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Introduction

Let {ft}le be a discrete-time stochastic data process de-
fined on some probability space (2, F, P) and with &; de-
terministic. The stochastic decision z; at period t is as-
sumed to depend only on (&1,...,&) (nonanticipativity).

Typical financial and production planning model:

T
mln{lE[Z Ct(ft, act)] . Xt € Xt, Tt nonanticipative,
t=1
A&z + Arp—1(&) -1 > g1(&r) }

Alternative for the minimization of expected costs:

Minimizing some risk measure IF' of the stochastic cost
process {c:(&,x) }_, (risk management).

First step of its numerical solution:

Approximation of {ft}le by finitely many scenarios with
certain probabilities. Nonanticipativity leads to a scenario
tree structure of the approximation.



Scenario tree approximations

(a) Simulation of (sufficiently many) scenarios of the
stochastic data process &;

(b) construction of scenario trees from simulation scenar-
ios or probability distribution information;

(c) (optional) follow-up treatment of the scenario tree.

(a) Methods:
- Calibrating statistical models to historical data.
- direct use of “comparable” historical data as scenarios.
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Scenarios for the weekly electrical load

(b) Constructions based on simulation scenarios:
Given: S data scenarios with fixed starting point &, i.e.,
the scenarios form a fan.

Cluster-analysis-based methods: “Bundling” scenarios in
a cluster and definition of succesors and predecessor, e.g.,
using distances of probability distributions.

(c) Tree reduction using probability metrics.



A scenario tree is based on a finite set N C IN of nodes.

/n<§ Ni(n)
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Scenario tree with T'=25, |N| =23 and 11 leaves

n = 1 stands for the period root node,

n_ is the unique predecessor of node n,
path(n):={1,...,n_,n}, t(n) := |path(n)|,

Nt :={n :t(n) =t}, nodes n € Nr are the leaves,
Scenario: path(n) for some n € N7,

N4i(n) is the set of successors to node n,
{mn}nen, are the scenario probabilities and

r— Zn+€/\/+(n) Tn,, n €N.

{€"}hen, are the realizations of &,

{x"}nen, the realizations of x;.

Scenario tree formulation of the model:

min { Z Wnct(n)(fn,xn) caxt e Xt(n)?
neN

A 1) (€M™ + Ay 1(n ) (EM)x™ > gy ("), n € N}

Specially structured programs !



Solving stochastic programs

First idea: Use of standard software for solving the stochas-
tic program in scenario tree form !

But: Models are huge even for small trees and, in addi-
tion, special structures are often not exploited !

= Decomposition is the only feasible alternative in many
(practical) situations.

Direct or primal decomposition approaches:

- starting point: Benders decomposition based on both
feasibility and objective cuts;

- variants: regularization, nesting, stochastic cuts.

Dual decomposition approaches:

(i) Scenario decomposition by Lagrangian dualization of
nonanticipativity constraints (solving the dual by bundle
subgradient methods, augmented Lagrangian decomposi-
tion, variable or operator splitting methods);

(ii) nodal decomposition by dualizing dynamic constraints;
(iii) geographical decomposition by Lagrangian relaxation
of coupling constraints.

Presently, nested Benders decomposition, stochastic de-
composition and scenario decomposition (based on aug-
mented Lagrangians and on operator splitting) are mostly
used.



Distances of probability distributions

Let P denote the probability distribution of the stochastic
data process {&}._,, where & has dimension r, i.e., P is

a probability measure on = C R'T = IR*. Let ¢ be a non-
negative symmetric continuous function on = x =, which
plays the role of a (normalized) global continuity modulus
of the stochastic costs fo as a function of the first-stage
decision x and of & This means: If the deterministic
equivalent of the stochastic program takes the form

min{ [ o(e,)P(E) v € X),
we choose ¢ such that the property

[fo(z, &) — fo(z, &) < L(|[z])e(€, §), V€, £ € =,z € X,

holds with some constant L(||z||).

Example:
Linear multiperiod two-stage model with fixed recourse

in each period: ¢(¢&,&) = max{L,|[¢", [IEI" € — €]
(R&misch/Wets 03 forthcoming).

We consider the Fortet-Mourier metric of two measures
P and Q on =

¢.(P,Q) = sup{] /_ FE)(P - Q)(de)| : f € Fo),
where the class F. is defined by

Fer={f == R: f(&) — f(€) <c(§8),V¢ € € =},



its dual, the Kantorovich-Rubinstein functional

Ae(P,Q) = inf{ [ c(&,En(dE, dé) : mn —mon = P - Q}.
=X=
and its upper bound, the Kantorovich functional or trans-
portation metric

,UJC(PaQ) L= Inf{ C(faé)ﬁ(dfad@ rmn = P, mon = Q}

=x=

Theorem: (Stability)

Under weak conditions on the stochastic program, the
optimal values are Lipschitz continuous and the solution
sets are upper semicontinuous w.r.t. (. (fic, pc).
(Rachev/Rémisch 02, Rémisch 03)

Cc and ., pu. are defined on sets of probability measures
P.(IR?) satisfying a certain moment condition w.r.t. c.

Example: _ _
If ¢(¢,€) = max{L, I, [I€]IP~2}IE — &]I, then
Pe(=) ={Q € P(Z) : JZl€IIPQ(dE) < oo}  (p > 1).

