. The objective
function is a sum of direct costs caused by the first-stage decisions and of
expected future costs in the second stage. Solution methodology for this
two-stage stochastic integer program rest on the dual decomposition method
developed in [2]. Again a non-smooth concave dual maximization problem has

Iy

volume [MWh]

o dhbhPOONAO
T

25 49 73

97
hit

Fig. 5. Trading activities over time
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to be solved (cf. Sect. 3) whose objective function values and subgradients
are determined by solving single-scenario subproblems. The latter are of the
same type as the above model (14)—(23). Research along these directions is
still ongoing and will be reported elsewhere.
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