(References: Rachev 91, Rachev/Riischendorf 98)

Approach:

Select a probability metric d such that the stochastic pro-
gram is stable w.r.t. d.

Given P and a tolerance € > 0, determine a scenario tree
such that its probability distribution P has the property

d(Papt?“) Sé.



Probability distances of discrete distributions

P: scenarios §; with probabilities p;, ¢ = 1,..., N,
Q: scenarios ¢; with probabilities ¢;, 7 =1,..., M.

Then it holds

N M
pe(P,Q) = sup{> pui+ > qjv; : ui +v; < (&, ) Vi, 5}

i=1 j=1
= inf{) mic(&, &) 1mj >0, mij =pi, »_mij = ¢}
i,J J i
(linear transportation problem)
fc(P,Q) = inf{> mijc(€, &) i mij = 0,) mij— > _mij = q;—pi}
i,J i J

— CC(Pa Q)

(can be reformulated as a minimum cost flow problem)

Special case: Scenario reduction

{&1,...,&m} C{&1,....é&n} w.log. M =N.



Scenario Reduction

We consider the transportation metric u. on P(=Z) where
c: =X =— IRy is adapted to the stochastic program as
described above.

N N
Let P= ) pide and Q = ) q;dg,.
i=1 j=1

Theorem: (optimal reduction of a scenario set J)

Dy .= min MC(ZP#&,Z%%) — sz mm C(gzagj)

¢;20, Z g;=1 i=1 jeJ
The minimum is attained at ¢; = p; + > pi, V5 € J, where
i€J;
Jj:={ieJ:j=3@)} and j(i) € arg mgiy c(&,&5), Vi € J.
J

(optimal redistribution)

Optimal reduction of a scenario set with fixed cardinality:

min{D; = szmmc(gz,gj) - JC{1,..,N},#J =N —n}

1€J

(combinatorial optimization problem of set-covering type)

Theory: Dupacova/Growe-Kuska/Romisch 03
Fast heuristics (forward, backward): Heitsch/R&misch 03
Implementation: GAMS/SCENRED (Growe-Kuska)



Fast heuristics

Algorithm 1: (Simultaneous backward reduction)

Step [O]: Sorting of {c(§;,&k) : Vi}, Vk,

JO=9¢.
Step [i]: [; € arg min min ,E7).
p [i] cargmin ) pe_min PG

ke Ji-1U{l}
JU = g1y ;).
Step [N-n+-1]: Optimal redistribution.

Algorithm 2: (Fast forward selection)

Step [0]: Compute c(&g, &), k,u=1,..., N,
JO =1, N}

Step [i]: u; € arg ureryhgl] Z P
ke Ji-1\{u}

JU = =1\ 1
Step [n+1]: Optimal redistribution.

min  c(&x, &),
kjg,]li—ll\{u} (51@ 53)
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Constructing scenario trees from data scenarios

Let a fan of data scenarios &' = (&,..., &) with probabili-
ties#*,2=1,...,N, be given, i.e., all scenarios coincide at
the starting point t =1, i.e., £l = ... =&l =: €. Hence,

it has the form

t = 1 may be regarded as the root node of a scenario tree
consisting of N branches (leaves, scenarios).

Representation of scenario trees:

One may use scenario partition matrices M (indicating
which scenario concides with which at some time t) or
node partition matrices N (indicating which nodes are
predecessors and successors of a node n, respectively).

Example:
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Let P denote the probability distribution of ¢ = {¢& ftrzl
given by the fan of scenarios. P plays the role of the
original distribution. Let the function ¢ be adapted to the
underlying stochastic program containing P.

We describe an algorithm that produces, for each € > 0,
a scenario tree with root node &7 and less nodes than that
of P, such that for its probability distribution P we obtain
for the transportation metric pu.:

pe(P, P:) < e.

Algorithm: (backward variant)
Let & >0, t=1,...,T, be given such that Zthl gt < &,
set t: =T, Iry1:={1,...,N}, mfF_H ‘=7 and Pry; := P.

Fort=1T,...,2:
Step t: Determine an index set I; C I;4; such that

tee,(Pr, Piy1) < €t

where {{'}ic, is the support of P, and ¢ is defined by
Ct(faf) L= C((£17°'°7€t707'°'7o)7(Slw"agtaoa"'ao));

(scenario reduction w.r.t. {1,...,t})

Step 1: Determine a probability measure P. such that its
marginal distributions P.M; ' are & for t = 1 and

PNt =Z7r§5€; and 7l = 7r§+1—|— Zﬁg+l,
el J€J;
where Ji; = {j € Lita1\It 1 it(j) = i}, w(j) € arg W;'In ct(€7,€")}
(A 7
are the index sets according to the redistribution rule.



Scenario tree construction algorithm
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Blue refers to computing of c-distances of scenarios, green to deleting

and adding its weight to the red scenario.



Application:

¢ is the multivariate data process having the components
a) electrical load,

b) electricity prices for baseload contracts (at EEX),

C) electricity prices for peakload contracts (at EEX),

d) electricity prices for individual hours (at EEX).

Data scenarios obtained from a stochastic model cali-
brated to the historical load data of the German power
utility VEAG and historical price data of the European
Energy Exchange (EEX) at Frankfurt/Leipzig.
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a) Scenario tree for the electrical load
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b), c), d) Scenario trees for prices of baseload contracts, peakload
contracts and individual hours, respectively



